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Abstract. We prove a normality criterion for a family of meromorphic functions involving set sharing,
which improves a result of P. Montel.

1. Introduction, Definitions and results

Let F be a family of meromorphic functions defined in a domain D in the open complex plane C. The
family is said to be normal in D , in the sense of Montel, if for any sequence {fn} ⊂ F there exists a
subsequence {fnj}, which converges locally spherically uniformly in D to a meromorphic function or ∞
{see p.71, [2]}.

The most acclaimed result of the theory of normal family is the following theorem of P. Montel, which
was called by J. L. Schiff {p.74, [2]} the fundamental normality test.

Theorem A. Let F be a family of meromorphic functions defined in a domain D, which omit three
complex values a, b, c. Then F is normal in D.

Theorem A has been further improved in the following manner {Theorem 4.1.3, p.105, [2]}.

Theorem B. Let F be a family of meromorphic functions in a domain D. If for each f ∈ F, the poles
are of multiplicities ≥ h, the zeros are of multiplicities ≥ k and the 1-points are of multiplicities ≥ l,
with

1

h
+

1

k
+

1

l
< 1,

then F is normal in D.

Let f be a meromorphic function in a domain D in the complex plane C. For a complex number a,
finite or infinite, we denote by E(a; f) the set of distinct a-points of f . Two meromorphic functions f
and g, defined in D, are said to share the value a if E(a; f) = E(a; g) . Let S be a nonempty subset of
the extended complex plane. We say that f and g share the set S if ∪a∈SE(a; f) = ∪a∈SE(a; g).

Considering the concept of value sharing, D. C. Sun [3] improved Theorem A and proved the following
result.

Theorem C. Let F be a family of meromorphic functions defined in a domain D. If for each pair of
functions f and g in F, f and g share 0, 1,∞ in D, then F is normal in D.

In 2010 Y. Xu [5] considered the case of sharing of two values and one value respectively and proved
the following results.

Theorem D. Let F be a family of meromorphic functions in a domain D. Suppose that for each pair
of functions f, g ∈ F, f and g share 0,∞ and all 1-points of each f ∈ F are multiple. Then F is normal
in D.

Theorem E. Let F be a family of meromorphic functions defined in a domain D. Suppose that

(i) for each pair of functions f, g ∈ F, f and g share 0 in D;
(ii) all poles of f have multiplicity at least 2 (or 3) and all 1-points of f have multiplicity 3 (or 2) for

each f ∈ F.

Then F is normal in D.
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One may see [1] and [4] for some normality criteria concerning sharing values and sharing functions.
In this paper we improve the result of Montel by considering shared set instead of shared value and

prove the following result.

Theorem 1. Let F be a family of meromorphic functions defined in a domain D, M be a positive number
and S = {α, β}, where α, β are distinct elements of C ∪ {∞}. Suppose further that

(i) each pair of functions f, g ∈ F share the set S in D;
(ii) there exists a γ ∈ C\{α, β} such that for each f ∈ F, | f ′(z) |≤M whenever f(z) = γ in D;

(iii) each f ∈ F has no simple β-points in D.

Then F is normal in D.

The following example shows that there do exist a normal family of meromorphic functions which do
not always share values but share a set.

Example 1. Let F = {fn : n = 1, 2, 3, . . .} and D = {z :| z |< 1}, where f2n(z) =
2n

zk
, f2n+1(z) =

z

2n+ 1

and k(≥ 2) is an integer. Then every pair of members of F share the set S = {0,∞}. Now f ′2n(z) =
−2nk

zk+1

and f ′2n+1(z) = 1
2n+1 . Hence f2n(z) = 1 implies | f ′2n(z) |= 2nk

| z |k+1
=

k
k
√

2n
≤ k. Also we see that

| f ′2n+1(z) |< 1. Therefore fn(z) − 1 = 0 implies | f ′n(z) |≤ k for n = 1, 2, 3, . . .. Further we see that

f#2n(z) ≤ k
2n < k and f#2n+1(z) ≤ 1

2n+1 < 1. So by Marty’s criterion the family F is normal in D.

The following example shows that the hypothesis (ii) of Theorem 1 cannot be removed.

Example 2. Let F = {fn : n = 1, 2, . . .} and D = {z :| z |< 1}, where fn(z) = nz. Then every pair of
members of F share the set S = {0,∞}. No member of F has a simple pole. Also | f ′n(z) |= n → ∞ as
n→∞. Since f#n (0) = n→∞ as n→∞, by Marty’s criterion F is not normal in D.

