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1 Introduction

1.1. Motivations. It is known that Hopf bifurcation of delayed differential systems has
been widely studied (e.g. see [1] and references cited therein). In particular, many authors
successfully applied Hopf bifurcation theorem to study the delayed population dynamical
systems. For examples, one can refer to [2–28]. However, most of the works only con-
sidered the standard (non-critical) cases. To illustrate this clearly the characteristic equation
should be mentioned. It is known that distribution of the roots of the characteristic equa-
tion plays important role in the bifurcation analysis. As for two dimensional system, one
can consider the second degree transcendental polynomial equation

λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (1.1)

where p, q, r, s are real numbers. When τ = 0, Eq. (1.1) becomes

λ2 + (p+ s)λ+ (r + q) = 0. (1.2)

Most of the above mentioned works studied the distribution of roots under the standard
assumption

p+ s > 0, and q + r > 0.
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In this situation, all roots of Eq. (1.2) have negative real parts. Thus, it follows from [30],
that if transcendental equation (1.1) has no purely imaginary roots, all roots of Eq. (1.1)
have negative real parts for all τ ≥ 0.

However, to the best of our knowledge, there is no paper considering the transcendental
equation (1.1) in the critical case

p+ s = 0.

In fact, in this situation, Eq. (1.2) has a pair of purely imaginary roots. So the difficulty
arises when determining the distribution of roots of Eq. (1.1). To show how to deal with
the critical situation we discuss the bifurcation of a plant-hare dynamical system in critical
state.

1.2. Model Formulation. It is well known that the classical Lotka-Voterra population mod-
els (competitive model, predator-prey model) have been well investigated. However, in
the real world, almost all animals can be classified into juvenile and adult according to the
age-structure. Juvenile and adult have different ability of consumption, mating, reproduc-
ing, attacking prey, etc. So the stage-structured factor is absolutely necessary for studying
the population dynamics. To fit the more realistic environment, stage-structured popula-
tion growth is introduced in population models. These models assume an average age to
maturity which appears as a constant time delay reflecting a delayed birth of immature
and a reduced survival of immature to their maturity. For example, some authors have
studied a single-species population growth with various stages of life history (see [31–34]).
Much research has been devoted the models concerning the predator-prey system with
stage-structure (see [35–49]). Most of the works focused on the predator-prey system with
stage structure for the predator. Recently, the authors of [29] considered the influence of a stage
structure for prey (plant) in a plant-herbivore dynamic system. In the model, it is assumed
that the plant can produce toxic substance to protect themselves when they are immature,
while the plant toxicity can disappear when they grow into the mature plant. In this situ-
ation, the herbivores (predators) choose the mature plants to eat and avoid the immature
ones. The model is described as follows:

Ḣ(t) = cMbMM(t)H(t)− dHH(t),

J̇(t) = r̃J(t) + αM(t)H(t)− rM(t− τ)− αbMM(t− τ)H(t− τ)− dJJ(t),

Ṁ(t) = rM(t− τ) + αbMM(t− τ)H(t− τ)− bMM(t)H(t)− dMM(t)− βM2(t),
(1.3)

where H(t) is the population density of herbivore (predator species), J(t) and M(t) denote
the densities of the immature and mature plants (prey species), respectively; dH denotes
the death rate of herbivore; r̃ is the intrinsic growth rate of the immature plant; dJ and dM
denote the death rate of the immature and mature plant, respectively; τ represents a con-
stant time to maturity; r denotes the rate of immature plant becoming into mature plant;
bM denotes the coefficient in herbivore eating immature plant; αbM denotes the rate of ma-
ture plant which has been eaten at time t− τ becoming into new mature plant; cM denotes
the rate of conversing mature plant into new herbivore; β is the intra-specific competition
rate of the mature plant. In [29], the parameter β is chosen as β > 0, by the assumption
that mature plants share the nutrients in an closed environment. But in a good situation,
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there are enough nutrients. In this circumstance, the parameter can be chosen as β = 0 and
system (1.3) reduces to

Ḣ(t) = cMbMM(t)H(t)− dHH(t),

J̇(t) = r̃J(t) + αM(t)H(t)− rM(t− τ)− αbMM(t− τ)H(t− τ)− dJJ(t),

Ṁ(t) = rM(t− τ) + αbMM(t− τ)H(t− τ)− bMM(t)H(t)− dMM(t).

(1.4)

System (1.4) is supplemented with the initial conditions of the form
H(s) = ϕ1(s), ϕ1(s) > 0, s ∈ [−τ, 0],
J(s) = ϕ2(s), ϕ2(s) > 0, s ∈ [−τ, 0],
M(s) = ϕ3(s), ϕ3(s) > 0, s ∈ [−τ, 0],

where ϕ = (ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0],R3
+), i = 1, 2, 3 and C denotes the set of all continuous

functions from [−τ, 0] into R3
+ = {(H, J,M) : H > 0, J > 0,M > 0}. Note that the first

equation and the third equation of (1.4) can be separated from the whole system. Consider
the following subsystem of (1.4).{

Ḣ(t) = cMbMM(t)H(t)− dHH(t),

Ṁ(t) = rM(t− τ) + αbMM(t− τ)H(t− τ)− bMM(t)H(t)− dMM(t).
(1.5)

A preliminary result on the positivity of solutions is proved similarly as Lemma 1.1 in [29].

Lemma 1.1. All solutions of system (1.5) are positive.

1.3. Comparison with the previous work. In [29], the authors studied the Hopf bifurcation
of system (1.3) under the assumption that β > 0. In fact, when β = 0, the results in [29]
cannot be valid. Why? Because the distribution of the roots of characteristic equation
is completely different. The essential reason is that β > 0 is equivalent to the standard
assumption p+ s > 0 in Eq. (1.2), while β = 0 corresponds to the critical case p+ s = 0 in Eq.
(1.2). Moreover, it is very interesting to study the global continuation of periodic solutions
bifurcating from the equilibrium in a critical state. The method used in the proof of Lemma
4.2 is nontrivial and interesting.

1.4. Outline of this work. Model analysis and bifurcation of periodic solution are carried
out in Section 2. Section 3 is devoted to examining the direction and the stability of Hopf
bifurcation. An interesting theorem for the global continuation of periodic solution from
the equilibrium is given . Finally, an example and numerical simulations are given to show
the feasibility of our results.

2 Model analysis and bifurcation of periodic solution

In this section we determine the local stability of the equilibria (boundary equilibrium and
positive equilibrium).
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Letting {
x̃(t) = H(t),
ỹ(t) = cMbMM(t),

(2.1)

then system (1.5) can be rewritten as{
˙̃x(t) = x̃(t)ỹ(t)− ax̃(t),
˙̃y(t) = bỹ(t− τ) + cx̃(t− τ)ỹ(t− τ)− dx̃(t)ỹ(t)− eỹ(t),

(2.2)

where a = dH , b = r, c = bMα, d = bM , e = dM . From biological point of view, the parameters
a, b, c, d, e are all positive. If Ẽ = (x̃, ỹ) denotes the equilibrium of system (2.2), it must
satisfy the algebraic equations {

x̃ỹ − ax̃ = 0,
bỹ + cx̃ỹ − dx̃ỹ − eỹ = 0.

