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Abstract

A new viewpoint is used to understand the generation process of the
Hilbert curve. A one-to-one correspondence between the 4-adic expansion
of the unit interval and the fractal curve’s iterative generating process is
established, and an analytical expression of the level-n Hilbert curve is
obtained. This expression can take limit and represent the curve with
2-adic series. Though composition of functions this expression can substi-
tute the generator of the Hilbert curve, while it can be proved, by using
the expression, that the generation of the Hilbert curve depends on how
the subsquares are connected rather than the shape of the generator.

Keywords: arithmetic-analytical expression, Hilbert-type space-filling
curve, parent Hilbert curve, analytic transformation.

1 Introduction

In 1890, G. Peano discovered a continuous curve which could fill a square in
a geometric way [1]. After that, in 1891, D. Hilbert also constructed another
curve with the same property, and it was called the Hilbert curve [2]. For more
than one hundred years, space-filling curves have attracted great interest for
their wonderful construction and mathematical properties, so it brings a lot of
research. Most of the fundamental results can be found in [3]. The value of
space-filling curves lies in their capability to establish a corresponding relation-
ship between one dimensional space and high dimensional space, which helps
to map the data of multidimensional space into one dimensional space. In 1969
Butz advanced the theories and properties of Hilbert curve [4], pointing out that
Hilbert scanning is a kind of two dimensional space scanning method which is
continuous, without interleaving and passing through the consecutive points.
C. Gostman and M. Lindenbaum have proved it is the scanning curve that best
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keep the spacial local adjacency [5], and shows an obvious superiority over other
scanning methods. Therefore it is regarded as a tool of descending the spacial
dimensions and is successfully applied in image processing and indexing of multi-
dimensional data. As a facility of ergode and descending the spacial dimensions,
Hilbert curve has constantly expanded its application domains recently [6–18].
Because the applications of the Hilbert curve depends on the calculation of its
codings, and the classical geometric-based algorithm is a symbolic-system recur-
sive algorithm, when encountering large-scaled computation or high dimensional
application problem, it is time-consuming. Thus it is unfavourable to the prac-
tical application and popularization of space-filling curves. Many have done a
lot of work on researching the fast generation algorithm [19–30]. However, these
method of calculating the coding did not take advantage of the analytic expres-
sion of Hilbert curve, which reflects the one-to-one correspondence relationship
between the data and the image. By applying our unique method of establish-
ing arithmetic-analytical expression of fractals curves, this paper provides an
arithmetic-analytic expression of the Hilbert space-filling curve. We also ex-
plain the difference between our method and that of H. Sagan’s: in section 4 it
is shown that our expression is capable of performing composition of functions
to create “new” Hilbert curves, which can be proved to be the classic Hilbert
curve despite the differences among their generators. Consequently, there is an
important conclusion that the Hilbert space-filling curve is only determined by
the sequence of how the 4 subsquares connect, and that the type of curves used
to connect them are irrelevant. Thus we show that this expression can be use
to study a series of analytic properties of the Hilbert curve. In section 5 we
clarify further how to use this analytical expression, and briefly introduce our
following research based on it.

2 The geometric procedure of filling curves of
Hilbert

E. H. Moore [33] was the first to recognize a general geometrical generating
procedure that allowed the construction of an entire class of space-filling curves.
Following that, after 100 years or so, some others continued to construct geo-
metric space-filling curves, see [3]. Moore gave the principle as following: If the
interval I can be mapped continuously onto the square S, then after partitioning
I into four congruent subintervals, and S into four congruent subsquares, then
each subinterval can be mapped continuously onto one of the subsquare. Next,
each subinterval is also partitioned into four congruent subintervals, and each
subsquare into four congruent subsquares, and so on. I and S are partitioned
into congruent replicas for n = 1, 2, · · · . If a square corresponds to an interval,
then its subsquares correspond to the subintervals of that interval. Apparently,
determining the order of ubsquares is the key to the generating procedure. We
use the bottom edge of a subsquare to represent it (Fig. 1(a)). Notice how the
subsquares are replaced by smaller subsquares in Fig. 1, where Fig. 1(a) can be
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seen as the generator of this fractal curve. For convenience, we call it the parent
Hilbert curve, which has the same order of subsquares as the original curve.
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Fig. 1 Generating the parent Hilbert curve

In Fig. 2, replace each of the four subsquares whose bottom edges is repre-
sented by arrows with the generator of the Hilbert curve and a ”tail”. The tails
connect the four parts so that we can get a Hilbert curve. Note that in level-2
Hilbert curve we use what is shown in 2(e) while when constructing a level-3
Hilbert curve, the ”tail” may be either (c), (d) or (e). The Hilbert curve can
then generated by the parent Hilbert curve, this generating procedure is shown
in Fig. 2 and Fig. 3.

