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Abstract

In this paper, we consider a class of boundary value problems of fractional differential e-

quations with integral and anti-periodic boundary conditions, which is a new type of mixed

boundary condition. By using the contraction mapping principle, Krasnosel’skii fixed point

theorem, and Leray-Schauder degree theory, we obtain some results of existence and unique-

ness. Finally, several examples are provided for illustrating the applications of our theoretical

analysis.
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1 Introduction

In this paper, we consider the following fractional boundary value problem: CDqx(t) = f(t, x(t)), t ∈ [0, 1], 1 < q < 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0,

(1.1)

where CDq denotes the Caputo fractional derivative of order q, f is a given continuous function,

and x ∈ X, f : [0, 1]×X → X. Here (X, ∥ · ∥) is a Banach space and C = C ([0, 1], X) denotes

∗E-mail address: xuyufeng@csu.edu.cn (Yufeng Xu)
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the Banach space of all continuous functions from [0, 1] to X endowed with a topology of uniform

convergence with the norm denoted by ∥ · ∥.

The origin of fractional calculus goes back to the Marquis de L’Hôpital and Gottfried Wil-

helm Leibnitz in the seventeenth century. It is an old subject, but it has gained much attention

in recent half of the century. Fractional integral and differential equations, have been studied

recently by many researchers [5, 6, 8, 12, 14, 18, 19, 22, 25, 26, 30]. Fractional differential equa-

tions appear in a large number of fields of science and engineering, such as viscoelasticity [20],

electrochemistry [24], electromagnetism [16], biology [2, 17], optimal control [21, 32], diffusion

process [11,13,29], economics [23] and fractional variational problems [3].

Integral and anti-periodic boundary conditions can be seen in models of a variety of phys-

ical, economic and biological processes, and they have been investigated extensively in recent

years (see [7,15,28,33] and related references therein for boundary value problems with integral

boundary conditions, and [1,4,9,31] and related references therein for boundary value problems

with anti-periodic boundary conditions). Specifically, [7] considers the positive solution of a

fractional boundary value problem consisting of one integral and two zero initial conditions. By

constructing a proper cone, the existence of positive solution is shown. In [4], a class of high-

order fractional boundary value problems consisting of four anti-periodic boundary conditions

are studied. By using the topological degree theory, some existence results are obtained. On

the whole, little work has been done on the fractional boundary value problems with integral

or anti-periodic boundary conditions. Since these problems arise in many applications, it is

important that we further examine this subject. Motivated by the above work, we study the

fractional boundary value problems with integral and anti-periodic boundary conditions.

The remainder of our paper is organized as follows: In Section 2, we give definitions of

fractional integral and derivative operators, prove a lemma and present some classical fixed

point theorems which are very useful for verifying our main results. The main results consist of

four existence theorems discussed in Section 3. To validate our theoretical results, examples are

provided in Section 4. Finally, the conclusions are given in Section 5.
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2 Preliminaries

To define fractional differential operator, we need the Euler’s Gamma function and the

Riemann-Liouville fractional integral operator given below.

Definition 2.1 (see [14,26]) The function Γ : (0,+∞) → R, defined by

Γ(q) :=

∫ +∞

0
tq−1e−tdt, (2.1)

is called Euler’s Gamma function (or Euler’s integral of the second kind). Particularly, for a

positive integer n, we have Γ(n) = (n− 1)!.

Definition 2.2 (see [14,26]) The Riemann-Liouville fractional integral operator of order q ≥ 0,

of a function x(t) is defined as

Iqx(t) =
1

Γ(q)

∫ t

0
(t− s)q−1x(s)ds, q > 0, t > 0, (2.2)

provided the integral exists. Particularly, if q = 0, I0x(t) = x(t).

There are several kinds of fractional derivatives, such as Riemann-Liouville, Grünwald-Letnikov

and Caputo derivatives. For more details, we refer to [14, 26]. In this paper, we use a Caputo

derivative, the definition of which is given below.

Definition 2.3 (see [14,26]) The fractional derivative of order q for a continuously differentiable

function x : [0,+∞) → R in the sense of Caputo is defined as

CDqx(t) =
1

Γ(m− q)

∫ t

a
(t− s)m−q−1x(m)(s)ds, (2.3)

where m− 1 < q ≤ m, m = [q] + 1, and [q] denotes the integer part of the real number q.