(2.3)

Clearly, E0 = (0, 0) is an equilibrium. If d ̸= c and b ̸= e, then there are no other equilibria
lying on the x-axis or on the y-axis. If d = c and b ̸= e, system (2.2) has only one equilibrium
E0.

It is easy to see that there is a unique positive equilibrium, E∗ = ( b−e
d−c , a), if d ̸= c and

b−e
d−c > 0. So we summarize as follows.

Lemma 2.1. (i) If d = c and b ̸= e, then system (2.2) has only one equilibrium E0.

(ii) If d ̸= c and b−e
d−c > 0, then system (2.2) has a unique positive equilibrium E∗.

To precisely describe the stability of the equilibrium Ẽ, we need the following definition.

Definition 2.2. The equilibrium Ẽ of system (2.2) is called conditionally stable (asymptoti-
cally stable on the delays) if it is asymptotically stable for some τj in some intervals, but not
necessarily for all delays τj ≥ 0, (1 ≤ j ≤ m). The equilibrium Ẽ of system (2.2) is called ab-
solutely stable (asymptotically stable independent of the delays) if it is asymptotically stable
for all τj ≥ 0, (1 ≤ j ≤ m).

To determine the local stability of the equilibria E0 and E∗, we need to linearize (2.2)
around Ẽ = (x̃, ỹ) (Ẽ may be E0 or E∗). To do so, letting x(t) = x̃(t)− x̃ and y(t) = ỹ(t)− ỹ,
(2.2) can be transformed into

ẋ(t) = (ỹ − a)x(t) + x̃y(t) + x(t)y(t),
ẏ(t) = −dỹx(t)− (dx̃+ e)y(t) + (b+ cx̃)y(t− τ) + cỹx(t− τ)

−dx(t)y(t) + cx(t− τ)y(t− τ).
(2.4)

The linear part of system (2.4) is{
ẋ(t) = (ỹ − a)x(t) + x̃y(t),
ẏ(t) = −dỹx(t)− (dx̃+ e)y(t) + (b+ cx̃)y(t− τ) + cỹx(t− τ).

(2.5)
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The corresponding characteristic equation (in the unknown λ) is

det

(
λ− (ỹ − a) −x̃
dỹ − cỹe−λτ λ+ (dx̃+ e)− (b+ cx̃)e−λτ

)
= 0,

that is,
λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (2.6)

where p = dx̃+e− ỹ+a, r = dx̃ỹ−(dx̃+e)(ỹ−a), s = −(b+cx̃), q = −[cx̃ỹ−(b+cx̃)(ỹ−a)].

For Ẽ = E0, we have the following theorem.

Theorem 2.3. (i) If b > e, then the equilibrium point E0 = (0, 0) is unstable (saddle).

(ii) If b < e, then the equilibrium point E0 = (0, 0) is asymptotically stable.

Proof. For Ẽ = E0, (2.6) reduces to

λ2 + (e+ a)λ+ ea− (bλ+ ab)e−λτ = 0,

or
(λ+ a)(λ+ e− be−λτ ) = 0.

Obviously, λ1 = −a is a negative root. Let

F̃ (λ) = λ+ e− be−λτ .

(i) If b > e, it is easy to verify that F̃ (0) = e− b < 0 and F̃ (+∞) = +∞. Thus, there exists
a positive real number λ2 > 0 such that F̃ (λ2) = 0. Therefore, E0 is unstable if b > e.

(ii) Now we consider the case b < e. Note that λ1 = −a is a negative root. To show the
asymptotic stability of E0 in this case, it suffices to prove that all the roots of F̃ (λ) = 0 have
negative real parts. In fact, when τ = 0, we see that F̃ (λ) = 0 reduces to λ + e = 0. That is,
λ = −e is the unique negative root. So by Rouché’s theorem (see Dieudonné [30], Theorem
9.17.4), we only need to prove that F̃ (λ) = 0 does not have any purely imaginary roots. To
this end, assume for the contrary that iω is a purely imaginary root of F̃ (λ) = 0. Rewrite
F̃ (λ) = 0 in terms of its real and imaginary part as{

e− b cos(ωτ) = 0,
ω + b sin(ωτ) = 0,

which implies
ω2 = b2 − e2 < 0.

This is a contradiction. Therefore, if b < e, E0 is asymptotically stable.

For Ẽ = E∗, replacing (x, y) with (x∗, y∗) = ( b−e
d−c , a) in (2.6), we have

λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (2.7)
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where p = dx∗ + e = bd−ce
d−c , r = dx∗y∗ = (b−e)da

d−c , s = −(b + cx∗) = − bd−ce
d−c , q = −cx∗y∗ =

− (b−e)ca
d−c . Note that p + s = 0 in this case. So the system is in a critical state just as we point

out in the Introduction.

When τ = 0, Eq. (2.7) reduces to

λ2 + (p+ s)λ+ (q + r) = 0, or λ2 + (q + r) = 0. (2.8)

Notice that p+ s = 0, which is different from the standard assumption p+ s > 0 .

To determine the local stability of the positive equilibrium E∗ more precisely, we pro-
ceed in three steps.

Step 1. The first step is to find all possible purely imaginary roots of the characteristic
equation (2.7). To this end, we let λ = α + iω, α, ω ∈ R, and rewrite (2.7) in terms of its real
and imaginary arts as{

α2 − ω2 + pα + r = e−ατ [−(sα+ q) cos(ωτ)− sω sin(ωτ)],
2αω + pω = e−ατ [−sω cos(ωτ) + (sα+ q) sin(ωτ)], .

(2.9)

When α = 0, (2.9) reduces to{
−ω2 + r = −q cos(ωτ)− sω sin(ωτ),
pω = −sω cos(ωτ) + q sin(ωτ).

(2.10)

It follows by taking the sum of squares that

ω4 − (s2 − p2 + 2r)ω2 + (r2 − q2) = 0. (2.11)

Note that for Ẽ = E∗, p+ s = 0, which implies that

−(s2 − p2 + 2r) = −2r < 0.

Hence, the two roots of Eq. (2.11) can be expressed as follows:

ω2
+ = r − q, and ω2

− = r + q. (2.12)

Thus, if d < c, then
r2 − q2 < 0,

so that Eq. (2.11) has a positive root ω2
+.

And if d > c, then
r2 − q2 > 0,

so that Eq. (2.11) has two positive roots ω2
±.
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In both cases, the characteristic equation (2.7) has purely imaginary roots when τ takes
certain values. These critical values τ±j of τ can be determined from system (2.10) and given
by {

τ+j = π
ω+

+ 2jπ
ω+
, j = 0, 1, 2, · · · ,

τ−j = 1
ω−

arccos
{
q2−p2(r+q)
q2+p2(r+q)

}
+ 2jπ

ω−
, j = 0, 1, 2, · · · .

