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Abstract

A k-total-coloring of a graph G is a coloring of vertex set and edge set using k
colors such that no two adjacent or incident elements receive the same color. In this
paper, we prove that if G is a planar graph with maximum ∆ ≥ 8 and every 6-cycle of
G contains at most one chord or any chordal 6-cycles are not adjacent, then G has a
(∆ + 1)-total-coloring.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for
terminologies and notations not defined here. Let G be a graph. We use V (G), E(G), ∆(G)

and δ(G) (or simply V , E, ∆ and δ) to denote the vertex set, the edge set, the maximum
degree and the minimum degree of G, respectively. For a vertex v ∈ V , let N(v) denote
the set of vertices adjacent to v and let d(v) = |N(v)| denote the degree of v. A k-vertex,
a k−-vertex or a k+-vertex is a vertex of degree k, at most k or at least k, respectively. A
k-cycle is a cycle of length k. We use (v1, v2, · · · , vd) to denote a cycle (or a face) whose
boundary vertices are v1, v2, · · · , vd in the clockwise order. Note that all the subscripts in
the paper are taken modulo d. We say that two cycles are adjacent (or intersecting) if they
share at least one edge (or one vertex, respectively). Let C = (v1, v2, ..., vk)(k ≥ 4) be a
cycle. If there is an edge vivj with j ̸≡ i ± 1 (mod k), then the edge vivj is called a chord

of C.
A k-total-coloring of a graph G = (V,E) is a coloring of V ∪ E using k colors such

that no two adjacent or incident elements receive the same color. A graph G is total-k-
colorable if it admits a k-total-coloring. The total chromatic number χ′′(G) of G is the
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‡This work is supported by a research grant NSFC (11201440) of China.
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smallest integer k such that G has a k-total-coloring. Clearly, χ′′(G) ≥ ∆ + 1. Behzad
[1] and Vizing [12] conjectured independently that χ′′(G) ≤ ∆ + 2 for each graph G. This
conjecture was confirmed for graphs with ∆ ≤ 5. For planar graphs the only open case
is that of ∆ = 6 (see [7, 10]). In recent years, the study of total colorings planar graphs
has attracted considerable attention. For planar graphs with large maximum degree, it is
possible to determine χ′′(G) = ∆+1. This first result was given in [3] for ∆ ≥ 14, which was
finally extended to ∆ ≥ 9 in [8]. Zhu [9] proved that if G is a planar graph with maximum
degree 8, and for each vertex x, there is an integer kx ∈ {3, 4, 5, 6, 7, 8} such that there is
no kx-cycle which contains x, then χ′′(G) = 9. Wang et al. [14] extended this result to
that there is at most one kx-cycle which contains x. Chang [4] proved that for planar graph
G with ∆ ≥ 7, if there is an integer kx ∈ {3, 4, 5, 6} such that there is no kx-cycle which
contains x for each x ∈ V (G), then χ′′(G) = ∆+ 1. Wang et al. [13] proved χ′′(G) = ∆+ 1

for some planar graphs with small maximum degree. Hou et al. [6] proved that every planar
graphs with ∆ ≥ 8 and without 6-cycles are total-9-colorable. Shen and Wang [11] extended
this result to planar graphs without chordal 6-cycles. In this paper, we extend this result
and get the following theorem.

Theorem 1. Let G be a planar graph with maximum degree ∆ ≥ 8. If every 6-cycle of G
contains at most one chord or chordal 6-cycles are not adjacent in G, then χ′′(G) = ∆ + 1.

2 Proof of Theorem 1

First, we introduce additional notations and definitions here for convenience. Let G be a
planar graph having a plane drawing and let F be the face set of G. For a face f of G, the
degree d(f) is the number of edges incident with it, where each cut-edge is counted twice.
A k-face, a k−-face or a k+-face is a face of degree k, at most k or at least k, respectively.
Denote by nd(v) the number of d-vertices adjacent to the vertex v, fd(v) the number of
d-faces incident with v.

Now, we begin to prove Theorem 1. According to [8], the theorem is true for ∆ ≥ 9. So
we assume in the following that ∆ = 8. Let G = (V,E) be a minimal counterexample to
the planar graph G with maximum degree ∆ = 8, such that |V |+ |E| is minimal and G has
been embedded in the plane. Then every proper subgraph of G is total-9-colorable. First
we give some lemmas for G.

