
OSCILLATION OF SECOND ORDER NONLINEAR
MIXED NEUTRAL DIFFERENTIAL EQUATIONS
WITH DISTRIBUTED DEVIATING ARGUMENTS

YUNSONG QI∗ AND JINWEI YU

Abstract. In this work, some new oscillation criteria are estab-
lished for a second-order nonlinear mixed neutral differential equa-
tion with distributed deviating arguments. Several examples are
also provided to illustrate these results.

1. Introduction

In this work, we are concerned with oscillatory behavior of a second-
order nonlinear neutral differential equation of the form

(
r(t) {[x(t) + p1(t)x(t− σ1) + p2(t)x(t + σ2)]

′}γ)′

+

∫ b

a

q1(t, ξ)x
γ(t− ξ)dξ +

∫ b

a

q2(t, ξ)x
γ(t + ξ)dξ = 0,(1.1)

where t ≥ t0 > 0 and γ ≥ 1 is the quotient of odd positive integers.
Throughout, we will assume that:

(H1) r, pi ∈ C(I,R), r(t) > 0, and 0 ≤ pi(t) ≤ ai for i = 1, 2,
I = [t0,∞), where ai are constants;

(H2) qi ∈ C(I × [a, b], [0,∞)) and qi(t, ξ) is not eventually zero on
any half line [tµ,∞)× [a, b], tµ ≥ t0, for i = 1, 2;

(H3) σi ≥ 0 are constants for i = 1, 2, and the integral of equation
(1.1) is in the sense of Riemann–Stieltijes.

We set z(t) := x(t) + p1(t)x(t − σ1) + p2(t)x(t + σ2). By a solution
of (1.1) we mean a nontrivial real-valued function x which has the
properties z ∈ C1([Tx,∞),R) and r(z′)γ ∈ C1([Tx,∞),R) for some
Tx ≥ t0 and satisfying (1.1) on [Tx,∞). We restrict our attention to
those solutions x of equation (1.1) which exist on some half linear
[Tx,∞) and satisfy sup{|x(t)| : t ≥ T} > 0 for any T ≥ Tx. As is
customary, a solution of (1.1) is called oscillatory if it has arbitrarily
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large zeros on [t0,∞); otherwise, it is called nonoscillatory. Equation
(1.1) is said to be oscillatory if all of its solutions are oscillatory.

Neutral functional differential equations have numerous applications
in electric networks. For instance, they are frequently used for the study
of distributed networks containing lossless transmission lines which rise
in high speed computers where the lossless transmission lines are used
to interconnect switching circuits; see [19].

Recently, many results on oscillation of nonneutral differential equa-
tions and neutral functional differential equations have been estab-
lished. We refer the reader to [1–18, 30] and [20–29, 31–38], and the
references cited therein. Philos [27] established some Philos-type oscil-
lation criteria for a second-order linear differential equation

(r(t)x′(t))′ + q(t)x(t) = 0.

In [1,2,14,30], the authors gave some sufficient conditions for oscillation
of all solutions of a second-order half-linear differential equation

(r(t)|x′(t)|γ−1x′(t))′ + q(t)|x(τ(t))|γ−1x(τ(t)) = 0

by using the Riccati substitution technique. Džurina [10] presented
some sufficient conditions for oscillation of a second-order differential
equation with mixed arguments

(r(t)x′(t))′ + p(t)x(τ(t)) + q(t)x(σ(t)) = 0.

Some oscillation criteria for the following second-order neutral differ-
ential equation

(r(t)|z′(t)|γ−1z′(t))′ + q(t)|x(σ(t))|γ−1x(σ(t)) = 0,

where z := x + px ◦ τ were obtained by several authors. Džurina
et al. [12] established some criteria for the following mixed neutral
equation

(x(t) + p1x(t− τ1) + p2x(t + τ2))
′′ = q1(t)x(t− σ1) + q2(t)x(t + σ2),

where q1 and q2 are nonnegative real-valued functions. Grace [16] ob-
tained some theorems for an odd-order neutral differential equation

(x(t) + p1x(t− τ1) + p2x(t + τ2))
(n) = q1x(t− σ1) + q2x(t + σ2).

Wang [32] studied a second-order differential equation

(r(t)(x(t) + p(t)x(t− τ))′)′ +
∫ b

a

q(t, ξ)x(g(t, ξ))dσ(ξ) = 0

in the case ∫ ∞

t0

dt

r(t)
= ∞.