(2.13)

Step 2. Denote by
λ±j (τ) = α±

j (τ) + ω±
j (τ), j = 0, 1, 2, · · · ,

the root of Eq. (2.7) satisfying

α±
j (τ

±
j ) = 0, ω±

j (τ
±
j ) = ω±. (2.14)

This step is to verify that the following transversality conditions hold:

d

dτ
Reλ+j (τ

+
j ) > 0,

d

dτ
Reλ−j (τ

−
j ) < 0. (2.15)

To see this, differentiating characteristic equation (2.7) with respect to τ , we have

[2λ+ p]
dλ

dτ
= −sdλ

dτ
− τe−λτ [−sλ− q]

dλ

dτ
− λe−λτ [−sλ− q].

Noticing that p = −s, it follows that{
τe−λτ [−sλ− q] + 2λ

}dλ
dτ

= −λe−λτ [−sλ− q],

which implies (dλ
dτ

)−1

=
τe−λτ [−sλ− q] + 2λ

−λe−λτ [−sλ− q]

=
2

−e−λτ [−sλ− q]
− τ

λ

=
2

−(λ2 + pλ+ r)
− τ

λ
.

(2.16)

Here we have used Eq. (2.7) again.

Thus, in view of (2.14) and (2.12), it follows from (2.16) that

sign
{ d

dτ
(Reλ)

}
τ=τ+j

= sign
{
Re

(dλ
dτ

)−1}
τ=τ+j

= sign
{
Re

[ 2

−(λ2 + pλ+ r)
− τ

λ

]
τ=τ+j

}
= sign

{
Re

[ 2

−[(iω+)2 + ipω+ + r]
−

τ+j
iω+

]}
= sign

{ 2(ω2
+ − r)

(ω2
+ − r)2 + p2ω2

+

}
= sign

{2(r − q − r)

q2 + p2ω2
+

}
= sign{ −2q

q2 + p2ω2
+

} = 1.
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Similarly,

sign
{ d

dτ
(Reλ)

}
τ=τ−j

= sign
{ 2q

q2 + p2ω2
−

}
= −1.

Thus, the assertion (2.15) holds.

Step 3. To assure the existence of a positive equilibrium, d ̸= c is indispensable. So we
shall study the distribution of roots of Eq. (2.7) in two cases (d < c or d > c):

Case 1: d < c, which implies that q + r < 0. Setting

G(λ) = λ2 + pλ+ r + (sλ+ q)e−λτ ,

it follows from Eq. (2.7) that
G(0) = r + q < 0,

and
G(+∞) = +∞.

Thus, there exists a λ0 > 0 such that G(λ0) = 0. Consequently, the positive equilibrium E∗
is unstable.

Case 2: d > c, which implies that q + r > 0. Then it follows from Eq. (2.8) that
λ(0) = ±i

√
q + r for τ = 0, which implies Reλ(0) = 0. On the other hand, it is easy to

see from Step 2 that d
dτ
Reλ(0) > 0. We claim that Reλ(τ) > 0 for all τ ∈ (0, τ+0 ). If this

claim is not true, there exists a δ(0 < δ < τ+0 < τ−0 ) such that Reλ(τ) > 0 for τ ∈ [0, δ) and
Reλ(δ) = 0. This implies that λ(δ) is a pure imaginary root of Eq. (2.7) and d

dτ
Reλ(δ) < 0.

But from Step 1, there is no other τ(τ ≥ 0) except τ±j (j = 1, 2, · · · ) such that Eq. (2.7) has
a pair of purely imaginary roots. And it follows from Step 2 that τ−0 is the minim number
such that d

dτ
Reλ(τ−j ) < 0. This implies δ = τ−0 , which contradicts to the assumption of

δ(0 < δ < τ+0 < τ−0 ). Therefore, the real parts of all roots of Eq. (2.7) are positive for all
τ ∈ (0, τ+0 ).

In view of d
dτ
Reλ(τ+0 ) > 0 and d

dτ
Reλ(τ−0 ) < 0, by an analogous argument for the in-

tervals (τ+0 , τ
−
0 ), we see that the real parts of all roots of Eq. (2.7) are negative for all

τ ∈ (τ+0 , τ
−
0 ).

Similarly, we conclude that for the intervals (τ+1 , τ
−
1 ), (τ

+
2 , τ

−
2 ), · · · , τ ∈ (τ+k , τ

−
k ), the real

parts of all roots of Eq. (2.7) are negative.
Similarly, for the intervals τ ∈ (τ−0 , τ

+
1 ), τ ∈ (τ−1 , τ

+
2 ), · · · , τ ∈ (τ−k−1, τ

+
k ) and τ > τ−k , the

real parts of the roots of Eq. (2.7) are positive.

From the above analysis, it follows that τ±j are bifurcation values. Thus, we have the
following theorem about the distribution of the characteristic roots of Eq. (2.7).

Theorem 2.4. Let ω± and τ±j be defined by (2.12) and (2.13), respectively.

(i) If d < c and b < e, then Eq. (2.7) has at least one root with positive real part for all τ ≥ 0.
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(ii) If d > c and b > e, then there is a positive integer k such that there are switches from
instability to stability, that is, when

τ ∈ (0, τ+0 ), (τ
−
0 , τ

+
1 ), (τ

−
1 , τ

+
2 ), · · · , (τ−k−1, τ

+
k ) and τ > τ−k ,

Eq. (2.7) has a root with positive real part, and when

τ ∈ (τ+0 , τ
−
0 ), (τ

+
1 , τ

−
1 ), · · · , (τ+k , τ

−
k ),

all roots of Eq. (2.7) have negative real parts.

Remark 2.5. In the non-critical case (see e.g. [2, 3, 10, 11, 26], let ω̄± and τ̄±j be defined by

ω̄2
± =

1

2
(s2 − p2 + 2r)± 1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 ,

and

τ̄±j =
1

ω̄±
arccos

{q(ω̄2
± − r)− psω̄2

±

s2ω̄2
± + q2

}
+

2jπ

ω̄±
, j = 0, 1, 2, · · · .

Then there is a positive integer k such that there are switches from stability to instability,
that is, when

τ ∈ [0, τ̄+0 ), (τ̄
−
0 , τ̄

+
1 ), (τ̄

−
1 , τ̄

+
2 ), · · · , (τ̄−k−1, τ̄

+
k ),

all roots of Eq. (2.7) have negative real parts, and when

τ ∈ [τ̄+0 , τ̄
−
0 ), (τ̄

+
1 , τ̄

−
1 ), · · · , (τ̄+k−1, τ̄

−
k−1) and τ > τ̄+k ,

Eq. (2.7) has at least one root with positive real part.

We see that there is a big difference between the critical case and the non-critical one. In
particular, the intervals for stability and instability are completely different. In the critical
case, there are switches from instability to stability, the intervals (0, τ+0 ), (τ

−
0 , τ

+
1 ), (τ

−
1 , τ

+
2 ),

· · · , (τ−k−1, τ
+
k ) are unstable. On the contrary, in the non-critical case, there are switches

from stability to instability, the intervals [0, τ̄+0 ), (τ̄
−
0 , τ̄

+
1 ), (τ̄

−
1 , τ̄

+
2 ), · · · , (τ̄−k−1, τ̄

+
k ) are locally

asymptotically stable. The reason lies in the fact that in the critical case, all roots of Eq. (2.8)
are pairs of purely imaginary roots for τ = 0, while in the non-critical case, all roots of Eq.
(2.8) have negative real parts for τ = 0.