Lemma 1. [3] (a) G is 2-connected.
(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆+ 2 = 10.

By Lemma 1(b), any two neighbors of a 2-vertex are 8-vertices.
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Note that in all figures of the paper, vertices marked • have no edges of G incident with
them other than those shown and vertices marked ◦ are 3+-vertices.

Lemma 2. G has no configurations depicted in Fig.1, where v denotes the vertex of degree
of 7.

(1) (3) (4) (5) (6)

v

(2)

Fig.1

Proof. The proof of (1), (2), (4) and (6) can be found in [15], (3) can be found in [11], (5)
can be found in [8].

Lemma 3. Suppose v is a d-vertex of G with d ≥ 5. Let v1, · · · , vd be the neighbor of
v and f1, f2, · · · , fd be faces incident with v, such that fi is incident with vi and vi+1, for
i ∈ {1, 2, · · · , d}. Let d(v1) = 2 and {v, u1} = N(v1). Then G does not satisfy one of the
following conditions (see Fig.2).
(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2, d(vi) = 3 (2 ≤ i ≤ k)

and d(fj) = 4 (1 ≤ j ≤ k).
(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that d(vk) = 2, d(vi) = 3

(k + 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).
(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi) = 3 (k ≤ i ≤ t),
d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

Proof. Suppose G satisfies all of the conditions (1)-(3). If d(fi) = 4, then let ui be adjacent
to vi and vi+1. By the minimality of G, G′ = G − vv1 has a (∆ + 1)-total-coloring ϕ. Let
C(x) = {ϕ(xy) : y ∈ N(x)}∪ {ϕ(x)}. First we erase the colors on all 3−-vertices adjacent to

(1) (2) (3)

1v v

1u 2v
2u

kv

u

ku...

k+1v

k-1

t+1vkv

ku
tv

1v 1u

...

v
k+1v

k+1u t-1u

v

1u
kv

ku tv

tu

1vkv

...

1

1

-

-k+1u

k+1v

t+1v

Fig.2

3



v. We have ϕ(v1u1) ̸∈ C(v), for otherwise, the number of the forbidden colors for vv1 is at
most ∆, so vv1 can be properly colored and by properly recoloring the erased vertices, we
get a (∆ + 1)-total-coloring of G, a contradiction. Without loss of generality, assume that
C(v) = {1, 2, · · · , d} with ϕ(vvi) = i (i ∈ {2, 3, · · · , d}), ϕ(v1u1) = d+1 and ϕ(v) = 1. Thus
we have d+1 ∈ C(vi) for all i ∈ {2, 3, · · · , d}, for otherwise, we can recolor vvi with d+1 and
color vv1 with i, and by properly recoloring the erased vertices, we get a (∆+1)-total-coloring
of G, a contradiction, too. In the following we consider (1)-(3) one by one.

(1) Since d+1 ∈ C(vi) for all i ∈ {2, 3, · · · , d}, there is a vertex us (1 ≤ s ≤ k) such that
d+ 1 appears at least twice on us, a contradiction to ϕ.

(2) Since d + 1 ∈ C(vi) for all i ∈ {2, 3, · · · , d}, ϕ(vkuk) = ϕ(vk+1uk+1) = · · · =

ϕ(vt−1ut−1) = ϕ(vtvt+1) = d + 1. We also have ϕ(vtut−1) = t + 1. For otherwise, we
can recolor vtvt+1 with t + 1, vvt+1 with d + 1 and color vv1 with t + 1. By properly recol-
oring the erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. Similarly,
ϕ(vt−1ut−2) = ϕ(vt−2ut−3) = · · · = ϕ(vk+1uk) = t + 1. So we can recolor vvt+1 with d + 1,
vtvt+1 with t+1, vtut−1 with d+1, vt−1ut−1 with t+1,· · · , vk+1uk+1 with t+1, vk+1uk with
d + 1, vkuk with t + 1 and color vv1 with t + 1. By properly recoloring the erased vertices,
we get a (∆ + 1)-total-coloring of G, also a contradiction.