SECOND-ORDER NEUTRAL DIFFERENTIAL EQUATIONS 3

Yan [36] considered an even-order mixed neutral differential equation

(x(t)− c1x(t− h1)− c2x(t + h2))
(n) + qx(t− g1) + px(t + g2) = 0,

where c1 and c2 are nonnegative, p and q are positive real numbers. Yu
and Fu [37] considered a second-order differential equation

(x(t) + p(t)x(t− τ))′′ +
∫ b

a

q(t, ξ)x(g(t, ξ))dσ(ξ) = 0.

Thandapani and Piramanantham [31], Xu and Weng [35], Zhao and
Meng [38] examined an equation

(r(t)(x(t) + p(t)x(t− τ))′)′ +
∫ b

a

q(t, ξ)f
(
x(g(t, ξ))

)
dσ(ξ) = 0.

As yet, there are few results on oscillation of mixed neutral dif-
ferential equations with distributed deviating arguments. Candan [5]
considered an odd-order mixed neutral differential equation with dis-
tributed deviating arguments

[x(t)± ax(t± h)± bx(t± g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

where a, h, b, g, p, c, d, and q are constants and 0 < c < d. Candan [6]
examined an even-order equation

[x(t)+λax(t+αh)+µbx(t+βg)](n) = p

∫ d

c

x(t−ξ)dξ+q

∫ d

c

x(t+ξ)dξ.

Candan and Dahiya [7] studied the following equation

[
x(t) + h

∫ b

a

x(t− ξ)dξ + g

∫ b

a

x(t + ξ)dξ

](n)

= p

∫ d

c

x(t− ν)dν + q

∫ d

c

x(t + ν)dν

and
[
x(t) + h

∫ b

a

x(t− ξ)dξ + g

∫ b

a

x(t + ξ)dξ

](n)

= px(t− τ) + qx(t + ν).

Candan and Dahiya [8] investigated the following equation

[x(t)+λax(t+αh)+µbx(t+βg)](n)+p

∫ d

c

x(t−ξ)dξ+q

∫ d

c

x(t+ξ)dξ = 0.
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Motivated by the above work, the objective of this paper is to study
oscillation problem of (1.1) in the cases

(1.2)

∫ ∞

t0

dt

r1/γ(t)
= ∞

and

(1.3)

∫ ∞

t0

dt

r1/γ(t)
< ∞.

The organization of this paper is as follows: In Sect. 2, by using Riccati
substitution technique, some oscillation criteria are obtained for (1.1).
In Sect. 3, three examples are included to illustrate the main results.

In what follows, all functional inequalities without specifying its do-
main of validity are assumed to hold for all sufficiently large t.

2. Main results

In order to prove main theorems, we need the following auxiliary
result.

Lemma 2.1 (See [4, Lemma 2.5]). Assume γ ≥ 1, x1 and x2 ∈ R. If
x1 ≥ 0 and x2 ≥ 0, then

x1
γ + x2

γ ≥ 1

2γ−1
(x1 + x2)

γ.

Below, we use the notation

Q̃(t) :=

∫ b

a

Q(t, ξ)dξ, Q(t, ξ) := Q1(t, ξ) + Q2(t, ξ),

Q1(t, ξ) := min{q1(t, ξ), q1(t− σ1, ξ), q1(t + σ2, ξ)},
Q2(t, ξ) := min{q2(t, ξ), q2(t− σ1, ξ), q2(t + σ2, ξ)},
(ρ′(t))+ := max{0, ρ′(t)}, δ(t) :=

∫ ∞

t+b

ds

r1/γ(s)
,

and
ζ(t) := δ(t + σ2) for (t, ξ) ∈ I× [a, b].

Theorem 2.2. Suppose (1.2) holds and a + b ≥ 0, b ≥ σ1. Assume
also that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

(2.1) lim sup
t→∞

∫ t

t0

[
ρ(s)

Q̃(s)

(2γ−1)2

− [1 + a1
γ + a2

γ/2γ−1]r(s− b)((ρ′(s))+)γ+1

(γ + 1)γ+1ργ(s)

]
ds = ∞.

Then (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t − σ1) > 0, x(t + σ2) > 0, x(t − ξ) > 0, and x(t + ξ) > 0 for all
t ≥ t1, ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. In view of (1.1), we have

(r(t)(z′(t))γ)′ = −
∫ b

a

q1(t, ξ)x
γ(t− ξ)dξ

−
∫ b

a

q2(t, ξ)x
γ(t + ξ)dξ ≤ 0, t ≥ t1.(2.2)

Thus, r(z′)γ is nonincreasing. By virtue of (1.2), there exists a t2 ≥ t1
such that

(2.3) z′(t− σ1) > 0 for t ≥ t2.