(a)                 (b)             (c)                (d)      (e)(a)                 (b)             (c)                (d)      (e)

Fig. 2 The five transformation of generating Hilbert curve
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Fig. 3 The generating procedure of the Hilbert curve
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3 The series expression of the Hilbert space-
filling curve

H. Sagan has indicated in [3] that “Apparently, no attempt at an arithmetic
analytic representation of the Hilbert curve has been made during the past 100
years in the belief that such an attempt would be very tedious”. It is well
known that space-filling curves are classic fractals which can also be generated
by iterated function systems (IFS). And in [3], H. Sagan gave an arithmetic
process to determine the parent Hilbert curve. In fact, on the complex plane,
the IFS of parent Hilbert space-filling curve is as follows

M(Z) =



1

2
Z̄i

1

2
Z +

i

2
1

2
Z +

1

2
+

i

2

−
1

2
Z̄i+ 1 +

i

2

Z = x+ yi, 0 ≤ x, y ≤ 1 (1)

and let t ∈ [0, 1] to be represented in quaternary form

t = 04.b1b2 · · · bn · · · =
∞∑

n=1

bn
4n

, bn ∈ {0, 1, 2, 3} (2)

or binary form

t =
a1
2

+
τ1
2

= · · · =
n∑

k=1

ak
2k

+
τn
2n

= · · · =
∞∑

n=1

an
2n

, (3)

and
Z = x(t) + y(t)i,

where bn = 2an−1+an, {a1, a2, · · · , a2n} are the first 2n digits of the binary
expansion of t, and τ2n is the remainder. The relation between a1, a2, τ2 and t
is shown in Fig. 4.
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Fig. 4 The Relation between a1, a2, τ2 and t.
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To solve the problem, we now only need to find the curve’s analytical repre-
sentation of the following form:{

x = ϕ(t)
y = φ(t)

, t =
∞∑
i=1

ai

2i
, ai ∈ {0, 1}.

because 

a1 = 0, a2 = 0 if t ∈ [0,
1

4
);

a1 = 0, a2 = 1 if t ∈ [
1

4
,
1

2
);

a1 = 1, a2 = 0 if t ∈ [
1

2
,
3

4
);

a1 = 1, a2 = 1 if t ∈ [
3

4
, 1]

So we can combine the equations in (1) in one formula:

M(Z) =
1

2
eh1

π
2 i

(
(1− g1Z + g1Z̄

)
+

u1

2
+

v1

2
i. (4)

where

h1 = h(a1, a2) = 1− a1 − a2,
g1 = g(a1, a2) = 1− a1 − a2 + 2a1a2,
u1 = (a1, a2) = a1(1 + a2), v1 = (a1, a2) = a1 + a2 − a1a2

Let Z be the initiator Z0, then Z0 = x(t) = t, t ∈ [0, 1].

t = a1/2+ a2/2
2+ τ2/2

2 stands for the first step in the parent Hilbert curve
construction. With (4) we have

M(t) =
1

2
eh1

π
2 iτ2 +

u1

2
+

v1

2
i.

where u1/2+v1i/2 is to determine the starting points of directed line segments,
τ2 draws the lines as it changes between ∈ [0, 1].

t = a1/2+ a2/2
2 + a3/2

3 + a4/2
4 + τ4/2

4 stands for the second step, that is,
representing τ2 in quaternary form. In Figure 1(b) each of the four directed line
segments are replaced by four new line segments (16 line segments in total). So
for τ2, we have

M(τ2) =
1

2
eh2

π
2 iτ4 +

u2

2
+

v2

2
i.

inserted into (4)

M2(t) = M(M(τ2)) =
1

2
e(h1+(−1)g1h2

π
2 iτ4 +

1

2
eh1

π
2 i
(u2

2
+ (−1)g1

v2

2
i
)
+

u1

2
+

v1
2
i.
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Carry out this process for nth time, where

t =
a1
2

+
a2
22

+
a3
23

+ · · ·+ a2n−1

22n−1
+

a2n
22n

+
τ2n
22n

the n− 1 times expansion of τ2:

Mn(t) = M(Mn−1(τ2)) =
τ2n

22n
e

n∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

+
n∑

j=1

1

2j
e

j−1∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

·
(
uj + (−1)

j−1∑
k=1

gk
vji

)
.