To prove Theorem 1 we require the following lemma, known as Zalcman lemma.

Lemma 1. {p.101, [2]} Let F be a family of meromorphic functions in a domain D. If F is not normal
at z0 ∈ D, then there exist a sequence of points {zn} ⊂ D with zn → z0, a sequence of positive numbers
ρn → 0 and a sequence of functions fn ∈ F such that

gn = fn(zn + ρnζ)→ g(ζ) as n→∞
locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function in
C.

2. Proof of Theorem 1

Proof of Theorem 1. Let L(z) =
(z − α)(γ − β)

(z − β)(γ − α)
if β 6= ∞ and L(z) =

z − α
γ − α

if β = ∞. Since F is

normal if and only if the family {L(f) : f ∈ F} is normal, without loss of generality we may choose
α = 0, β =∞ and γ = 1.

Since normality is a local property, it is sufficient to show that F is normal at z0 ∈ D. Suppose that F
is not normal at z0. Then by Lemma 1 there exist functions {fn} ⊂ F, points in D zn → z0 and positive
numbers ρn → 0 such that

gn = fn(zn + ρnζ)→ g(ζ) as n→∞
spherically uniformly on compact subsets of C, where g is a nonconstant meromorphic function in C.
Also by Hurwitz’s theorem and the hypothesis (iii) we know that g does not have a simple pole.

We now verify that g−1 has only multiple zeros. Let ζ0 be a zero of g−1. Since g−1 is nonconstant,
by Hurwitz’s theorem, there exists a sequence ζn → ζ0 such that gn(ζn) − 1 = 0 for n = 1, 2, 3, . . . and
so fn(zn + ρnζn) = 1. Therefore by the hypothesis (ii) we get

| g′n(ζn) |= ρn | f ′n(zn + ρnζn) |≤ ρnM → 0 as n→∞.
Hence g′(ζ0) = limn→∞ g′n(ζn) = 0. This shows that g − 1 can not have a simple zero. We now consider
the following cases:
Case 1. Suppose that there exists f ∈ F such that f(z0) 6= 0,∞. Then we can find r > 0 such that



MONTEL’S CRITERION ... 3

Dr(z0) ⊂ D and f(z) 6= 0,∞ in Dr(z0), where Dr(z0) is a circular neighbourhood of z0 with radius r.
By the hypothesis we see that h(z) 6= 0,∞ in Dr(z0) for all h ∈ F. Hence g is entire and does not have
a zero. Since g − 1 does not have a simple zero, by the second fundamental theorem we see that g is a
constant, which is a contradiction.
Case 2. Suppose that there exists f ∈ F such that f(z0) = 0 or ∞. Then we can choose r > 0 such
that Dr(z0) ⊂ D and f(z) 6= 0,∞ in D′r(z0), where D′r(z0) = Dr(z0)\{z0}. By the hypothesis we see
that h(z) 6= 0,∞ in D′r(z0) and h(z0) = 0 or ∞ for all h ∈ F.

We now verify that g has at most one zero in C. Suppose that g(η1) = g(η2) = 0 and η1 6= η2. We

put r0 =
1

4
| η1 − η2 |. Since gn(ζ) converges to g(ζ) locally uniformly, by Hurwitz’s theorem we can

find that there exists a subsequence of gn, say itself, such that gn(ζn) = gn(ξn) = 0 for all large positive
integers n, where | ζn − η1 |< r0 and | ξn − η2 |< r0. Therefore for all large positive integers n we get
fn(zn + ρnζn) = 0 = fn(zn + ρnξn). Again | zn + ρnζn − z0 |≤| zn − z0 | +ρn{| η1 | + | ζn − η1 |} < r
and | zn + ρnξn − z0 |≤| zn − z0 | +ρn{| η2 | + | ξn − η2 |} < r for all large positive integers n.

Therefore zn + ρnζn ∈ Dr(z0) and zn + ρnξn ∈ Dr(z0) for all large positive integers n. Since fn(z) 6=
0,∞ in D′r(z0), we get zn +ρnζn = zn +ρnξn = z0 and so ζn = ξn for all large positive integers n. Hence

| η1 − η2 |≤| η1 − ζn | + | η2 − ξn |< 2r0 =
1

2
| η1 − η2 |,

a contradiction. Therefore g has at most one zero in C.
Considering the reciprocals of g and fn we can similarly show that g has at most one pole in C.
Suppose that g is a transcendental meromorphic function. Then from the above properties of g and

the second fundamental theorem we have

T (r, g) ≤ N(r,∞; g) +N(r, 0; g) +N(r, 1; g) + S(r, g)

≤ 1

2
T (r, g) +O(log r) + S(r, g)

=
1

2
T (r, g) + S(r, g)

and so T (r, g) = S(r, g), a contradiction. Therefore g is a rational function. We now consider the
following sub-cases.
Sub-case 2.1. Let g have one zero but no pole. Then g is a polynomial. So we can put g = A(ζ − a)m,
where a,A(6= 0) are constants and m is a positive integer. Then g − 1 = A(ζ − a)m − 1 has only simple
zeros, a contradiction.