Thus for Ẽ = E∗, we have the following main results on the local stability and bifurca-
tion of the positive equilibrium E∗.

Theorem 2.6. Let ω± and τ±j be defined by (2.12) and (2.13), respectively.

(i) If d < c and b < e, then E∗ is unstable.

(ii) If d > c and b > e, then there is a positive integer k such that the equilibrium E∗ switches
k times from instability to stability, that is, when τ ∈ (0, τ+0 ), (τ

−
1 , τ

+
1 ), (τ

−
2 , τ

+
2 ), · · · , (τ−k−1, τ

+
k−1)

and τ > τ−k , the positive equilibriumE∗ of (2.2) is unstable; when τ ∈ (τ+0 , τ
−
1 ), (τ

+
1 , τ

−
2 ), · · · , (τ+k−1, τ

−
k ),

the positive equilibrium E∗ of (2.2) is asymptotically stable.

(iii) If all the conditions as stated in (ii) hold, then system (2.2) undergoes a Hopf bifurcation at
the equilibrium when τ = τ+j (j = 0, 1, · · · , k − 1) and τ = τ−j (j = 1, 2, · · · , k).
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3 Direction and stability of Hopf bifurcation

In the previous section, some sufficient conditions are obtained to guarantee that sys-
tem (2.2) undergoes Hopf bifurcation at the positive equilibrium E∗ when τ = τ+j (j =
0, 1, · · · , k − 1) and τ = τ−j (j = 1, 2, · · · , k). This section is to derive the explicit formulas
determining the direction, stability and period of periodic solutions bifurcating from equi-
librium E∗ at these critical values of τ . The method is based on the normal form and the
center manifold theory developed by Hassard et al. [1]. Without loss of generality, denote
any one of these critical values τ = τ+j (j = 0, 1, · · · , k − 1) and τ = τ−j (j = 1, 2, · · · , k) by
τ̃ , at which Eq. (2.7) has a pair of purely imaginary roots iω and system (2.2) undergoes a
Hopf bifurcation from E∗.

Let u1(t) = x(τt) − x∗, u2(t) = y(τt) − y∗ and τ = τ̃ + µ, µ ∈ R. Then µ = 0 is the Hopf
bifurcation value of system (2.2) and system (2.2) can be rewritten as

u̇1(t) = τ [x∗u2(t) + u1(t)u2(t)],
u̇2(t) = τ [−dy∗u1(t)− (dx∗ + e)u2(t) + (b+ cx∗)u2(t− 1) + cy∗u1(t− 1)

−du1(t)u2(t) + cu1(t− 1)u2(t− 1)]
(3.1)

Thus, we can work in the fixed phase space C = C([−1, 0],R2), which does not depend on
the delay τ . In space C = C([−1, 0],R2), system (3.1) is transformed into a FDE as

u̇(t) = Lµ(ut) + f(µ, ut), (3.2)

where u = (u1, u2)
T , ut(θ) = u(t+ θ) ∈ C, and Lµ are given respectively by

Lµ(ϕ) = (τ̃ + µ)

(
x∗ϕ2(0)

−dy∗ϕ1(0)− (dx∗ + e)ϕ2(0) + (b+ cx∗)ϕ2(−1) + cy∗ϕ1(−1)

)
, (3.3)

and

f(µ, ϕ) = (τ̃ + µ)

(
ϕ1(0)ϕ2(0)

−dϕ1(0)ϕ2(0) + cϕ1(−1)ϕ2(−1)

)
, (3.4)

where ϕ = (ϕ1, ϕ2) ∈ C.
By the Riesz representation theorem, there exists a matrix whose components are bound-

ed variation functions η(µ, θ) in θ ∈ [−1, 0] such that

Lµ(ϕ) =

∫ 0

−1

dη(µ, θ)ϕ(θ), for ϕ ∈ C,

where bounded variation functions η(µ, θ) can be chosen as

η(µ, θ) = (τ̃ + µ)

(
0 x∗

−dy∗ −(dx∗ + e)

)
δ(θ)− (τ̃ + µ)

(
0 0
cy∗ b+ cx∗

)
δ(θ + 1), (3.5)

where δ is the Dirac function. For ϕ ∈ C1([−1, 0],R2), define

A(µ)ϕ =

{
dϕ(θ)
dθ

, θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)ϕ(s), θ = 0,
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and

R(µ)ϕ =

{
0, θ ∈ [−1, 0),
f(µ, ϕ), θ = 0.

Then system (3.2) is equivalent to

u̇t = A(µ)ut +R(µ)ut, (3.6)

where u = (u1, u2)
T , ut(θ) = u(t+ θ), θ ∈ [−1, 0].

For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

{
−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dη(0, t)ϕ(−t), s = 0,

and a bilinear inner product

⟨ψ(s), ϕ(θ)⟩ = ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (3.7)

where η(θ) = η(0, θ). Then A(0) and A∗ are adjoint operators. In addition, from Section 2
we know that ±iτ̃ω are eigenvalues of A(0). Thus, they are also eigenvalues of A∗. We first
need to compute the eigenvector of A(0) and A∗ corresponding to iτ̃ω and −iτ̃ω, respec-
tively.

To this end, suppose that q(θ) = (1, α0)
T eiωτ̃θ is the eigenvector of A(0) corresponding

to iτ̃ω, then A(0)q(θ) = iωτ̃q(θ). It follows from the definition of A(0), (3.3) and (3.5) that

τ̃

(
iω −x∗

dy∗ − cy∗e
−iωτ̃ iω + (dx∗ + e)− (b+ cx∗)e

−iωτ̃

)
q(0) =

(
0
0

)
.

Thus, we can choose

q(0) = (1, α0)
T = (1,

iω

x∗
)T .

Similarly, let q∗(s) = D(β0, 1)
T = D(β0, 1)e

iωτ̃s is the eigenvector of A∗ corresponding to
−iτ̃ω, we can compute

q∗(s) = D(β0, 1)
T = D(β0, 1)e

iωτ̃s = D(
−iω + (dx∗ + e)− (b+ cx∗)e

iωτ̃

x∗
, 1)eiωτ̃s.

In order to assure ⟨q∗(s), q(θ)⟩ = 1, we need to determine the value of D. From (3.7), we
have

⟨q∗(s), q(θ)⟩ = D̄(β̄0, 1)(1, α0)
T −

∫ 0

−1

∫ θ

ξ=0

D̄(β̄0, 1)e
−iωτ̃(ξ−θ)dη(θ)(1, α0)

T eiωτ̃ξdξ,

= D̄
{
β̄0 + α0 −

∫ 0

−1

(β̄0, 1)θe
iωτ̃θdη(θ)(1, α0)

T
}

= D̄
{
β̄0 + α0 + τ̃(β̄0, 1)

(
0 0
cy∗ b+ cx∗

)
(1, α0)

T e−iωτ̃
}

= D̄
{
β̄0 + α0 + τ̃ [cy∗ + α0(b+ cx∗)]e

−iωτ̃
}
.
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Thus, we can choose D as

D =
1

β0 + ᾱ0 + τ̃ [cy∗ + ᾱ0(b+ cx∗)]eiωτ̃
.