Using (1.1), for all sufficiently large t, we obtain

(r(t)(z′(t))γ)′ +

∫ b

a

q1(t, ξ)x
γ(t− ξ)dξ +

∫ b

a

q2(t, ξ)x
γ(t + ξ)dξ

+a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+a1
γ

∫ b

a

q1(t− σ1, ξ)x
γ(t− σ1 − ξ)dξ

+a1
γ

∫ b

a

q2(t− σ1, ξ)x
γ(t− σ1 + ξ)dξ

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′

+
a2

γ

2γ−1

∫ b

a

q1(t + σ2, ξ)x
γ(t + σ2 − ξ)dξ

+
a2

γ

2γ−1

∫ b

a

q2(t + σ2, ξ)x
γ(t + σ2 + ξ)dξ = 0.(2.4)
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It follows from Lemma 2.1 and the definition of z that

q1(t, ξ)x
γ(t− ξ) + a1

γq1(t− σ1, ξ)x
γ(t− σ1 − ξ)

+
a2

γ

2γ−1
q1(t + σ2, ξ)x

γ(t + σ2 − ξ)

≥ Q1(t, ξ)

[
xγ(t− ξ) + a1

γxγ(t− σ1 − ξ) +
a2

γ

2γ−1
xγ(t + σ2 − ξ)

]

≥ Q1(t, ξ)

2γ−1
[[x(t− ξ) + a1x(t− σ1 − ξ)]γ + a2

γxγ(t + σ2 − ξ)]

≥ Q1(t, ξ)

(2γ−1)2
[x(t− ξ) + a1x(t− σ1 − ξ) + a2x(t + σ2 − ξ)]γ

≥ Q1(t, ξ)

(2γ−1)2
zγ(t− ξ).(2.5)

Similarly, we have

q2(t, ξ)x
γ(t + ξ) + a1

γq2(t− σ1, ξ)x
γ(t− σ1 + ξ)

+
a2

γ

2γ−1
q2(t + σ2, ξ)x

γ(t + σ2 + ξ) ≥ Q2(t, ξ)

(2γ−1)2
zγ(t + ξ).(2.6)

Hence by (2.4), (2.5), and (2.6), we find

(r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′

+
1

(2γ−1)2

∫ b

a

[Q1(t, ξ)z
γ(t− ξ) + Q2(t, ξ)z

γ(t + ξ)] dξ ≤ 0.(2.7)

From z′ > 0 and a + b ≥ 0, we obtain

(r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′ +

Q̃(t)

(2γ−1)2
zγ(t− b) ≤ 0.(2.8)

Using the Riccati transformation

(2.9) ω1(t) := ρ(t)
r(t)(z′(t))γ

zγ(t− b)
, t ≥ t2.

Then ω1(t) > 0 for t ≥ t2. Differentiating (2.9), we obtain

ω′1(t) = ρ′(t)
r(t)(z′(t))γ

zγ(t− b)
+ ρ(t)

(r(t)(z′(t))γ)′

zγ(t− b)

−γρ(t)
r(t)(z′(t))γz′(t− b)

zγ+1(t− b)
.(2.10)
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By virtue of (2.2), we have r(t− b)(z′(t− b))γ ≥ r(t)(z′(t))γ. Thus, we
get by (2.9) and (2.10) that

(2.11) ω′1(t) ≤
(ρ′(t))+

ρ(t)
ω1(t)+ρ(t)

(r(t)(z′(t))γ)′

zγ(t− b)
−γ

(ω1(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)
.

Next, define function ω2 by

(2.12) ω2(t) := ρ(t)
r(t− σ1)(z

′(t− σ1))
γ

zγ(t− b)
, t ≥ t2.

Then ω2(t) > 0 for t ≥ t2. Differentiating (2.12), we see that

ω′2(t) = ρ′(t)
r(t− σ1)(z

′(t− σ1))
γ

zγ(t− b)
+ ρ(t)

(r(t− σ1)(z
′(t− σ1))

γ)′

zγ(t− b)

−γρ(t)
r(t− σ1)(z

′(t− σ1))
γz′(t− b)

zγ+1(t− b)
.(2.13)

Note that b ≥ σ1. In view of (2.2), we have r(t − b)(z′(t − b))γ ≥
r(t− σ1)(z

′(t− σ1))
γ. Hence by (2.12) and (2.13), we have

ω′2(t) ≤ (ρ′(t))+

ρ(t)
ω2(t) + ρ(t)

(r(t− σ1)(z
′(t− σ1))

γ)′

zγ(t− b)

−γ
(ω2(t))

(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)
.(2.14)

Below, we define another function ω3 by

(2.15) ω3(t) := ρ(t)
r(t + σ2)(z

′(t + σ2))
γ

zγ(t− b)
, t ≥ t2.