(3) If d + 1 ̸∈ {ϕ(vk−1vk) ∪ ϕ(vtvt+1)}, then there is a vertex us (k ≤ s ≤ t − 1) such
that d + 1 appears at least twice on us, a contradiction to ϕ. So without loss of generality,
assume ϕ(vk−1vk) = d + 1. If ϕ(vk+1uk) = d + 1, then ϕ(vk+2uk+1) = ϕ(vk+3uk+2) = · · · =
ϕ(vtut−1) = d + 1. By the discussion of (2), we also have ϕ(vkuk) = ϕ(vk+1uk+1) = · · · =
ϕ(vt−1ut−1) = ϕ(vtvt+1) = k − 1. Then we can recolor vvk−1 with d + 1, vk−1vk with k − 1,
vkuk with d + 1, vk+1uk with k − 1, · · · , vt−1ut−1 with d + 1, vtut−1 with k − 1, vtvt+1

with t + 1, vvt+1 with k − 1 and color vv1 with t + 1. By properly recoloring the erased
vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. If ϕ(vk+1uk+1) = d+ 1, then
ϕ(vk+2uk+2) = ϕ(vk+3uk+3) = · · · = ϕ(vt−1ut−1) = ϕ(vtvt+1) = d + 1. Similarly, we have
ϕ(vtut−1) = ϕ(vt−1ut−2) = · · · = ϕ(vk+1uk) = t + 1. Let ϕ(vkuk) = s. Then we can recolor
vvt+1 with d+ 1, vtvt+1 with t+ 1, vtut−1 with d+ 1, vt−1ut−1 with t+ 1, · · · , vk+1uk+1 with
t + 1, vk+1uk with s, vkuk with t + 1, and color vv1 with t + 1. By properly recoloring the
erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction, too.

By the Euler’s formula |V | − |E|+ |F | = 2, we have

∑
v∈V

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −6(|V | − |E|+ |F |) = −12 < 0

We define ch the initial charge that ch(x) = 2d(x)−6 for each x ∈ V and ch(x) = d(x)−6

for each x ∈ F . So
∑

x∈V ∪F ch(x) = −12 < 0. In the following, we will reassign a new
charge denoted by ch

′
(x) to each x ∈ V ∪ F according to the discharging rules. If we
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can show that ch
′
(x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious contradiction to

0 ≤
∑

x∈V ∪F ch
′
(x) =

∑
x∈V ∪F ch(x) = −12, which completes our proof. Now we define the

discharging rules as follows.
R1. Each 2-vertex receives 1 from each of its neighbors.
R2. Let f be a 3-face. If f is incident with a 3−-vertex, then it receives 3

2
from each of

its two incident 7+-vertices. If f is incident with a 4-vertex, then it receives 5
4

from each of
its two incident 6+-vertices. If f is not incident with any 4−-vertex, then it receives 1 from
each of its two incident 5+-vertices.

R3. Let f be a 4-face. If f is incident with two 3−-vertices, then it receives 1 from each
of its two incident 7+-vertices. If f is incident with only one 3−-vertex, then it receives 3

4

from each of its two incident 7+-vertices; and 1
2

from the left incident 4+-vertex. If f is not
incident with any 3−-vertex, then it receives 1

2
from each of its incident 4+-vertices.

R4. Each 5-face receives 1
3

from each of its incident 4+-vertices.
Next, we show that ch

′
(x) ≥ 0 for all x ∈ V ∪ F . It is easy to check that ch

′
(f) ≥ 0 for

all f ∈ F and ch
′
(v) ≥ 0 for all 2-vertices v ∈ V by the above discharging rules. If d(v) = 3,

then ch
′
(v) = ch(v) = 0. If d(v) = 4, then ch

′
(v) ≥ ch(v) − 1

2
× 4 = 0 by R2 and R3. For

d(v) ≥ 5, we need the following structural lemma.

Lemma 4. (1) Suppose that every 6-cycle of G contains at most one chord. Then we have
the following results.
(a) G has no configurations depicted in Fig.3(1), Fig.3(2) and Fig.3(3);
(b) Suppose G has a subgraph isomorphic to Fig.3(4). Then d(f1) ≥ 4 and d(f2) ̸= 4. More
over if d(f1) = 4, then d(f2) ≥ 5;
(c) If G has a subgraph isomorphic to Fig.3(5), then d(f1) ≥ 5 and d(f2) ≥ 5.