Lemma 2.1 (see [14]) Let q > 0, then the homogeneous fractional differential equation

CDqx(t) = 0 (2.4)

has a unique solution given by the expression

x(t) =

[q]∑
j=0

cjt
j , (2.5)

where cj = x(j)(0)/Γ(j + 1) are the coefficients.
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Lemma 2.2 (see [14]) Let q > 0, then the Riemann-Liouville integral and Caputo derivative

have the following composite property:

Iq
{
CDqx(t)

}
= x(t)−

[q]∑
j=0

cjt
j , (2.6)

where cj are the coefficients defined in Lemma 2.1.

Consider the following fractional differential equation with integral and anti-periodic boundary

conditions:  CDqx(t) = σ(t), t ∈ [0, 1], 1 < q < 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0.

(2.7)

We have the following useful lemma:

Lemma 2.3 Suppose that σ ∈ C[0, 1] and µ ̸= 1, then the problem (2.7) has a unique solution

given by:

x(t) =

∫ 1

0
G(t, s)σ(s)ds,

where

G(t, s) =



(t−s)q−1

Γ(q)

+ µ
4(1−µ)Γ(q+1)

[
4(1− s)q − 4q(1− s)q−1 + q(q − 1)(1− s)q−2

]
+ 1

2Γ(q)

[
(1− t)(q − 1)(1− s)q−2 − 2(1− s)q−1

]
, 0 ≤ s ≤ t ≤ 1,

µ
4(1−µ)Γ(q+1)

[
4(1− s)q − 4q(1− s)q−1 + q(q − 1)(1− s)q−2

]
+ 1

2Γ(q)

[
(1− t)(q − 1)(1− s)q−2 − 2(1− s)q−1

]
, 0 ≤ t ≤ s ≤ 1,

(2.8)

is the Green’s function of the problem.

Proof. According to Lemma 2.2, problem (2.7) is equivalent to the following integral equation:

x(t) = Iqσ(t) +
1∑

j=0

x(j)(0)

j!
tj

=

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds+ x(0) + x′(0)t. (2.9)
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Differentiating Equation (2.9) with respect to t yields

x′(t) =

∫ t

0

(t− s)q−2

Γ(q − 1)
σ(s)ds+ x′(0).

Applying the integral boundary condition x(1) = µ
∫ 1
0 x(s)ds implies that:

x(1) = µ

∫ 1

0
x(s)ds =

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds+ x(0) + x′(0),

that is

x(0) + x′(0) = µ

∫ 1

0
x(s)ds−

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds. (2.10)

The anti-periodic boundary condition x′(0) + x′(1) = 0 implies that:

x′(0) + x′(1) = x′(0) +

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds+ x′(0),

that is

2x′(0) +

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds = 0. (2.11)

Hence by Equations (2.10) and (2.11), we have x(0) = µ
∫ 1
0 x(s)ds−

∫ 1
0

(1−s)q−1

Γ(q) σ(s)ds+ 1
2

∫ 1
0

(1−s)q−2

Γ(q−1) σ(s)ds,

x′(0) = −1
2

∫ 1
0

(1−s)q−2

Γ(q−1) σ(s)ds.
(2.12)

Substituting Equation (2.12) into Equation (2.9), we have

x(t) = µ

∫ 1

0
x(s)ds

+

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds−

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds− t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds. (2.13)

Now we integrate Equation (2.13) from 0 to 1 on both sides to obtain∫ 1

0
x(s)ds = µ

∫ 1

0
x(s)ds

+

∫ 1

0

∫ t

0

(t− s)q−1

Γ(q)
σ(s)dsdt−

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds−

∫ 1

0

t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)dsdt

= µ

∫ 1

0
x(s)ds+

∫ 1

0

(1− s)q

Γ(q + 1)
σ(s)ds
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−
∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds+

1

4

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds. (2.14)

Therefore from above, one can immediately have

µ

∫ 1

0
x(s)ds =

µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
σ(s)ds

− µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds+

µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds. (2.15)

Substituting Equation (2.15) into Equation (2.13), we arrive at the following expression for

solution x(t):

x(t) =
µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
σ(s)ds

− µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds+

µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds

+

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds−

∫ 1

0

(1− s)q−1

Γ(q)
σ(s)ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds− t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
σ(s)ds

=

∫ t

0

{
(t− s)q−1

Γ(q)
+

µ
[
4(1− s)q − 4q(1− s)q−1 + q(q − 1)(1− s)q−2

]
4(1− µ)Γ(q + 1)

+

[
(1− t)(q − 1)(1− s)q−2 − 2(1− s)q−1

]
2Γ(q)