(5)

Let n → ∞,

M∗(t) = lim
n→∞

Mn(t) =
∞∑
j=1

1

2j
e

j−1∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

·
(
uj + (−1)

j−1∑
k=1

gk
vji

)
. (6)

where τ2n, ai ∈ {0, 1}, i = 1, 2, · · · , n andt satisfy equation:

t =
a1
2

+
a2
22

+ · · ·+ a2n
22n

+
τ2n
22n

therefore ai as the function of t can be determined in the following way:

aj = aj(t) =

{
[2jt]− 2[2j−1t] : t ̸= 1

1 : t = 1
, j = 1, 2, 3, · · · , n.

where [x] is the integer part of x. τ2n is also a function of t:

τ2n = 22nt− 22n−1a1 − 22n−2a2 − 22n−3a3 − · · · − 2a2n−1 − a2n

uj = u(a2j−1, a2j) = a2j−1(1 + a2j), vj = v(a2j−1, a2j) = a2j−1 + a2j −
a2ja2j−1(1 + a2j),
gj = g(a2j−1, a2j) = 1 − a2j−1 − a2j + 2a2j−1a2j , hj = h(a2j−1, a2j) =
1− a2j−1 − a2j ,

Let {
x = φ(t) = Re(M∗(t))
y = ϕ(t) = Im((M∗(t))

is the analytical expression of parametric equation for the nth iterated parent
Hilbert curve, which is show in Fig 1.

(6) is an unusual function representation, where M ∗ (t) as the function of t
is determined by the binary expansion digits {a2n−1, a2n}∞n=1. So we call it the
arithmetic-analytical expression.

In order to explain each part of (5), we denote it as

Mn(t) =
1

2n
τ2ne

Aπ
2 i + C.
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When t changes from 0 to 1, τ2n changes from 0 to 1 repeatedly for 22n times.
In (5), τ2ne

Aπ
2 i/2n represents 22n line segments with length 1/2n, and eA

π
2 i

controls which direction each line segment goes. C determines the starting
point of each line segment.

Theorem 1. The analytical expression of nth parent Hilbert curve Mn(t) is
uniform continuous on interval [0,1]

Proof. ∀ε > 0 and ∀t′, t′′ ∈ [0, 1], ∃ integer N > 0, such that 1/2n−1 < 1/2N−2,
1/2N−4 < ε, when |t′ − t′′| < 1/22N ,

t′ =

2N−1∑
k=1

ak
22k

+

2n∑
k=2N

a′k
a2k

+
τ2n
22n

, t′′ =

2N−1∑
n=1

ak
22k

+

2n∑
k=2N

a′′k
a2k

+
τ2n
22n

.

Because when x, y ∈ {0, 1}, |u(x, y)| = |x(1+y)| < 2, |v(x, y)| = |x+y−xy| < 1,

∥Mn(t
′)−Mn(t

′′)∥ ⩽
1

2n−1
+

∣∣∣∣∣∣
2n∑

j=N

u(a′2j−1, a
′
2j)

2j

∣∣∣∣∣∣+
∣∣∣∣∣∣

2n∑
j=N

u(a′′2j−1, a
′′
2j)

2j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
2n∑

j=N

v(a′2j−1, a
′
2j)

2j

∣∣∣∣∣∣+
∣∣∣∣∣∣

2n∑
j=N

v(a′′2j−1, a
′′
2j)

2j

∣∣∣∣∣∣
⩽

1

2n−1
+ 6

∞∑
j=N

1

2j
⩽

1

2N−4
< ε

So Mn(t) is uniform continuous on [0,1].

From Fig. 3, we can know that the nth Hilbert curve can be obtained from
the (n−1)th parent Hilbert curve through 5 types of transformation as is shown
in Fig.2, in which the transformation can be attributed to replacing τ2n−2 in
Mn−1 with the following formula:

q(t, n) =

1−
2n∏
j=1

aj

2
τ2n · e

(−1)

n−1∑
j=1

gj
((1−2a2n−1)(1−a2n)+

n∑
j=1

a2j−1

n−1∏
k=j

(−1)a2k−1a2k)
π
2 i

+
1 + 2a2n−1

4
+ (−1)

n−1∑
j=1

gj 1 + 2gn
4

(7)

and the obtained nth analytic representations of ordinarily Hilbert space-
filling curve is
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Hn(t) =