Then ω3(t) > 0 for t ≥ t2. Differentiating (2.15), we obtain

ω′3(t) = ρ′(t)
r(t + σ2)(z

′(t + σ2))
γ

zγ(t− b)
+ ρ(t)

(r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t− b)

−γρ(t)
r(t + σ2)(z

′(t + σ2))
γz′(t− b)

zγ+1(t− b)
.(2.16)

From (2.2), we have r(t− b)(z′(t− b))γ ≥ r(t + σ2)(z
′(t + σ2))

γ. Then,
we have by (2.15) and (2.16) that

ω′3(t) ≤ (ρ′(t))+

ρ(t)
ω3(t) + ρ(t)

(r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t− b)

−γ
(ω3(t))

(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)
.(2.17)

Therefore, (2.11), (2.14), and (2.17) imply that

ω′1(t) + a1
γω′2(t) +

a2
γ

2γ−1
ω′3(t)
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≤ ρ(t)

[
(r(t)(z′(t))γ)′ + a1

γ(r(t− σ1)(z
′(t− σ1))

γ)′ + a2
γ

2γ−1 (r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t− b)

]

+
(ρ′(t))+

ρ(t)
ω1(t)−γ

(ω1(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)
+a1

γ (ρ′(t))+

ρ(t)
ω2(t)−γa1

γ (ω2(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)

(2.18) +
a2

γ

2γ−1

(ρ′(t))+

ρ(t)
ω3(t)− γ

a2
γ

2γ−1

(ω3(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)
.

Thus, we have by (2.8) and (2.18) that

ω′1(t) + a1
γω′2(t) +

a2
γ

2γ−1
ω′3(t)

≤ −ρ(t)
Q̃(t)

(2γ−1)2
+

[
(ρ′(t))+

ρ(t)
ω1(t)− γ

(ω1(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)

]

+a1
γ

[
(ρ′(t))+

ρ(t)
ω2(t)− γ

(ω2(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)

]

+
a2

γ

2γ−1

[
(ρ′(t))+

ρ(t)
ω3(t)− γ

(ω3(t))
(γ+1)/γ

ρ1/γ(t)r1/γ(t− b)

]
.(2.19)

Then, using (2.19) and inequality

(2.20) Au−Bu(γ+1)/γ ≤ γγ

(γ + 1)γ+1

Aγ+1

Bγ
, B > 0,

we find that

ω′1(t) + a1
γω′2(t) +

a2
γ

2γ−1
ω′3(t) ≤ −ρ(t)

Q̃(t)

(2γ−1)2

+
[1 + a1

γ + a2
γ/2γ−1]r(t− b)((ρ′(t))+)γ+1

(γ + 1)γ+1ργ(t)
.

Integrating the above inequality from t2 to t, we obtain

∫ t

t2

[
ρ(s)

Q̃(s)

(2γ−1)2
− [1 + a1

γ + a2
γ/2γ−1]r(s− b)((ρ′(s))+)γ+1

(γ + 1)γ+1ργ(s)

]
ds

≤ ω1(t2) + a1
γω2(t2) +

a2
γ

2γ−1
ω3(t2),

which contradicts (2.1). The proof is complete. ¤

As an immediate consequence of Theorem 2.2 we get the following
result.
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Corollary 2.3. Let assumption (2.1) in Theorem 2.2 be replaced by

lim sup
t→∞

∫ t

t0

ρ(s)Q̃(s)ds = ∞

and

lim sup
t→∞

∫ t

t0

r(s− b) ((ρ′(s))+)γ+1

ργ(s)
ds < ∞.

Then (1.1) is oscillatory.

From Theorem 2.2 by choosing the function ρ appropriately, one can
obtain various classes of different sufficient conditions for oscillation of
(1.1). For instance, if we define function ρ by ρ(t) = 1 and ρ(t) = t,
respectively, then one has the following results.

Corollary 2.4. Assume (1.2) holds and a + b ≥ 0, b ≥ σ1. If

(2.21)

∫ ∞

t0

Q̃(s)ds = ∞,

then (1.1) is oscillatory.