(2) Suppose that all chordal 6-cycles are not adjacent. Then we have the following results.
(d) If G has a subgraph isomorphic to Fig.3(5), then max{d(f1), d(f2)} ≥ 4;
(e) G has no configurations depicted in Fig.3(6) and Fig.3(7).

(1) (3)(2) (7)(6)(5)(4)

f
2

f
1

f
2

f
1

Fig.3

Suppose d(v) = 5. Then f3(v) ≤ 4 by Lemma 4. If f3(v) = 4, then f6+(v) ≥ 1, so
ch

′
(v) ≥ ch(v)− 1× 4 = 0. If f3(v) ≤ 3, then ch′(v) ≥ ch(v)− 1× f3(v)− 1

2
× (5− f3(v)) =

3−f3(v)
2

≥ 0. Suppose d(v) = 6. Then f3(v) ≤ 4 and ch
′
(v) ≥ ch(v) − 5

4
× f3(v) − 1

2
×

(6 − f3(v)) = 3(4−f3(v))
4

≥ 0. Suppose d(v) = 7. Then f3(v) ≤ 5. By Lemma 2(1), v
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is incident with at most two 3-faces are incident with a 3−-vertex, that is, v sends 3
2

to
each of the two 3-faces and at most 5

4
to each other 3-face. If f3(v) = 5, then f5+(v) ≥ 1,

and ch′(v) ≥ ch(v) − 3
2
× 2 − 5

4
× 3 − 3

4
× 1 − 1

3
× 1 = 1

6
> 0. If 2 ≤ f3(v) ≤ 4, then

ch′(v) ≥ ch(v)− 3
2
× 2− 5

4
× (f3(v)− 2)− 1× (5− f3(v))− 3

4
× 2 = 4−f3(v)

4
≥ 0. If f3(v) ≤ 2,

then ch
′
(v) ≥ ch(v)− 3

2
× f3(v)− 1× (7− f3(v)) =

2−f3(v)
2

> 0.
Suppose d(v) = 8. Then ch(v) = 10. Let v1, · · · , v8 be neighbors of v in the clockwise

order and f1, f2, · · · , f8 be faces incident with v, such that fi is incident with vi and vi+1,
for i ∈ {1, 2, · · · , 8}, and f9 = f1.

Suppose n2(v) = 0. Then f3(v) ≤ 6. If f3(v) = 6, then f5+(v) ≥ 2, so ch′(v) ≥ 10− 3
2
×

6− 1
3
×2 = 1

3
> 0. If f3(v) = 5, then f5+(v) ≥ 1, so ch′(v) ≥ 10− 3

2
×5−1×2− 1

3
×1 = 1

6
> 0.

If f3(v) ≤ 4, then ch′(v) ≥ 10− 3
2
× f3(v)− 1× (8− f3(v)) ≥ 0.

Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2.
Suppose v1 is incident with a 3-cycle f1.
By Lemma 4, f3(v) ≤ 6 and all 3-faces incident with no 3−-vertex except f1 by Lemma

2(6). If f3(v) = 6, then f5+(v) ≥ 2, so ch′(v) ≥ 10− 1− 3
2
× 1− 5

4
× 5− 1

3
× 2 = 7

12
> 0. If

4 ≤ f3(v) ≤ 5, then ch′(v) ≥ 10−1− 3
2
×1− 5

4
×(f3(v)−1)−1×(6−f3(v))− 3

4
×2 = 5−f3(v)

4
≥ 0.

If 1 ≤ f3(v) ≤ 3, then ch′(v) ≥ 10−1− 3
2
×1− 5

4
× (f3(v)−1)−1× (8−f3(v)) =

3−f3(v)
4

≥ 0.
Suppose v1 is not incident with a 3-cycle.
Suppose every 6-cycle of G contains at most one chord. Then f3(v) ≤ 5 by Lemma

2(2)-(4). If 4 ≤ f3(v) ≤ 5, then f5+(v) ≥ 2, so ch′(v) ≥ 10 − 1 − 3
2
× (f3(v) − 1) − 1 ×

1 − 1 × (6 − f3(v)) − 1
3
× 2 = 17−3f3(v)

6
> 0. If f3(v) = 3, then f5+(v) ≥ 1, so ch′(v) ≥

10− 1− 3
2
× 3− 1× 4− 1

3
× 1 = 1

6
> 0. If f3(v) = 2, then ch′(v) ≥ 10− 1− 3

2
× 2− 1× 6 = 0.