It is also easy to verify that ⟨q∗(s), q̄(θ)⟩ = 0. Now we compute the coordinates to describe
the center manifold C0 at µ = 0. Let ut be the solution of (3.6) when µ = 0. Define

z(t) = ⟨q∗, ut⟩, W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}. (3.8)

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ · · · , (3.9)

z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Note that
W is real if ut is real. We only consider real solutions. For solution ut ∈ C0 of (3.6), since
µ = 0, we have

ż(t) = iωτ̃z + ⟨q∗(θ), f(0,W (z, z̄, θ) + 2Re{zq(θ)})⟩
= iωτ̃z + q̄∗(0)f(0,W (z, z̄, 0) + 2Re{zq(0)}) := iωτ̃z + q̄∗(0)f0(z, z̄).

We rewrite the equation as
ż(t) = iωτ̃z(t) + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (3.10)

It follows from (3.8) and (3.9) that

ut(θ) = W (t, θ) + 2Re{z(t)q(θ)}

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, α0)

T eiωτ̃θz + (1, ᾱ0)
T e−iωτ̃θz̄ + · · · ,

(3.11)

12



which together with (3.4) gives

g(z, z̄) = q̄∗(0)f0(z, z) = q̄∗(0)f(0, ut) = D̄(β̄0, 1)τ̃

(
u1(0)u2(0)

−du1(0)u2(0) + cu1(−1)u2(−1)

)
= τ̃ D̄β̄0u1(0)u2(0) + τ̃ D̄(−du1(0)u2(0) + cu1(−1)u2(−1))

= τ̃ D̄β̄0

[
z + z̄ +W 1

20(0)
z2

2
+W 1

11(0)zz̄ +W 1
02(0)

z̄2

2
+ · · ·

]
×
[
α0z + ᾱ0z̄ +W 2

20(0)
z2

2
+W 2

11(0)zz̄ +W 2
02(0)

z̄2

2
+ · · ·

]
+τ̃ D̄

{
− d

[
z + z̄ +W 1

20(0)
z2

2
+W 1

11(0)zz̄ +W 1
02(0)

z̄2

2
+ · · ·

]
×
[
α0z + ᾱ0z̄ +W 2

20(0)
z2

2
+W 2

11(0)zz̄ +W 2
02(0)

z̄2

2
+ · · ·

]
+c

[
e−iωτ̃z + eiωτ̃ z̄ +W 1

20(−1)
z2

2
+W 1

11(−1)zz̄ +W 1
02(−1)

z̄2

2
+ · · ·

]
×
[
α0e

−iωτ̃z + ᾱ0e
iωτ̃ z̄ +W 2

20(−1)
z2

2
+W 2

11(−1)zz̄ +W 2
02(−1)

z̄2

2
+ · · ·

]}
=

[
2τ̃ D̄β̄0α0 − 2τ̃ D̄dα0 + 2τ̃ D̄cα0e

−2iωτ̃
]z2
2

+
[
2τ̃ D̄β̄0Re{α0} − 2τ̃ D̄dRe{α0}+ 2τ̃ D̄cRe{α0}

]
zz̄

+
[
2τ̃ D̄β̄0ᾱ0 − 2τ̃ D̄dᾱ0 + 2τ̃ D̄cᾱ0e

2iωτ̃
] z̄2
2

+
[
τ̃ D̄β̄0

(
ᾱ0W

1
20(0) +W 2

20(0) + 2W 1
11(0) + 2W 2

11(0)
)

−τ̃ D̄d
(
ᾱ0W

1
20(0) +W 2

20(0) + 2W 1
11(0) + 2W 2

11(0)
)

+τ̃ D̄c
(
ᾱ0e

−iωτ̃W 1
20(−1) + eiωτ̃W 2

20(−1) + 2α0e
−iωτ̃W 1

11(−1) + 2e−iωτ̃W 2
11(−1)

)]z2z̄
2

= 2τ̃ D̄α0

(
β̄0 − d+ ce−2iωτ̃

)z2
2

+ 2τ̃ D̄Re{α0}
(
β̄0 − d+ c

)
zz̄

+2τ̃ D̄ᾱ0

(
β̄0 − d+ ce2iωτ̃

) z̄2
2

+τ̃ D̄
[
(β̄0 − d)

(
ᾱ0W

1
20(0) +W 2

20(0) + 2W 1
11(0) + 2W 2

11(0)
)

+c
(
ᾱ0e

−iωτ̃W 1
20(−1) + eiωτ̃W 2

20(−1) + 2α0e
−iωτ̃W 1

11(−1) + 2e−iωτ̃W 2
11(−1)

)]z2z̄
2
.

(3.12)
Comparing the coefficients with (3.10), we have

g20 = 2τ̃ D̄α0[β̄0 − d+ ce−2iωτ̃ ]
g11 = 2τ̃ D̄Re{α0}[β̄0 − d+ c]
g02 = 2τ̃ D̄ᾱ0[β̄0 − d+ ce2iωτ̃ ]

g21 = τ̃ D̄
[
(β̄0 − d)

(
ᾱ0W

1
20(0) +W 2

20(0) + 2W 1
11(0) + 2W 2

11(0)
)

+c
(
ᾱ0e

−iωτ̃W 1
20(−1) + eiωτ̃W 2

20(−1) + 2α0e
−iωτ̃W 1

11(−1) + 2e−iωτ̃W 2
11(−1)

)]
.

(3.13)
Since there are W20(θ) and W11(θ) in g21, we still need to compute them.

From (3.6) and (3.8), we have
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Ẇ = u̇t−żq− ˙̄zq̄ =

{
AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q̄∗(0)f0q(0)}+ f0, θ = 0.

:= AW+H(z, z̄, θ), (3.14)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (3.15)

Substituting the corresponding series into (3.14) and comparing the coefficients, we obtain

(A− 2iωτ̃)W20 = −H20(θ), AW11 = −H11(θ), · · · . (3.16)

From (3.14), it is easy to see that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (3.17)

Comparing the coefficients with (3.15) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (3.18)

and
H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.19)

It follows from (3.16),(3.18) and the definition of A that

Ẇ20(θ) = 2iωτ̃W20(θ) + g20q(θ) + ḡ02q̄(θ),

Note that q(θ) = (1, α0)
T eiωτ̃θ. Hence

W20(θ) =
ig20
ωτ̃

q(0)eiωτ̃θ +
iḡ02
3ωτ̃

q̄(0)e−iωτ̃θ + E1e
2iωτ̃θ, (3.20)

where E1 = (E
(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector.

Similarly, it follows from (3.16) and (3.19) that

W11(θ) = − ig11
ωτ̃

q(0)eiωτ̃θ +
iḡ11
ωτ̃

q̄(0)e−iωτ̃θ + E2, (3.21)

where E2 = (E
(1)
2 , E

(2)
2 ) ∈ R2 is also a constant vector.