}
σ(s)ds

+

∫ 1

t

{
µ
[
4(1− s)q − 4q(1− s)q−1 + q(q − 1)(1− s)q−2

]
4(1− µ)Γ(q + 1)

+

[
(1− t)(q − 1)(1− s)q−2 − 2(1− s)q−1

]
2Γ(q)

}
σ(s)ds

=

∫ 1

0
G(t, s)σ(s)ds. (2.16)

This completes the proof. �

Theorem 2.1 (Contraction mapping principle, see [10]) Let E be a Banach space, D ⊂ E closed

and F : D → D a strict contraction, i.e. |Fx−Fy| ≤ k|x−y| for some k ∈ (0, 1) and all x, y ∈ D.

Then F has a unique fixed point x∗. Furthermore the successive approximations xn+1 = Fxn =

Fnx0, starting at any x0 ∈ D, converge to x∗ and satisfy |xn − x∗| ≤ (1− k)−1kn|Fx0 − x0|.

Theorem 2.2 (Arzelà-Ascoli, see [10]) If a sequence {xn} in a compact subset of X is uniformly

bounded and equicontinuous, then it has a uniformly convergent subsequence.
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The following two fixed point theorems are necessary to prove the existence of solution for

fractional boundary value problem (1.1).

Theorem 2.3 (see [27]) Let X be a Banach space. Assume that Ω is an open bounded subset

of X with θ ∈ Ω and let T : Ω → X be a completely continuous operator such that

∥Tu∥ ≤ ∥u∥, ∀u ∈ ∂Ω.

Then T has a fixed point in Ω.

Theorem 2.4 (Krasnosel’skii, see [27]) Let M be a closed convex and nonempty subset of a

Banach space X. Let A and B be two operators such that:

(I1) Ax+By ∈ M, wherever x, y ∈ M;

(I2) A is compact and continuous; and

(I3) B is a contraction mapping.

Then there exists z ∈ M such that z = Az +Bz.

3 Main results

In this section, first, we renew some notions. Let C = C([0, 1],R) denote the Banach s-

pace of all continuous functions from [0, 1] to R endowed with the norm defined by ∥x∥ =

sup0≤t≤1{|x(t)|}.

Define an operator F : C → C as

(Fx)(t) =
µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
f(s, x(s))ds

− µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds+

µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds

+

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds−

∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds− t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds, t ∈ [0, 1]. (3.1)

If the operator F has a fixed point, then the fixed point coincides with the solution of problem

(1.1). In what follows, we first prove that the operator F : C → C is completely continuous.

Lemma 3.1 The operator F : C → C defined by Equation (3.1) is completely continuous.
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Proof. Let Ω ⊂ C be bounded. Then for any t ∈ [0, 1] and x ∈ Ω, since f(t, x) is continuous

on [0, 1]× R, there exists a positive constant L1 such that |f(t, x)| ≤ L1. Thus one can deduce

that

|(Fx)(t)| ≤ µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
|f(s, x(s))|ds

+
µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds+ µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

+

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

≤ L1

[
µ

1− µ
· 1

Γ(q + 2)
+

1

1− µ
· 1

Γ(q + 1)
+

2− µ

4(1− µ)
· 1

Γ(q)
+

t

2
· 1

Γ(q)
+

tq

Γ(q + 1)

]
≤ L1

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
:= L2, (3.2)

which implies that ∥(Fx)∥ ≤ L2. Moreover, for the derivative, we have

|(Fx)′(t)| =

∫ t

0

(t− s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ 1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

≤ L1

[
tq−1

Γ(q)
+

1

2Γ(q)

]
≤ L1 ·

3

2Γ(q)
:= L3. (3.3)

Therefore, for all 0 ≤ t1 < t2 ≤ 1, we have

|(Fx)(t2)− (Fx)(t1)| ≤
∫ t2

t1

|(Fx)′(s)|ds ≤ L3(t2 − t1),

which implies that the operator F is equicontinuous on [0, 1]. Thus, by the Arzelà-Ascoli theo-

rem, the operator F : C → C is completely continuous. �

We have the following existence results.

Theorem 3.1 Suppose that f : [0, 1] × R → R and limx→0 f(t, x)/x = 0. Then problem (1.1)

has at least one solution.