If f3(v) = 1, then without loss of generality, d(f2) = 3, i.e. d(v3) = 3 and d(v2) ≥ 7, so
ch′(v) ≥ 10−1− 3

2
×1−1×6− 3

4
×1 = 3

4
> 0. If f3(v) = 0, then ch′(v) ≥ 10−1−1×8 = 1 > 0.

Suppose any two chordal 6-cycles are not adjacent. Then f3(v) ≤ 5 by Lemma 2(2)-(4).
If f3(v) ≥ 4, then ch′(v) ≥ 10 − 1 − 3

2
× 2 − 5

4
× (f3(v)) − 3

4
× (8 − f3(v)) = 5−f3(v)

2
≥ 0.

If f3(v) = 3, then ch′(v) ≥ 10 − 1 − 3
2
× 3 − 3

4
× 5 = 3

4
> 0. If 1 ≤ f3(v) ≤ 2, then

ch′(v) ≥ 10− 1− 3
2
× f3(v)− 1× (6− 2f3(v))− 3

4
× (2 + f3(v)) =

6−f3(v)
4

> 0. If f3(v) = 0,
then ch′(v) ≥ 10− 1− 1× 8 = 1 > 0.

Note that next Lemma 5 is also true for general planar graphs if we just use the above
discharging rules.

Lemma 5. Suppose d(v) = 8 and 2 ≤ n2(v) ≤ 8. Then ch′(v) ≥ 0.

Proof. Since d(v) = 8, then ch(v) = 10. First we give a Claim for convenience.
Claim Suppose that d(vi) = d(vi+k+1) = 2 and d(vj) ≥ 3 for i + 1 ≤ j ≤ i + k. Then v

sends at most ϕ (in total) to fi and fi+1, fi+2, · · · , fi+k, where ϕ = 5k+1
4

(k = 1, 2, 3, 4, 5),
see Fig.4.
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(2) (3)(1) (4)

vi

vi+3

fi

fi+2

vi

fi

vi+4 fi+3

vi

fi

vi+5

fi+4

vi

fi

vi+2

fi+1

(5)

vi

fi

vi+6

fi+5

Fig.4

By Lemma 2, d(fi) ≥ 4 and d(fi+k) ≥ 4.
Case 1. k = 1 By Lemma 3(1), we have d(vi+1) ≥ 4 or max{d(fi), d(fi+1)} ≥ 5, so

ϕ ≤ max{3
4
× 2, 1 + 1

3
} = 3

2
by R3.

Case 2. k = 2 If d(fi+1) = 3, then min{d(vi+1), d(vi+2)} ≥ 4 or max{d(fi), d(fi+2)} ≥ 5

by Lemma 3(2), and it follows that ϕ ≤ max{3
4
+ 5

4
+ 3

4
, 1

3
+ 3

2
+ 3

4
} = 11

4
. Otherwise,

d(fi+1) ≥ 4, then min{d(vi+1), d(vi+2)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2)} ≥ 5 by Lemma
3(1), and it follows that ϕ ≤ max{1 + 3

4
× 2, 1× 2 + 1

3
} = 5

2
< 11

4
.

Case 3. k = 3 Suppose d(fi+1) = d(fi+2) = 3. Then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) =

3, then d(fi) ≥ 5 and d(fi+3) ≥ 5, so ϕ ≤ 3
2
× 2 + 1

3
× 2 = 11

3
. If min{d(vi+1), d(vi+3)} ≥ 4,

then ϕ ≤ 5
4
× 2 + 3

4
× 2 = 4. Suppose d(fi+1) = 3 and d(fi+2) ≥ 4. If d(vi+1) = 3, then

d(vi+2) ≥ 7 and d(fi) ≥ 5, so ϕ ≤ 1
3
+ 3

2
+ 3

4
+ 1 = 43

12
. If d(vi+2) = 3, then d(vi+1) ≥ 7 and

d(vi+3) ≥ 4, so ϕ ≤ 3
4
+ 3

2
+ 3

4
+ 3

4
= 15

4
. If min{d(vi+1), d(vi+2)} ≥ 4, ϕ ≤ 3

4
+ 5

4
+ 3

4
+1 = 15

4
.