Corollary 2.5. Suppose (1.2) holds and a + b ≥ 0, b ≥ σ1. If

(2.22) lim sup
t→∞

∫ t

t0

[
s

Q̃(s)

(2γ−1)2
− [1 + a1

γ + a2
γ/2γ−1]r(s− b)

(γ + 1)γ+1sγ

]
ds = ∞,

then (1.1) is oscillatory.

Theorem 2.6. Assume (1.2) holds and a + b ≤ 0, −a ≥ σ1. Suppose
further that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

(2.23) lim sup
t→∞

∫ t

t0

[
ρ(s)

Q̃(s)

(2γ−1)2

− [1 + a1
γ + a2

γ/2γ−1]r(s + a)((ρ′(s))+)γ+1

(γ + 1)γ+1ργ(s)

]
ds = ∞.

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t − σ1) > 0, x(t + σ2) > 0, x(t − ξ) > 0, and x(t + ξ) > 0 for all
t ≥ t1, ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof of
Theorem 2.2, we have (2.2)–(2.7). By z′ > 0 and a + b ≤ 0, we obtain

(r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′ +

Q̃(t)

(2γ−1)2
zγ(t + a) ≤ 0.(2.24)
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Define the functions ω1, ω2, and ω3 by

ω1(t) := ρ(t)
r(t)(z′(t))γ

zγ(t− (−a))
,

ω2(t) := ρ(t)
r(t− σ1)(z

′(t− σ1))
γ

zγ(t− (−a))
,

and

ω3(t) := ρ(t)
r(t + σ2)(z

′(t + σ2))
γ

zγ(t− (−a))
,

respectively. The rest of the proof is similar to that of Theorem 2.2.
This completes the proof. ¤

Theorem 2.7. Suppose (1.2) holds and a + b ≥ 0, σ1 ≥ b. Assume
also that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

(2.25) lim sup
t→∞

∫ t

t0

[
ρ(s)

Q̃(s)

(2γ−1)2

− [1 + a1
γ + a2

γ/2γ−1]r(s− σ1)((ρ
′(s))+)γ+1

(γ + 1)γ+1ργ(s)

]
ds = ∞.

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t − σ1) > 0, x(t + σ2) > 0, x(t − ξ) > 0, and x(t + ξ) > 0 for all
t ≥ t1, ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof
of Theorem 2.2, we get (2.2)–(2.7). In view of z′ > 0 and a+ b ≥ 0, we
obtain (2.8). Define the functions ω1, ω2, and ω3 by

ω1(t) := ρ(t)
r(t)(z′(t))γ

zγ(t− σ1)
,

ω2(t) := ρ(t)
r(t− σ1)(z

′(t− σ1))
γ

zγ(t− σ1)
,

and

ω3(t) := ρ(t)
r(t + σ2)(z

′(t + σ2))
γ

zγ(t− σ1)
,

respectively. The rest of the proof is similar to that of Theorem 2.2.
This completes the proof. ¤
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Theorem 2.8. Suppose (1.2) holds and a + b ≤ 0, and σ1 ≥ −a.
Assume further that there exists ρ ∈ C1([t0,∞), (0,∞)) such that

(2.26) lim sup
t→∞

∫ t

t0

[
ρ(s)

Q̃(s)

(2γ−1)2

− [1 + a1
γ + a2

γ/2γ−1]r(s− σ1)((ρ
′(s))+)γ+1

(γ + 1)γ+1ργ(s)

]
ds = ∞.

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t − σ1) > 0, x(t + ξ) > 0, x(t − ξ) > 0, and x(t + ξ) > 0 for all
t ≥ t1, ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. Proceeding as in the proof
of Theorem 2.2, we get (2.2)–(2.7). From z′ > 0 and a + b ≤ 0, we
obtain (2.24). Define the functions ω1, ω2, and ω3 as in Theorem 2.7,
the remainder of the proof is similar to that of Theorem 2.2. This
completes the proof. ¤
Remark 2.9. From Theorem 2.6–Theorem 2.8, one can obtain some
oscillation criteria for (1.1) by choosing different ρ. The details are left
to the reader.

Now we establish some oscillation results for (1.1) in the case where
(1.3) holds.