Proof. Since limx→0 f(t, x)/x = 0, there exist constants d > 0 and d1 > 0 such that |f(t, x)| ≤

d1|x| for all 0 < |x| < d, where d1 is such that

max
t∈[0,1]

{
µ+ q + 1

(1− µ)Γ(q + 2)
+

2− µ

4(1− µ)Γ(q)
+

t

2Γ(q)
+

tq

Γ(q + 1)

}
· d1 ≤ 1. (3.4)
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Define Ω1 = {x ∈ C : |x| < d}. Taking x0 ∈ C such that |x0| = d, which means that x0 ∈ ∂Ω1.

By Lemma 3.1, we know that F is completely continuous and

|(Fx0)(t)| ≤ max
t∈[0,1]

{
µ+ q + 1

(1− µ)Γ(q + 2)
+

2− µ

4(1− µ)Γ(q)
+

t

2Γ(q)
+

tq

Γ(q + 1)

}
· d1|x0|

≤ |x0|, (3.5)

by using Equation (3.4). Hence by Theorem 2.3, the operator F has at least one fixed point,

which in turn implies that the problem (1.1) has at least one solution. �

Theorem 3.2 Let f : [0, 1]×X → X be a jointly continuous function satisfying the Lipschitz

condition

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, ∀t ∈ [0, 1], x, y ∈ X.

Then the boundary value problem (1.1) has a unique solution provided ∆ < 1 where

∆ = 2L

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
.

Proof. First, we show that F maps bounded ball to itself. Define M = supt∈[0,1] |f(t, 0)|, and

select

r ≥ 2M

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
.

Now we define a closed ball as Br = {x ∈ C : ∥x∥ ≤ r}, then we have

∥(Fx)(t)∥ ≤ µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
|f(s, x(s))|ds

+
µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds+ µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

+

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

≤ µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+
µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+
µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+

∫ t

0

(t− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds
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+

∫ 1

0

(1− s)q−1

Γ(q)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

+
t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|) ds

≤ (Lr +M)

[
µ

(1− µ)Γ(q + 2)
+

1

(1− µ)Γ(q + 1)
+

2− µ

4(1− µ)Γ(q)
+

t

2Γ(q)
+

tq

Γ(q + 1)

]
≤ (Lr +M)

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
≤ r,

which implies that F (Br) ⊂ Br. In what follows, for x, y ∈ C and for each t ∈ [0, 1], one can

obtain that

∥(Fx)(t)− (Fy)(t)∥ ≤ µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
∥f(s, x(s))− f(s, y(s))∥ds

+
µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
∥f(s, x(s))− f(s, y(s))∥ds

+
µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
∥f(s, x(s))− f(s, y(s))∥ds

+

∫ t

0

(t− s)q−1

Γ(q)
∥f(s, x(s))− f(s, y(s))∥ds

+

∫ 1

0

(1− s)q−1

Γ(q)
∥f(s, x(s))− f(s, y(s))∥ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
∥f(s, x(s))− f(s, y(s))∥ds

+
t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
∥f(s, x(s))− f(s, y(s))∥ds

≤ L∥x− y∥

[
µ

(1− µ)Γ(q + 2)
+

2− µ

4(1− µ)Γ(q)
+

t

2Γ(q)
+

1
1−µ + tq

Γ(q + 1)

]

≤ L

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
∥x− y∥

=
∆

2
· ∥x− y∥

< ∥x− y∥,

which implies that F is a contraction as ∆ < 1. Therefore the conclusion of this theorem follows

by the contraction mapping principle (i.e. Banach fixed point theorem). �

10



Remark 3.1 Since ∆ < 1 in Theorem 3.2, we can find positive real number µ̄ < 1 such that

∆ ≤ µ̄ < 1. Similarly, by taking M = supt∈[0,1] |f(t, 0)|, and selecting

r̄ ≥ M

1− µ̄

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
,

one can easily prove the conclusion that the boundary value problem (1.1) has a unique solution

which lies in a closed ball Br̄ = {x ∈ C : ∥x∥ ≤ r̄}. The case of fixing µ̄ = 1/2 is proved in

Theorem 3.2.

Theorem 3.3 Assume that f : [0, 1]×X → X is a jointly continuous function and further:

(H1) |f(t, x)− f(t, y)| ≤ L|x− y|, ∀t ∈ [0, 1], x, y ∈ X;

(H2) |f(t, x)| ≤ λ(t), ∀(t, x) ∈ [0, 1]×X, and λ ∈ L1 ([0, 1],R+).