It is similar with d(fi+2) = 3 and d(fi+1) ≥ 4. Suppose min{d(fi+1), d(fi+2)} ≥ 4. Then
max{d(vi+1), d(vi+2), d(vi+3)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3)} ≥ 5, so ϕ ≤
max{1× 2 + 3

4
× 2, 1× 3 + 1

3
} = 7

2
. So ϕ ≤ max{11

3
, 4, 43

12
, 15

4
, 7

2
} = 4.

Case 4. k = 4 Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3. Then min{d(vi+2), d(vi+3)} ≥
4. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5 and d(fi+4) ≥ 5, so ϕ ≤ 3

2
×2+1×1+ 1

3
×2 = 14

3
.

If min{d(vi+1), d(vi+4)} ≥ 4, then ϕ ≤ 5
4
× 3 + 3

4
× 2 = 21

4
. Suppose d(fi+1) = d(fi+2) = 3,

d(fi+3) ≥ 4. Then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(vi+4) ≥ 4 and d(fi) ≥ 5, so
ϕ ≤ 3

2
×2+ 3

4
×2+ 1

3
×1 = 29

6
. If min{d(vi+1), d(vi+3)} ≥ 4, then ϕ ≤ 5

4
×2+1×1+ 3

4
×2 = 5.

Similar with d(fi+2) = d(fi+3) = 3, d(fi+1) ≥ 4. Suppose d(fi+1) = d(fi+3) = 3, d(fi+2) ≥ 4.
Then max{d(vi+2), d(vi+3)} ≥ 4 by Lemma 3(3), so ϕ ≤ 3

2
× 1 + 5

4
× 1 + 3

4
× 3 = 5.

Suppose d(fi+1) = 3, d(fi+2) ≥ 4 and d(fi+3) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 7 and
d(fi) ≥ 5, so ϕ ≤ 3

2
+ 1 × 2 + 3

4
× 1 + 1

3
× 1 = 55

12
. If d(vi+2) = 3, then d(vi+1) ≥ 7

and max{d(vi+3), d(vi+4)} ≥ 4, so ϕ ≤ 3
2
× 1 + 1 × 1 + 3

4
× 3 = 19

4
. Otherwise, ϕ ≤

5
4
× 1 + 1 × 2 + 3

4
× 2 = 19

4
. It is similar with d(fi+3) = 3, d(fi+1) ≥ 4 and d(fi+2) ≥ 4.

Suppose d(fi+2) = 3, d(fi+1) ≥ 4 and d(fi+3) ≥ 4. If d(vi+2) = 3 or d(vi+3) = 3, then
ϕ ≤ 3

2
× 1 + 1 × 1 + 3

4
× 3 = 19

4
. Otherwise, ϕ ≤ 5

4
× 1 + 1 × 2 + 3

4
× 2 = 19

4
. Suppose

min{d(fi+1), d(fi+2), d(fi+3)} ≥ 4. Then max{d(vi+1), d(vi+2), d(vi+3), d(vi+4)} ≥ 4 or
max{d(fi), d(fi+1), d(fi+2), d(fi+3), d(fi+4)} ≥ 5, so ϕ ≤ max{1×3+ 3

4
×2, 1×4+ 1

3
} = 9

2
.
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So ϕ ≤ max{14
3
, 21

4
, 29

6
, 5, 55

12
, 19

4
, 9

2
} = 21

4
.

Case 5. k = 5 If k = 5, then ϕ ≤ 13
2
. It is similar to prove (e), we omit it here.

Next, we prove the Lemma.
If n2(v) = 8, then all faces incident with v are 6+-faces by Lemma 2(2)-(4), that is,

f6+(v) = 8, so ch
′
(v) = 10− 1× 8 = 2 > 0. If n2(v) = 7, then f6+(v) ≥ 6 and f3(v) = 0, so

ch
′
(v) ≥ 10− 1× 7− 3

2
= 3

2
> 0 by Claim (a).