Theorem 2.10. Suppose (1.3) holds and a + b ≥ 0, b ≥ σ1. Assume
further that there exists ρ ∈ C1([t0,∞), (0,∞)) such that (2.1) holds.
If

(2.27) lim sup
t→∞

∫ t

t0

[
ζγ(s)

Q̃(s)

(2γ−1)2

−
(

γ

γ + 1

)γ+1 (1 + a1
γ)r(s + b) + a2

γ

2γ−1 r(s + σ2 + b)

r(γ+1)/γ(s + σ2 + b)ζ(s)

]
ds = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t−σ1) > 0, x(t+σ2) > 0, x(t−ξ) > 0, and x(t+ξ) > 0 for all t ≥ t1,
ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. In view of (1.1), we obtain that (2.2)
holds. From (2.2), we see that r(z′)γ is nonincreasing and there exist
two possible cases for the sign of z′. Assume first that z′(t−σ1) > 0 for
t ≥ t2 ≥ t1. Then we have that (2.8) holds. Proceeding as in the proof
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of Theorem 2.2, we can obtain a contradiction to (2.1). Suppose now
that z′(t − σ1) < 0 for t ≥ t2 ≥ t1. We also have (2.7). From z′ < 0
and a + b ≥ 0, we have

(r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′ +

Q̃(t)

(2γ−1)2
zγ(t + b) ≤ 0.(2.28)

Define function ω1 by

(2.29) ω1(t) :=
r(t)(z′(t))γ

zγ(t + b)
, t ≥ t2.

Then ω1(t) < 0 for t ≥ t2. Noting that r(z′)γ is nonincreasing, we have

z′(s) ≤ r1/γ(t)z′(t)
r1/γ(s)

, s ≥ t ≥ t2.

Integrating this from t + b to l, we obtain

z(l) ≤ z(t + b) + r1/γ(t)z′(t)
∫ l

t+b

ds

r1/γ(s)
, l ≥ t + b.

Note that liml→∞ z(l) ≥ 0. Letting l → ∞ in the above inequality, we
have

0 ≤ z(t + b) + r1/γ(t)z′(t)δ(t), t ≥ t2.

Therefore,
r1/γ(t)z′(t)

z(t + b)
δ(t) ≥ −1, t ≥ t2.

From (2.29), we have

(2.30) −1 ≤ ω1(t)δ
γ(t) ≤ 0, t ≥ t2.

By virtue of (2.2), we obtain z′(t + b) ≤ r1/γ(t)z′(t)/r1/γ(t + b). Differ-
entiating (2.29), we get

(2.31) ω′1(t) ≤
(r(t)(z′(t))γ)′

zγ(t + b)
− γ

(ω1(t))
(γ+1)/γ

r1/γ(t + b)
.

Next, we introduce another function

(2.32) ω2(t) :=
r(t− σ1)(z

′(t− σ1))
γ

zγ(t + b)
, t ≥ t2.

Then ω2(t) < 0 for t ≥ t2. Noting that r(z′)γ is nonincreasing for t ≥ t1,
we get r(t−σ1)(z

′(t−σ1))
γ ≥ r(t)(z′(t))γ for t ≥ t2. Thus ω2(t) ≥ ω1(t)

for t ≥ t2. By (2.30), we obtain

(2.33) −1 ≤ ω2(t)δ
γ(t) ≤ 0, t ≥ t2.
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It follows from (2.2) that z′(t + b) ≤ r1/γ(t− σ1)z
′(t− σ1)/r

1/γ(t + b).
Differentiating (2.32), we have

(2.34) ω′2(t) ≤
(r(t− σ1)(z

′(t− σ1))
γ)′

zγ(t + b)
− γ

(ω2(t))
(γ+1)/γ

rγ(t + b)
.

Similarly, we introduce substitution

(2.35) ω3(t) :=
r(t + σ2)(z

′(t + σ2))
γ

zγ(t + σ2 + b)
, t ≥ t2.

Then ω3(t) < 0 for t ≥ t2. By the definition of ω1 and (2.30), we find
that ω3(t) = ω1(t + σ2) and

(2.36) −1 ≤ ω3(t)δ
γ(t + σ2) ≤ 0, t ≥ t2.

In view of (2.2), we have z′(t + σ2 + b) ≤ r1/γ(t + σ2)z
′(t + σ2)/r

1/γ(t +
σ2 + b). Differentiating (2.35), we get

ω′3(t) ≤ (r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t + σ2 + b)
− γ

(ω3(t))
(γ+1)/γ

r1/γ(t + σ2 + b)

≤ (r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t + b)
− γ

(ω3(t))
(γ+1)/γ

r1/γ(t + σ2 + b)
.(2.37)

Note that δ(t) ≥ δ(t + σ2). Then, we have

(2.38) −1 ≤ ω1(t)δ
γ(t + σ2) ≤ 0, t ≥ t2

and

(2.39) −1 ≤ ω2(t)δ
γ(t + σ2) ≤ 0, t ≥ t2.