If

L

[
µ

(1− µ)Γ(q + 2)
+

1

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
< 1,

then the nonlinear boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Let

r ≥ ∥λ∥L1

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
,

and consider Br = {x ∈ C : ∥x∥ ≤ r}. Here we define the operators Φ and Ψ on Br as

(Φx)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s)) ds

(Ψx)(t) =
µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
f(s, x(s))ds− µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

+
µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds−

∫ 1

0

(1− s)q−1

Γ(q)
f(s, x(s))ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds− t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
f(s, x(s))ds.

For x1, x2 ∈ Br, simple computation yields

∥(Φx1)(t) + (Ψx2)(t)∥ ≤ ∥λ∥L1

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
≤ r,
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thus, Φx1 + Ψx2 ∈ Br. Clearly, it follows from the condition (H1) that Ψ is a contraction

mapping for

L

[
µ

(1− µ)Γ(q + 2)
+

1

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
< 1.

Since f is continuous, Φ is also continuous. Moreover, Φ is uniformly bounded on Br as

∥Φu∥ ≤ tq

Γ(q + 1)
∥λ∥L1 ≤ 1

Γ(q + 1)
∥λ∥L1 .

In what follows we prove the compactness of the operator Φ. Let S = [0, 1]× Br, and define

fmax = sup(t,x)∈S |f(t, x)|, then we have

|(Φx)(t1)− (Φx)(t2)| =

∣∣∣∣∫ t2

0

(t2 − s)q−1

Γ(q)
f(s, x(s))ds−

∫ t1

0

(t1 − s)q−1

Γ(q)
f(s, x(s))ds

∣∣∣∣
=

∣∣∣∣∣
∫ t1

0

f(s, x(s))

Γ(q)

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds

−
∫ t2

t1

(t2 − s)q−1

Γ(q)
f(s, x(s))ds

∣∣∣∣∣
≤ fmax

Γ(q + 1)
|2(t2 − t1)

q + tq1 − tq2| ,

which is independent of x. Thus, Φ is equicontinuous. Since f maps bounded subsets into

relatively compact subsets, one can conclude that Φ(Cbs)(t) is relatively compact in X for every

t, where Cbs is bounded subset of C. Therefore, Φ(·) is relatively compact on Br, and hence, by

the Arzelà-Ascoli theorem, Φ is compact on Br and the hypotheses (H1) and (H2) are satisfied.

Consequently, by Theorem 2.4, we conclude that the nonlinear boundary value problem (1.1)

has at least one solution on [0, 1]. �

Theorem 3.4 Suppose that f : [0, 1]×R → R, there exists a constant c that satisfies such that

0 ≤ c < 1/δ, where

δ =
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)
.

Let M > 0 such that |f(t, x)| ≤ c∥x∥ +M and x(t) ∈ R for all t ∈ [0, 1]. Then the boundary

value problem (1.1) has at least one solution.
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Proof. Define a fixed point problem by

x = Fx, (3.6)

where F is defined in Equation (3.1). To prove the existence of at least one solution x ∈ C[0, 1]

satisfying Equation (3.6), define a suitable ball Br0 ⊂ C[0, 1] with radius r0 > 0 as

Br0 =

{
x ∈ C[0, 1] : max

t∈[0,1]
|x(t)| < r0

}
,

where r0 will be evaluated later.

By Lemma 3.1, we know that F : C → C is completely continuous, then it is easy to prove

that hλ(x) is also completely continuous, where hλ(x) is defined by

hλ(x) = x−H(λ, x) = x− λFx, x ∈ C[0, 1], λ ∈ [0, 1].

Now, it is sufficient to show that mapping Fx : Br0 → C[0, 1] satisfies

x ̸= λFx, ∀x ∈ ∂Br0 and ∀λ ∈ [0, 1]. (3.7)

If Equation (3.7) holds, then by the homotopy invariance of topological degree in Leray-

Schauder degree theory, it follows that

deg(hλ, Br0 , 0) = deg(I − λFx,Br0 , 0) = deg(h1, Br0 , 0) = deg(h0, Br0 , 0)

= deg(I,Br0 , 0) = 1 ̸= 0, 0 ∈ Br0 ,

where I denotes the unit operator. By the nonzero property of the Leray-Schauder degree, one

can conclude that there exists at least one x that belongs to open ball Br0 as h1(x) = x−λFx = 0.