Suppose n2(v) ≤ 6. The possible distributions of 2-vertices adjacent to v are illustrated
in Fig.5. For Fig.5(1), we have f6+(v) ≥ 5 and ch′(v) ≥ 10−1×6− 11

4
= 5

4
> 0 by Claim (b).

n2(v)=6

n2(v)=5

n2(v)=4

n2(v)=3

n2(v)=2

(1)

6+ 6+
6+

6+

(3)

6+

6+

6+
6+

(4)

6+

6+6+

6+

6+

6+

6+

6+

6+

6+

6+
6+

6+

6+

6+6+

6+
6+

6+

6+

6+
6+

(2)

(5) (7) (8)(6) (9)

(10)

6+
6+

(12)

6+

(13)

6+
6+

6+

6+
6+

(11) (14)

6+

6+

(16) (17)

6+ 6+

(15)

6+

6+

6+
6+ 6+

(18) (20) (21)(19) (22)

(23) (25) (26)

6+

(24)

f
1

f
2v

2
v

3 f
.3v

4
f
4

f
5

v
5

f
6

v
6

f
7 v

7

6+

Fig.5

For Fig.5(2)-(4), we have f6+(v) ≥ 4 and ch′(v) ≥ 10− 1× 6− 3
2
× 2 = 1 > 0. For Fig.5(5),

we have f6+(v) ≥ 4 and ch′(v) ≥ 10 − 1 × 5 − 4 = 1 > 0 by Claim (c). For Fig.5(6)-(7),
we have f6+(v) ≥ 3 and ch′(v) ≥ 10 − 1 × 5 − 3

2
− 11

4
= 3

4
> 0. For Fig.5(8)-(9), we have

f6+(v) ≥ 2 and ch′(v) ≥ 10− 1× 5− 3
2
× 3 = 1

2
> 0. For Fig.5(10), we have f6+(v) ≥ 3 and

ch′(v) ≥ 10− 1× 4− 21
4
= 3

4
> 0 by Claim (d). For Fig.5(11) and 5(13), we have f6+(v) ≥ 2

and ch′(v) ≥ 10− 1× 4− 3
2
− 4 = 1

2
> 0. For Fig.5(12) and 5(16), we have f6+(v) ≥ 2 and

ch′(v) ≥ 10 − 1 × 4 − 11
4
× 2 = 1

2
> 0. For Fig.5(14) and 5(15), we have f6+(v) ≥ 1 and
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ch′(v) ≥ 10−1×4− 3
2
×2− 11

4
= 1

4
> 0. For Fig.5(17), we have ch′(v) ≥ 10−1×4− 3

2
×4 = 0.

For Fig.5(18), we have f6+(v) ≥ 2 and ch′(v) ≥ 10 − 1 × 3 − 13
2
= 1

2
> 0 by Claim (e). For

Fig.5(19), we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 3
2
− 21

4
= 1

4
> 0. For Fig.5(20),

we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 11
4
− 4 = 1

4
> 0. For Fig.5(21), we have

ch′(v) ≥ 10−1×3− 3
2
×2−4 = 0. For Fig.5(22), we have ch′(v) ≥ 10−1×3− 3

2
− 11

4
×2 = 0. For

Fig.5(23), we have f6+(v) ≥ 1. Suppose d(f2) = d(f3) = d(f4) = d(f5) = d(f6) = 3. Then
min{d(v3), d(v4), d(v5), d(v6)} ≥ 4. If d(v2) = d(v6) = 3, then d(f1) ≥ 5 and d(f7) ≥ 5 by
Lemma 3, so ch′(v) ≥ 10−1×2− 3

2
×2− 5

4
×2−1×1− 1

3
×2 = 5

6
> 0. If f2, f3, f4, f5 and f6 are

incident with no 3−-vertex, then ch′(v) ≥ 10−1×2− 5
4
×5− 3

4
×2 = 1

4
> 0. For Fig.5(24), we

have ch′(v) ≥ 10−1×2− 3
2
− 13

2
= 0. For Fig.5(25), we have ch′(v) ≥ 10−1×2− 11

4
− 21

4
= 0.

For Fig.5(26), we have ch′(v) ≥ 10− 1× 2− 4× 2 = 0.

Hence we complete the proof of the theorem.
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