Sub-case 2.2 Let g have one pole but no zero. So we can put g =
B

(ζ − b)n
, where b, B( 6= 0) are

constants and n is a positive integer. Then g− 1 =
B − (ζ − b)n

(ζ − b)n
has only simple zeros, a contradiction.

Sub-case 2.3 Let g have one zero and one pole. So we can put g =
A(ζ − a)m

(ζ − b)n
, where A( 6= 0), a, b(6= a)

are constants and m, n are positive integers.
Now

g − 1 =
A(ζ − a)m − (ζ − b)n

(ζ − b)n
=

H(ζ)

(ζ − b)n
, say.

If H(ζ) is a constant, say α, then g =
α+ (ζ − b)n

(ζ − b)n
, which is impossible as g has at most one zero.

Hence H(ζ) is nonconstant.
Since g − 1 has only multiple zeros, we see that each zero of H(ζ) is a zero of H ′(ζ). Therefore if c is

a zero of H(ζ), we get A(c− a)m = (c− b)n and Am(c− a)m−1 = n(c− b)n−1. Since a, b, c are pairwise

mutually distinct, this gives m 6= n and c =
mb− na
m− n

. So g − 1 has only one zero in C.

First we suppose that n > m. Then g − 1 =

(
ζ − c
ζ − b

)n

. Differentiating g and g − 1 we get

g′ = A

(
m

ζ − a
− n

ζ − b

)
(ζ − a)m

(ζ − b)n
=

(
n

ζ − c
− n

ζ − b

)
(ζ − c)n

(ζ − b)n
.
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So

Am(ζ − a)m−1 − An(ζ − a)m

ζ − b
≡ n(ζ − c)n−1 − n(ζ − c)n

ζ − b
. (2.1)

If m > 1, putting ζ = a we get from above b = c, a contradiction. So m = 1 and from (2.1) we get

A− An(ζ − a)

ζ − b
≡ n(ζ − c)n−1 − n(ζ − c)n

ζ − b
.

Differentiating we obtain

An(b− a)

(ζ − b)2
≡ n(n− 1)(ζ − c)n−2 − n2(ζ − c)n−1(ζ − b)− n(ζ − c)n

(ζ − b)2
.

If n > 2, putting ζ = c we get
An(b− a)

(c− b)2
= 0, which is impossible. So n = 2 and g =

A(ζ − a)

(ζ − b)2
and

g − 1 =

(
ζ − c
ζ − b

)2

. Therefore
A(ζ − a)

(ζ − b)2
≡

(
ζ − c
ζ − b

)2

+ 1 and so 2ζ2 − 2(b+ c+
A

2
)ζ + b2 + c2 +Aa ≡ 0,

which is impossible. Hence m > n so that g =
A(ζ − a)m

(ζ − b)n
and g − 1 =

A(ζ − c)m

(ζ − b)n
.

Since N(r, 0; g) = N(r,∞; g) = N(r, 1; g) = log r + O(1) and T (r, g) = m log r + O(1), we get m ≤ 3
by the second fundamental theorem.

Differentiating g and g − 1 we get

g′ =
A

(ζ − b)n

{
m(ζ − a)m−1 − n(ζ − a)

ζ − b

}
=

A

(ζ − b)n

{
m(ζ − c)m−1 − n(ζ − c)m

ζ − b

}
.

Therefore m(ζ − c)m−1(ζ − b) − n(ζ − c)m ≡ m(ζ − a)m−1(ζ − b) − n(ζ − a)m. Since m > n ≥ 1,

putting ζ = a we get from above c =
m(b− a)

n
+ a. Since c =

mb− na
m− n

, we get
m(b− a)

m− n
=
m(b− a)

n
.

Since a 6= b , we get m = 2n. Now 1 ≤ n < m ≤ 3 and m = 2n imply m = 2 and n = 1. Hence

g =
A(ζ − a)2

ζ − b
, which is a contradiction as g has no simple poles. Therefore F is normal at z0. This

proves the theorem. �
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