From (2.31), (2.34), and (2.37), we obtain

ω′1(t) + a1
γω′2(t) +

a2
γ

2γ−1
ω′3(t)

≤ (r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′ + a2

γ

2γ−1 (r(t + σ2)(z
′(t + σ2))

γ)′

zγ(t + b)

(2.40) −γ
(ω1(t))

(γ+1)/γ

r1/γ(t + b)
−γa1

γ (ω2(t))
(γ+1)/γ

r1/γ(t + b)
−γ

a2
γ

2γ−1

(ω3(t))
(γ+1)/γ

r1/γ(t + σ2 + b)
.

Therefore, we have by (2.28) and (2.40) that

ω′1(t) + a1
γω′2(t) +

a2
γ

2γ−1
ω′3(t)

≤ − Q̃(t)

(2γ−1)2
− γ

(ω1(t))
(γ+1)/γ

r1/γ(t + b)

−γa1
γ (ω2(t))

(γ+1)/γ

r1/γ(t + b)
− γ

a2
γ

2γ−1

(ω3(t))
(γ+1)/γ

r1/γ(t + σ2 + b)
.(2.41)
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Multiplying (2.41) by ζγ(t), and integrating the resulting inequality on
[t2, t] yields

ζγ(t)ω1(t) − ζγ(t2)ω1(t2) + γ

∫ t

t2

ζγ−1(s)ω1(s)

r1/γ(s + σ2 + b)
ds

+ γ

∫ t

t2

ζγ(s)(ω1(s))
(γ+1)/γ

r1/γ(s + b)
ds + a1

γζγ(t)ω2(t)− a1
γζ(t2)ω2(t2)

+ γa1
γ

∫ t

t2

ζγ−1(s)ω2(s)

r1/γ(s + σ2 + b)
ds + γa1

γ

∫ t

t2

ζγ(s)(ω2(s))
(γ+1)/γ

r1/γ(s + b)
ds

+
a2

γ

2γ−1
ζγ(t)ω3(t)− a2

γ

2γ−1
ζγ(t2)ω3(t2) + γ

a2
γ

2γ−1

∫ t

t2

ζγ−1(s)ω3(s)

r1/γ(s + σ2 + b)
ds

+ γ
a2

γ

2γ−1

∫ t

t2

ζγ(s)(ω3(s))
(γ+1)/γ

r1/γ(s + σ2 + b)
ds +

∫ t

t2

ζγ(s)
Q̃(s)

(2γ−1)2
ds ≤ 0.

From the above inequality and (2.20), we obtain
∫ t

t2

[
ζγ(s)

Q̃(s)

(2γ−1)2
−

(
γ

γ + 1

)γ+1 (1 + a1
γ)r(s + b) + a2

γ

2γ−1 r(s + σ2 + b)

r(γ+1)/γ(s + σ2 + b)ζ(s)

]
ds

≤ −[ζγ(t)ω1(t) + a1
γζγ(t)ω2(t) +

a2
γ

2γ−1
ζγ(t)ω3(t)] ≤ 1 + a1

γ +
a2

γ

2γ−1

due to (2.36), (2.38), and (2.39). This contradicts (2.27) and finishes
the proof. ¤
Theorem 2.11. Suppose (1.3) holds and a + b ≤ 0, −a ≥ σ1. Assume
also that there exists ρ ∈ C1([t0,∞), (0,∞)) such that (2.23) holds. If

(2.42) lim sup
t→∞

∫ t

t0

[
ζγ(s)

Q̃(s)

(2γ−1)2

−
(

γ

γ + 1

)γ+1 (1 + a1
γ)r(s− a) + a2

γ

2γ−1 r(s + σ2 − a)

r(γ+1)/γ(s + σ2 − a)ζ(s)

]
ds = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that there exists t1 ≥ t0 such that x(t) > 0,
x(t−σ1) > 0, x(t+σ2) > 0, x(t−ξ) > 0, and x(t+ξ) > 0 for all t ≥ t1,
ξ ∈ [a, b]. Then z(t) > 0 for t ≥ t1. In view of (1.1), we obtain that
(2.2) holds. From (2.2), we see that r(z′)γ is nonincreasing and there
exist two possible cases for the sign of z′. Assume first that z′(t) > 0,
z′(t − σ1) > 0, and z′(t + σ2) > 0 for t ≥ t2 ≥ t1. Then we have that
(2.24) holds. Proceeding as in the proof of Theorem 2.6, we can obtain
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a contradiction to (2.23). Suppose now that z′(t) < 0, z′(t − σ1) < 0,
and z′(t + σ2) < 0 for t ≥ t2 ≥ t1. We have (2.7). From z′ < 0 and
a + b ≤ 0, we have

(r(t)(z′(t))γ)′ + a1
γ(r(t− σ1)(z

′(t− σ1))
γ)′

+
a2

γ

2γ−1
(r(t + σ2)(z

′(t + σ2))
γ)′ +

Q̃(t)

(2γ−1)2
zγ(t− a) ≤ 0.