In what follows, we shall seek appropriate E1 and E2. From the definition A and (3.16),
we obtain ∫ 0

−1

dη(θ)W20(θ) = 2iωτ̃W20(0)−H20(θ), (3.22)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(θ), (3.23)

where η(θ) = η(0, θ). By (3.14), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ̃

(
α0

−dα0 + cα0e
−2iωτ̃

)
, (3.24)
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and

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ̃

(
Re{α0}

−dRe{α0}+ cRe{α0e
−2iωτ̃}

)
. (3.25)

Note that (
iωτ̃I −

∫ 0

−1

eiωτ̃θdη(θ)
)
q(0) = 0,

and (
− iωτ̃I −

∫ 0

−1

e−iωτ̃θdη(θ)
)
q̄(0) = 0.

Substituting (3.20) and (3.24) into (3.22), we obtain(
2iωτ̃I −

∫ 0

−1

e2iωτ̃θdη(θ)
)
E1 = 2τ̃

(
α0

−dα0 + cα0e
−2iωτ̃

)
,

which leads to(
2iω −x∗

dy∗ − cy∗e
−2iωτ̃ 2iω + (dx∗ + e)− (b+ cx∗)e

−2iωτ̃

)
E1 = 2τ̃

(
α0

−dα0 + cα0e
−2iωτ̃

)
.

(3.26)
Solving Eq. (3.26), we have

E
(1)
1 =

2

|A1|
det

(
α0 −x∗

−dα0 + cα0e
−2iωτ̃ 2iω + (dx∗ + e)− (b+ cx∗)e

−2iωτ̃

)
,

E
(2)
1 =

2

|A1|
det

(
2iω α0

dy∗ − cy∗e
−2iωτ̃ −dα0 + cα0e

−2iωτ̃

)
,

where

|A1| = det

(
2iω −x∗

dy∗ − cy∗e
−2iωτ̃ 2iω + (dx∗ + e)− (b+ cx∗)e

−2iωτ̃

)
.

Similarly, substituting (3.21) and (3.25) into (3.23) gives(
0 −x∗

dy∗ − cy∗ (dx∗ + e)− (b+ cx∗)

)
E2 = 2

(
Re{α0}

−dRe{α0}+ cRe{α0}

)
. (3.27)

Solving Eq. (3.27), we have

E
(1)
2 =

2

|A2|
det

(
Re{α0} −x∗

−dRe{α0}+ cRe{α0} (dx∗ + e)− (b+ cx∗)

)
,

E
(2)
2 =

2

|A2|
det

(
0 Re{α0}

dy∗ − cy∗ −dRe{α0}+ cRe{α0}

)
,

where

|A2| = det

(
0 −x∗

dy∗ − cy∗ (dx∗ + e)− (b+ cx∗)

)
.
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Thus, we can determineW20(θ) andW11(θ) from (3.20) and (3.21). Furthermore, g21 in (3.13)
can be expressed by the parameters and delay. Therefore, we can compute the following
values:

c1(0) =
i

2ωτ̃

[
g20g11 − 2|g11|2 −

|g02|2

3

]
+
g21
2
,

µ2 = −Re{c1(0)}
Re{λ′(τ̃)}

,

β2 = 2Re{c1(0)},

T2 = −Im{c1(0)}+ µ2Im{λ′(τ̃)}
ωτ̃

,

(3.28)

which determine the quantities of bifurcating periodic solutions at the critical value τ̃ , i.e.,
µ2 determines the directions of the Hopf bifurcation: if µ2 > 0(µ2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ >
τ̃(τ < τ̃); β2 determines the stability of the bifurcating periodic solutions: the bifurcating
periodic solutions in the center manifold are stable (unstable) if β2 < 0(β2 > 0); and T2
determines the period of the bifurcating periodic solutions: the period increase (decrease)
if T2 > 0(T2 < 0). Further, it follows from (2.15) and (3.28) that the following results about
the direction of the Hopf bifurcations hold.

Theorem 3.1. Assume that d > c and b > e hold. Then the Hopf bifurcations of (2.2) at E∗ and
τ = τ+j are supercritical (respectively subcritical) if Re(c1(0)) < 0 (respectively Re(c1(0)) > 0).
However, the directions of the Hopf bifurcations (2.2) at E∗ and τ = τ−j is τ < τ−j (respectively
τ > τ−j ) if Re(c1(0)) < 0 (respectively Re(c1(0)) > 0).

Theorem 3.2. If d < c, b < e and τ = τ+0 hold, or d > c, b > e and τ = τ+j , (j = 0, 1, · · · , k) and
τ = τ−j , (j = 0, 1, · · · , k − 1), then the bifurcating periodic solution is stable if Re(c1(0)) < 0 and
unstable if Re(c1(0)) > 0.

4 Global existence of periodic solutions

This section studies the global continuation of periodic solutions bifurcating from the point
(E∗, τ

+
j ) of system (2.2). To this end, we need some preliminary results. Recall that system

(1.5) can be transformed into (2.2) by (2.1). Moreover, by (2.1) and (1.4), the initial condi-
tions of (2.2) take the form{

x̃(s) = ϕ̃1(s), ϕ̃1(s) > 0, s ∈ [−τ, 0],
ỹ(s) = ϕ̃2(s), ϕ̃2(s) > 0, s ∈ [−τ, 0], (4.1)

where ϕ̃ = (ϕ̃1, ϕ̃2) ∈ C([−τ, 0],R2
+), i = 1, 2. Thus, we have

Lemma 4.1. Solutions of system (2.2) with initial conditions (4.1) are positive for all t ≥ 0.
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Proof. Let (x̃(t), ỹ(t)) be a solution of system (2.2) with initial conditions (4.1). Let us
consider ỹ(t) for t ∈ [0, τ ]. It follows from the second equation of system (2.2) that

˙̃y(t) = bϕ̃2(t− τ) + cϕ̃1(t− τ)ϕ̃2(t− τ)− dx̃(t)ỹ(t)− eỹ(t)
≥ −dx̃(t)ỹ(t)− eỹ(t), for t ∈ [0, τ ].

By comparison argument, it follows that

ỹ(t) ≥ ỹ(0) exp{
∫ t

0

[−dx̃(s)− e]ds} > 0, for t ∈ [0, τ ].

In a similar way we treat the intervals [τ, 2τ ], [2τ, 3τ ], · · · , [nτ, (n+1)τ ], n ∈ N, thus, ỹ(t) ≥ 0
for t ≥ 0. On the other hand, it follows from the first equation of system (2.2) that

x̃(t) = x̃(0) exp{
∫ t

0

[ỹ(s)− a]ds} > 0, for t ≥ 0.

This completes the proof.

Lemma 4.2. If d ̸= c and (b− e)/(d− c) > 0, then all the nontrivial p-periodic solutions of system
(2.2) are uniformly bounded, where p is an arbitrary bounded constant.

Proof. Let x̃(t) = ev1(t), ỹ(t) = ev2(t), then system (2.2) can be rewritten as{
v̇1(t) = −a+ ev2(t),
v̇2(t) = bev2(t−τ)−v2(t) + cev1(t−τ)+v2(t−τ)−v2(t) − dev1(t) − e.