1−
2n∏
j=1

aj

2n
τ2ne

n−1∑
j=1

(−1)

j−1∑
k=1

gk
hj

π
2 i

· e
(−1)

n−1∑
j=1

gj
((1−2a2n−1)(1−a2n)+

n∑
j=1

a2j−1

n−1∏
k=j

(−1)a2k−1a2k))
π
2 i

+ e

n−1∑
j=1

(−1)

j−1∑
k=1

gk
hj

π
2 i

· (1 + 2a2n−1

2n+1
+ (−1)

n−1∑
j=1

gj 1 + 2gn
2n+1

i)

+
n−1∑
j=1

1

2j
e
(
j−1∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

· (uj + (−1)

j−1∑
k=1

gk
vji).

(8)

Taking n → ∞ get

H(t) = lim
n→∞

Hn(t) = M∗(t) (9)

Where τ2n and ai ∈ {0, 1}, i = 1, 2, · · · , n are same before . Taking n = 2, 3, 5,
we draw Fig. 5 by using equation (8).
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Fig. 5 ordinarily Hilbert space-filling curve

In order to explain each part of (8), we denote it as

Mn(t) =
B

2n
τ2ne

Aπ
2 i + C.

When t changes from 0 to 1, τ2n changes from 0 to 1 repeatedly for 22n times.
In (5), τ2ne

Aπ
2 i/2n represents 22n line segments with length 2−n; B controls

whether the the line segment has a ”tail” attached to it and eA
π
2 i controls

which direction each line segment goes. C determines the starting point of each
line segment.

Theorem 2. The analytical expression of nth Hilbert curve Hn(t) is uniform
continuous on interval [0,1]

Proof. ∀ε > 0 and ∀t′, t′′ ∈ [0, 1], ∃ integer N > 0, such that 1/2n−1 < 1/2N−2,
1/2N−5 < ε, when |t′ − t′′| < 1/22N ,

t′ =
2N−1∑
k=1

ak
22k

+
2n∑

k=2N

a′k
a2k

+
τ2n
22n

, t′′ =
2N−1∑
n=1

ak
22k

+
2n∑

k=2N

a′′k
a2k

+
τ2n
22n

.
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Because when x, y ∈ {0, 1}, |g(x, y)| = |1 − x − y + 2xy| < 1, |u(x, y)| =
|x(1 + y)| < 2,

∥Hn(t
′)−Hn(t

′′)∥ ⩽
1

2n−1
+

∣∣∣∣∣1 + 2a2n−1

2n+1

∣∣∣∣∣+
∣∣∣∣∣1 + 2g(a2n−1, a2n)

2n+1

∣∣∣∣∣
+

∣∣∣∣∣∣
2n∑

j=N

u(a′2j−1, a
′
2j)

2j

∣∣∣∣∣∣+
∣∣∣∣∣∣

2n∑
j=N

u(a′′2j−1, a
′′
2j)

2j

∣∣∣∣∣∣
+

∣∣∣∣∣∣
2n∑

j=N

v(a′2j−1, a
′
2j)

2j

∣∣∣∣∣∣+
∣∣∣∣∣∣

2n∑
j=N

v(a′′2j−1, a
′′
2j)

2j

∣∣∣∣∣∣
⩽

1

2n−1
+

3

2n
+ 6

∞∑
j=N

1

2j
⩽

1

2N−4
=

5

2n
+

3

2N−2
=

1

2N−5
< ε

So Hn(t) is uniform continuous on [0,1].

Obviously, the nth analytic representations of ordinarily Hilbert space-filling
curve given by (8) is also a one-to-one mapping of numbers and graphical ele-
ments and suitable to calculate.

4 A class of Hilbert-type space-filling curves and
their series expressions

From the deduction of the analytic expression of another Hilbert curve men-
tioned above, it can be seen that if we use another analytic transformation,
the arithmetic expressions of new type Hilbert curves can be similarly obtained
through substituting each line segment in parent Hilbert curve with analytical
representations of other curves.

Example 1. Replacing τ2n−2 in Mn−1 with

q1(t, n) = (1 + (1− 2a2n−1)(−1)

n−1∑
j=1

gj
i)
τ2n
2

+ (1 + (−1)

n−1∑
j=1

gj
i)
a2n−1

2
(10)

then we obtain

H1n(t) =
τ2n
2n

(1 + (1− 2a2n−1)(−1)

n−1∑
j=1

gj
i) · e

(
n−1∑
j=1

(−1)

j−1∑
k=1

gk
hj

π
2 i

+ (1 + (−1)

n−1∑
j=1

gj
i)
a2n−1

2
· e

n−1∑
j=1

(−1)

j−1∑
k=1

gk
hj

π
2 i

+
n−1∑
j=1

1

2j
e

j−1∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

· (uj + (−1)

j−1∑
k=1

gk
vji).