Define the functions ω1, ω2, and ω3 by

ω1(t) := ρ(t)
r(t)(z′(t))γ

zγ(t + (−a))
,

ω2(t) := ρ(t)
r(t− σ1)(z

′(t− σ1))
γ

zγ(t + (−a))
,

and

ω3(t) := ρ(t)
r(t + σ2)(z

′(t + σ2))
γ

zγ(t + (−a))
,

respectively. The rest of the proof is similar to that of Theorem 2.10.
This completes the proof. ¤

Similar as in the proof of Theorem 2.7 and Theorem 2.10, we give
the following criterion for oscillation of (1.1) when conditions (1.3) and
σ1 ≥ b are satisfied.

Theorem 2.12. Suppose (1.3) holds and a + b ≥ 0, σ1 ≥ b. Assume
also that there exists ρ ∈ C1([t0,∞), (0,∞)) such that (2.25) holds. If
(2.27) holds, then (1.1) is oscillatory.

Below, similar to the proof of Theorem 2.8 and Theorem 2.11, we
present the following criterion for oscillation of (1.1) under the assump-
tions that (1.3) and σ1 ≥ −a hold.

Theorem 2.13. Suppose (1.3) holds and a + b ≤ 0, σ1 ≥ −a. Assume
further that there exists ρ ∈ C1([t0,∞), (0,∞)) such that (2.26) holds.
If (2.42) holds, then (1.1) is oscillatory.

3. Applications

In the following, we give three examples to illustrate the main results.

Example 3.1. For t ≥ 1 and γ ≥ 1, consider an equation
(
r(t) {[x(t) + p1(t)x(t− 1) + p2(t)x(t + σ2)]

′}γ)′

+

∫ 2

1

ξ

t
xγ(t− ξ)dξ +

∫ 2

1

ξ

t
xγ(t + ξ)dξ = 0.(3.1)
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Assume that (1.2) holds. Let t0 = 1, σ1 = 1, 0 ≤ pi(t) ≤ ai, a = 1,
b = 2, and qi(t, ξ) = ξ/t for i = 1, 2. Hence by Corollary 2.4, every
solution of (3.1) is oscillatory.

Example 3.2. For t ≥ 1 and γ ≥ 1, consider an equation
(
r(t) {[x(t) + p1(t)x(t− 3) + p2(t)x(t + σ2)]

′}γ)′

+

∫ −1

−2

ξ + 3

t
xγ(t− ξ)dξ +

∫ −1

−2

ξ + 3

t
xγ(t + ξ)dξ = 0.(3.2)

Suppose that (1.2) holds. Let t0 = 1, σ1 = 3, 0 ≤ pi(t) ≤ ai, a = −2,
b = −1, qi(t, ξ) = (ξ +3)/t for i = 1, 2, and ρ(t) = 1. Thus by Theorem
2.8, every solution of (3.2) is oscillatory.

Example 3.3. For t ≥ 1, consider an equation
(

t2
[
x(t) + x(t− 2π) + x

(
t +

5π

2

)]′)′

+
(2−√3)t2 + (4

√
3 + 2)t√

3

∫ 7π/3

2π

x(t− ξ)dξ

+
(2 +

√
3)t2 + (2− 4

√
3)t√

3

∫ 7π/3

2π

x(t + ξ)dξ = 0.(3.3)

One can easily see that condition (1.3) holds. Let r(t) = t2, p1(t) =
p2(t) = 1, a = 2π, b = 7π/3, q1(t, ξ) = [(2 −√3)t2 + (4

√
3 + 2)t]/

√
3,

and q2(t, ξ) = [(2 +
√

3)t2 + (2− 4
√

3)t]/
√

3. It is not difficult to verify
that all conditions of Theorem 2.10 hold, and hence every solution of
(3.3) is oscillatory. x(t) = sin t is such a solution.
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[13] J. Džurina and D. Hudáková, Oscillation of second order neutral delay differ-
ential equations, Math. Bohem. 134 (2009) 31–38.
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