(4.2)

To prove that all nontrivial periodic solutions of system (2.2) are uniformly bounded, it
suffices to prove that all periodic solutions of system (4.2) are uniformly bounded. To
achieve this goal, let v(t) = (v1(t), v2(t)) be any p-periodic solution of system (4.2). Note
that

∫ p
0
v̇i(t)dt = 0, i = 1, 2 due to the p-periodicity of v(t). Integrating (4.2) over [0, p] gives∫ p

0

ev2(t)dt = ap, (4.3)

and ∫ p

0

[
bev2(t−τ)−v2(t) + cev1(t−τ)+v2(t−τ)−v2(t)

]
dt = d

∫ p

0

ev1(t)dt+ ep. (4.4)

It follows from the first equation of system (4.2) and (4.3) that∫ p

0

∣∣∣v̇1(t)∣∣∣dt ≤ ∣∣∣ ∫ p

0

ev2(t)dt
∣∣∣+ ap = 2ap. (4.5)

Similarly, it follows from the second equation of system (4.2) and (4.4) that∫ p

0

∣∣v̇2(t)∣∣dt ≤
∣∣∣ ∫ p

0

[
bev2(t−τ)−v2(t) + cev1(t−τ)+v2(t−τ)−v2(t)

]
dt
∣∣∣+ ∣∣∣d∫ p

0

ev1(t)dt
∣∣∣+ ep

≤ 2
(
d

∫ p

0

ev1(t)dt+ ep
)
.

(4.6)
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Noticing that
∫ p
0
ev2(t)v̇2(t)dt = 0. Multiplying (4.2) by ev2(t) on both sides of the second

equation of (4.2) and integrating over [0, p], we have

b

∫ p

0

ev2(t−τ)dt+ c

∫ p

0

ev1(t−τ)+v2(t−τ)dt = d

∫ p

0

ev1(t)+v2(t)dt+ e

∫ p

0

ev2(t)dt. (4.7)

By the p-periodicity of v(t), it is easy to show that∫ p

0

ev2(t−τ)dt =

∫ p

0

ev2(t)dt,

∫ p

0

ev1(t−τ)+v2(t−τ)dt =

∫ p

0

ev1(t)+v2(t)dt. (4.8)

It follows from (4.7) and (4.8) that

b

∫ p

0

ev2(t)dt+ c

∫ p

0

ev1(t)+v2(t)dt = d

∫ p

0

ev1(t)+v2(t)dt+ e

∫ p

0

ev2(t)dt,

which implies

(d− c)

∫ p

0

ev1(t) · ev2(t)dt = (b− e)

∫ p

0

ev2(t)dt. (4.9)

Since v(t) = (v1(t), v2(t)) is p-periodic, there exist ξi, ηi ∈ [0, p], (i = 1, 2) such that

vi(ξi) = min
t∈[0,p]

vi(t), vi(ηi) = max
t∈[0,p]

vi(t), i = 1, 2. (4.10)

It follows from (4.9) and (4.10) that

(d− c)ev1(ξ1)
∫ p

0

ev2(t)dt ≤ (b− e)

∫ p

0

ev2(t)dt.

Since d ̸= c and (b− e)/(d− c) > 0, it follows that

v1(ξ1) ≤ ln
{ b− e

d− c

}
. (4.11)

Similarly, we have

v1(η1) ≥ ln
{ b− e

d− c

}
. (4.12)

Thus, it follows from (4.5) and (4.11) that

v1(t) ≤ v1(ξ1) +

∫ p

0

∣∣∣v̇1(t)∣∣∣dt ≤ ln
{ b− e

d− c

}
+ 2ap, (4.13)

and
v1(t) ≥ v1(η1) +

∫ p

0

∣∣∣v̇1(t)∣∣∣dt ≥ ln
{ b− e

d− c

}
− 2ap. (4.14)

From (4.13) and (4.14), we obtain∣∣∣v1(t)∣∣∣ ≤ max
{
ln
{∣∣∣ b− e

d− c

}
+ 2ap

∣∣∣, ∣∣∣ b− e

d− c

}
− 2ap

∣∣∣} := B1. (4.15)
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On the other hand, it follows from (4.6) and (4.15) that∫ p

0

∣∣v̇2(t)∣∣dt ≤ 2
(
d

∫ p

0

ev1(t)dt+ ep
)
≤ 2(deB1 + e)p. (4.16)

Moreover, from (4.3) and (4.10), it is easy to see that

ev1(ξ2)p ≤ ap, or v1(ξ1) ≤ ln a, (4.17)

and
ev1(η2)p ≥ ap, or v1(η1) ≥ ln a. (4.18)

Thus, it follows from (4.16) and (4.17) that

v2(t) ≤ v2(ξ2) +

∫ p

0

∣∣∣v̇2(t)∣∣∣dt ≤ ln a+ 2(deB1 + e)p, (4.19)

and
v2(t) ≥ v2(η1) +

∫ p

0

∣∣∣v̇2(t)∣∣∣dt ≥ ln a− 2(deB1 + e)p. (4.20)

From (4.19) and (4.20), we obtain∣∣∣v2(t)∣∣∣ ≤ max
{
ln
{∣∣∣ ln a+ 2(deB1 + e)p

∣∣∣, ∣∣∣ ln a− 2(deB1 + e)p
∣∣∣} := B2. (4.21)

Taking B0 = max{B1, B2}, we obtain ∥v(t)∥ ≤ B0, for any p-periodic solution v(t). Al-
though the boundaries of v(t) depend on the value of p, p is bounded. Therefore, all peri-
odic solutions of (4.2) are uniformly bounded. Consequently, all periodic solution of (2.2)
are uniformly bounded. This ends the proof of Lemma 4.2.

Lemma 4.3. If d ̸= c and (b− e)/(d− c) > 0, system (2.2) has no nontrivial τ -periodic solution.

Proof. To the contrary, suppose that system (2.2) has a τ -periodic solution. Then the
system of ordinary differential equations{

ẋ(t) = x(t)[y(t)− a],
ẏ(t) = y(t)[(b− e)− (d− c)x(t)],

(4.22)

has a periodic solution. System (4.22) has the same equilibria as system (2.2), which are

z0 = (0, 0), z∗ = (x∗, y∗) = (
b− e

d− c
, a).

Note that x-axis and y-axis are the invariable manifold of system (4.22) and the orbits of
system (4.22) do not intersect each other. Thus, there are no solutions crossing the coor-
dinate axes. On the other hand, note the fact that if system (4.22) has a periodic solution,
then there must be an equilibrium in its interior, and that z0 is located on the origin. Thus,
we conclude that the periodic orbit of system (4.22) must lie in the first quadrant. It is well
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known that the positive equilibrium z∗ is globally asymptotically stable in the first quad-
rant. Thus, there is no periodic orbit in the first quadrant too. The above discussion means
that (4.22) has no nontrivial periodic solution. It is a contradiction. Therefore, Lemma 4.3
is proved.

Below, we follow closely the notations in [50]. For simplification of notations, setting
zt = (xt, yt), we may rewrite systems (2.2) as the following functional differential equation

z(t) = F (zt, τ, p), (4.23)

where zt(θ) = z(t + θ) ∈ C([−τ, 0],R2). From the discussion in Section 2, we know that
system (4.23) has two equilibria z0 = E0(0, 0) and z∗ = E∗(x∗, y∗). If d ̸= c and (b − e)/(d −
c) > 0, z∗ is the unique positive equilibrium. In order to apply Theorem 3.3 in [50], define

X = C([−τ, 0],R2),
Σ = Cl{(z, τ, p) ∈ X× R× R+ : z is a p-periodic solution of (4.23)}
N = {(z, τ, p) : F (zt, τ, p) = 0},

and let ℓ(z, τ+j , 2π/ω+) denote the connected component of (z, τ+j , 2π/ω+) in Σ, τ+j and ω+

are defined by (2.12) and (2.13), respectively.