(11)
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By equation (11) , taking n = 2, 3, 5,, we can draw Fig. 6.
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Fig. 6 Hilbert-type space-filling curves in Example 1

Example 2. Replacing τ2n−2 in Mn−1 with

q2(t, n) =
1

2
(1 + e(−1)

n−1∑
j=1

gj
π(1−τ2n−2)i) (12)

then we obtain

H2n(t) =
1

2n
(1 + e(−1)

n−1∑
j=1

gj
π(1−τ2n−2)i) · e

n−1∑
j=1

(−1)

j−1∑
k=1

gk
hj

π
2 i

+
n−1∑
j=1

1

2j
e

j−1∑
k=1

(−1)

k−1∑
s=1

gs
hk

π
2 i

· (uj + (−1)

j−1∑
k=1

gk
vji).

(13)

And Fig. 7 is drawn with equation (13), taking n = 2, 3, 5,.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n = 1 n = 2 n = 3 n = 5
Fig. 7 Hilbert-type space-filling curves in Example 2

With the above method, we can also get other arithmetic expressions of
Hilbert-type space-filling curves which are shown in Fig. 8 and Fig. 9.

From the above examples, we can see that many new Hilbert-type space-
filling curves can be obtained by replacing the line segments with curve segments
in the Hilbert curve, as long as the continuity can be maintained. And their
expressions can be obtained by composition of functions. The Hilbert curve
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Fig. 8 6 broken line derived from parent Hilbert curve
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Fig. 9 6 Hilbert-type space-filling curves

is only determined by the way how the four subsquares connect. That is to
say, no matter what kind of continuous curve segment is used, the space-filling
curve obtained remains the same when the expression takes limit - a property
can be readily proved by analytical expression. And this make our analytical
expression distinct from Hans Sagan’s method.

In fact, our method is applicable to other space-filling curves. So this method
also provides an effective way to construct more space-filling curves as well as
finding their arithmetic-analytical expressions.

5 Additional explanations on the use of the arithmetic-
analytical expression

(5) and (8) provides an analytical expression based on the binary expansion
of t. The arithmetic-analytical expression lays the foundation of our study on

11



the Hilbert curve. Its primary significance is that each generating procedure
can be directly and precisely represented by functions. The traditional geomet-
ric methods, on the other hand, require previous iteration results before they
can calculate the next step of iteration. Because (5) and (8) are two continu-
ous functions that shows how the actual Hilbert-type curves exist, their forms
are complicated. On the other hand, they are ideal for generating new vari-
ants of Hilbert-type curves by substitute the variable. In (8), let τ2n = 0, we
immediately get the formula for the nth Hilbert order and the corresponding
coordinates:

Hcode(tk) =(
1 + 2a2n−1

2n+1
+ i(−1)

n−1+
n−1∑
k=1

gk 3− 2gn

2n+1
)e

(
n−1∑
k=1

(−1)
(j−1+

j−1∑
k=1

gk)

hj)
π
2 i

+

n−1∑
j=1

1

2j
e
(
j−1∑
k=1

(−1)
(k−1+

k−1∑
s=1

gs)

hs)
π
2 i

· (uj + (−1)
(j−1+

j−1∑
k=1

gk)
· vji

(14)

where tk = k/22n, k < 22n is a positive integer, and

aj = aj(tk) =

{
[2jtk]− 2[2j−1tk] : t ̸= 1

1 : t = 1

However, for those who often deal with Hilbert encoding/decoding problems,
this formula is not very convenient to use. In practical applications, the vertices
on the Hilbert curve and their Hilbert order are more important. So we have
deducted from our formula another coding formula and its simplified algorithm,
whose time complexity for encoding/decoding a single point is no greater than
O(n). We will introduce them in another paper entitled ”A Formulated Algo-
rithm Based on Binary Expansion Series for Encoding and Decoding the Hilbert
Order”.

In addition, we have constructed several variants of Moore-Hilbert curve
(Fig. 10), as well as the Hilbert curves on rectangular regions (Fig. 11). These
results will be discussed in our future papers. We have obtained the arithmetic-
analytical expression for 3-dimensional Hilbert curve, but its related problems
are yet to be discussed.
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