In what follows, we first prove Equation (3.7). We assume that x = λFx for some λ ∈ [0, 1]

and all t ∈ [0, 1], then

|x(t)| = |λFx(t)|

≤ µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
|f(s, x(s))|ds

+
µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds+ µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

+

∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds+

∫ 1

0

(1− s)q−1

Γ(q)
|f(s, x(s))|ds
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+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds+ t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
|f(s, x(s))|ds

≤ (c∥x∥+M)

[
µ

1− µ

∫ 1

0

(1− s)q

Γ(q + 1)
ds+

µ

1− µ

∫ 1

0

(1− s)q−1

Γ(q)
ds

+
µ

4(1− µ)

∫ 1

0

(1− s)q−2

Γ(q − 1)
ds+

∫ t

0

(t− s)q−1

Γ(q)
ds+

∫ 1

0

(1− s)q−1

Γ(q)
ds

+
1

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
ds+

t

2

∫ 1

0

(1− s)q−2

Γ(q − 1)
ds

]

≤ (c∥x∥+M)

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
= (c∥x∥+M)δ.

By taking norm supt∈[0,1] |x(t)| = ∥x∥, simple computation yields

∥x∥ ≤ Mδ

1− cδ
,

when we choose r0 = 1 +Mδ/ (1− cδ), Equation (3.7) holds. This completes the proof. �

Remark 3.2 By Equation (2.16), if µ = 0, then x(0) ̸= 0 unless σ(t) ≡ 0 on t ∈ [0, 1]. This

means that the boundary conditions in problem (1.1) cannot be replaced with the integral bound-

ary conditions in [7, 15] or the anti-periodic boundary conditions considered in [4]. Therefore

fractional boundary value problem (1.1) is novel and unique.

4 Examples

Now we provide several examples to demonstrate the applications of the theoretical results in

the previous sections.

Example 4.1 Consider the fractional boundary value problem CDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0,

(4.1)

where q = 1.86, 0 < µ = 0.75 < 1 and f(t, x) = t(x−sin(x))+
√
1 + x2−1. As limx→0 f(t, x)/x =

0, the hypotheses of Theorem 3.1 are satisfied. Hence, by Theorem 3.1, the problem (4.1) has

at least one solution on t ∈ [0, 1].
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Example 4.2 Consider the fractional boundary value problem CDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0,

(4.2)

where q = 1.99, 0 < µ = 0.8 < 1 and f(t, x) = ∥x∥/
[
(t+ 10)2(1 + ∥x∥)

]
. Obviously L = 1/100

as ∥f(t, x)− f(t, y)∥ ≤ ∥x− y∥/100. Moreover,

∆ = 2L

[
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
= 0.1142 < 1.

Therefore, hypotheses of Theorem 3.2 are satisfied. Hence, by Theorem 3.2, the problem (4.2)

has a unique solution on t ∈ [0, 1].

Example 4.3 Consider the fractional boundary value problem CDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0,

(4.3)

where q = 1.8, 0 < µ = 0.9 < 1 and f(t, x) = ∥x∥/
[
(t+ 5)2(1 + ∥x∥)

]
. Obviously L = 1/25 as

∥f(t, x)− f(t, y)∥ ≤ ∥x− y∥/25. Moreover, |f(t, x)| ≤ λ(t) = 1/(t+ 5)2 ∈ L1([0, 1],R+), and

L

[
µ

(1− µ)Γ(q + 2)
+

1

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)

]
= 0.9097 < 1.

Therefore, hypotheses of Theorem 3.3 are satisfied. Hence, by Theorem 3.3, the problem (4.3)

has at least one solution on t ∈ [0, 1].

Example 4.4 Consider the fractional boundary value problem CDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(1) = µ
∫ 1
0 x(s)ds, x′(0) + x′(1) = 0,

(4.4)

where q = 1.75, 0 < µ = 0.85 < 1 such that

δ =
µ

(1− µ)Γ(q + 2)
+

2− µ

(1− µ)Γ(q + 1)
+

4− 3µ

4(1− µ)Γ(q)
= 8.6774.

If f(t, x) = |x|/
[
(t+ 3)2(1 + |x|)

]
, then there exists infinitely many positive constant M , such

that |f(t, x)| ≤ |x|/9 +M ≤ |x|/δ +M . Hence, by Theorem 3.4, the problem (4.4) has at least

one solution on t ∈ [0, 1].
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5 Conclusions

In this article, we studied a class of fractional boundary value problems with integral and anti-

periodic boundary conditions. By using the contraction mapping principle and some fixed point

theorems, the existence and uniqueness of the fractional boundary value problems have been

obtained. Since the integral and the anti-periodic boundary conditions cannot be replaced with

only one of them, the results of this work are different from those given in [1,4,7,9,15,28,31,33].
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