Theorem 4.4. If d > c and b > e, then for each τ > τ+j , (j = 0, 1, 2, · · · , k − 1), system (2.2) has
at least k − 1 periodic solutions.

Proof. It suffices to prove that the projection of ℓ(z, τ+j , 2π/ω+) onto τ -space is [τ̃ ,∞) for
each j ≥ 1, where τ̃ ≤ τ+j .

The characteristic matrix of (4.23) at an equilibrium z̃ = (x̃, ỹ) ∈ R2 takes the following
form:

∆(z̃,τ,p)(λ) = λI −DF (z̃t, τ, p)(e
λI),

where I is an identity matrix. Consequently, the characteristic equation of (4.23) at z̃ is

λ2 + p̄λ+ r̄ + (s̄λ+ q̄)e−λτ , (4.24)

where p̄ = dx̃+e− ỹ+a, r̄ = dx̃ỹ−(dx̃+e)(ỹ−a), s̄ = −(b+cx̃), q̄ = −[cx̃ỹ−(b+cx̃)(ỹ−a)].
(z̃, τ̃ , p̃) is called a center if F (z̃, τ̃ , p̃) = 0 and det∆(z̃,τ,p̃)(i

2π
p
) = 0. A center (z̃, τ̃ , p̃) is said to

be isolated if it is the only center in some neighborhood of (z̃, τ̃ , p̃).

If z̃ = z0, Eq. (4.24) reduces to

(λ+ a)(λ+ e− be−λτ ) = 0. (4.25)

Obviously, λ1 = −a is a negative root of (4.25). Suppose that iω is a purely imaginary root
of F̃ (λ) = 0. Rewrite F̃ (λ) = 0 in terms of its real and imaginary part as{

e− b cos(ωτ) = 0,
ω + b sin(ωτ) = 0,

(4.26)
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which implies
ω2 = b2 − e2.

Therefore, if b < e, then ω2 < 0. Consequently, Eq. (4.25) has no any purely imaginary
roots. Under the assumption in Theorem 4.4, system (4.23) has no any center of the form
(z0, τ, p).

On the other hand, from the discussion about the local Hopf bifurcation in Section 2, it
is easy to verify that (z∗, τ+j ,

2π
ω+

) is also a isolated center. By Theorem 2.6, there exist ε > 0,
δ > 0 and a smooth curve λ : (τ+j −δ, τ+j +δ) → C such that det(∆(λ(τ)))) = 0, |λ(τ)−ω+| < ε
for all τ ∈ [τ+j − δ, τ+j + δ] and

λ(τ+j ) = iω+,
dReλ(τ)

dτ

∣∣∣
τ=τ+j

> 0.

Let
Ωε,2π/ω+ = {(η, p) : 0 < η < ε, |p− 2π/ω+| < ε}.

It is easy to verify that on [τ+j − δ, τ+j + δ]× Ωε,2π/ω+ ,

det(∆(z∗,τ,p)(η + 2πi/p)) = 0 if and only if η = 0, τ = τ+j , and p = 2π/ω+.

Therefore, the hypotheses (A1)− (A4) in [50] are satisfied. Moreover, if we define

H±(z∗, τ, 2π/ω+)(η, p) = det(∆(z∗,τ
+
j ±δ,p)(η + 2πi/p)),

then we have the crossing number of isolated center (z∗, τ+j , 2π/ω+) as follows:

γ(z∗, τ
+
j , 2π/ω+) = degB(H

−(z∗, τ
+
j , 2π/ω+),Ωε,2π/ω+)

−degB(H
+(z∗, τ

+
j , 2π/ω+),Ωε,2π/ω+) = −1.

Thus, we have ∑
(z̃,τ̃ ,p̃)∈ℓ(z∗,τ+j ,2π/ω+)

γ(z̃, τ̃ , p̃) < 0,

where (z̃, τ̃ , p̃), in fact, takes the form of (z∗, τ+j , 2π/ω+) j = 0, 1, 2, · · · . It follows from The-
orem 3.3 in [50] that the connected component ℓ(z∗, τ+j , 2π/ω+) through (z∗, τ

+
j , 2π/ω+)in Σ

is unbounded. From (2.13), we have

τ+j =
1

ω+

arccos
{h(q − ω2

+) +mgω2
+

g2ω2
+ + h2

}
+

2jπ

ω+

, j = 0, 1, 2, · · · .

Thus, when j > 0, we have 2π/ω+ < τ+j .
Now we prove that the projection of ℓ(z∗, τ+j , 2π/ω+) onto the τ -space is [τ̃ ,∞), where

τ̃ ≤ τ+j . Clearly, it follows from the proof of Lemma 4.3 that system (2.2) with τ = 0 has
no nontrivial periodic solution. Hence, the projection of ℓ(z∗, τ+j , 2π/ω+) onto the τ -space is
away from zero.

For a contradiction, we suppose that the projection of ℓ(z∗, τ+j , 2π/ω+) onto the τ -space is
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bounded. This means that the projection of ℓ(z∗, τ+j , 2π/ω+) onto the τ -space is included in
interval (0, τ∗). Noticing that 2π/ω+ < τ+j and applying Lemma 4.3, we have 0 < p < τ∗ for
(z(t), τ, p) belonging to ℓ(z∗, τ+j , 2π/ω+). This implies that the projection of ℓ(z∗, τ+j , 2π/ω+)
onto the p-space is bounded. Then, applying Lemma 4.2 we get that the connected compo-
nent ℓ(z∗, τ+j , 2π/ω+) is bounded. This contradiction completes the proof.

5 Example and simulations

Example 5.1 Consider the following system:
x̃′(t) = x̃(t)ỹ(t)− 1

2
x̃(t),

ỹ′(t) = ỹ(t− τ) + x̃(t− τ)ỹ(t− τ)− 2x̃(t)ỹ(t)− 1

2
ỹ(t),

(5.1)

Simple computation shows that system (5.1) has a positive equilibriumE∗ = (0.5, 0.5). And
p = 3/2, s = −3/2, r = 1/2 and q = −1/4. So, it is the critical case in view of p + s = 0. By
the formula (2.13), we can determine that τ+0 = 3.6276, τ−0 = 4.9962, · · · . Thus, the positive
equilibrium E∗ switches from instability to stability (see Fig. 1 and Fig 3). The bifurcation
occurring at critical value τ+0 takes place when τ crosses τ+0 to the left (see Fig. 2).
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Figure 1: When 0 < τ = 0.0001 < τ+0 , the positive equilibrium E∗ is unstable.
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Figure 2: When 0 < τ = 0.015 < τ+0 , the bifurcating periodic solution from E∗ occurs.
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Figure 3: When τ = 3.8 > τ+0 , the positive equilibrium E∗ is asymptotically stable.
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