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1 Introduction

Let F be a number field, OF the ring of integers of F and ζF (s) the Dedekind zeta
function of F . It is known that one has the analytic class number formula

ζ∗F (0) = −R1(F )hF

w1(F )
, (1)

where w1(F ) is the number of roots of unity in F , hF is the class number of F , R1(F ) is the
first regulator of F and ζ∗F (0) is the first non-vanishing coefficient in the Taylor-expansion
of the zeta-function ζF (s) around s = 0.

Let E/F be a Galois extension of number fields with Galois group G. When G is a di-
hedral group of order 2p, the Brauer-Kuroda formula for the class number can be interpreted
in terms of a unit index(See [1, 2, 9]).

There are conjectural analogues of the formula (1) when 0 is replaced by negative
integers. One of them says
Motivic formulation of the Lichtenbaum Conjecture. For any number field F and
for any integer n ≥ 2,

ζ∗F (1− n) = ±RM
n (F )hn(F )

wn(F )
, (2)

where hn(F ) is the order of the motivic cohomology group H2
M (OF ,Z(n)), wn(F ) is the

order of the torsion subgroup of the motivic cohomology group H1
M (OF ,Z(n)) and RM

n (F )
is the motivic regulator of H1

M (OF ,Z(n)). In this paper we use the definition of motivic
cohomology groups for a field F in terms of Bloch’s higher Chow groups:

Hj
M (F,Z(n)) := CHn(Spec(F ), 2n− j).

Similarly, for a Dedekind domain OF we will use the notation Hj
M (OF ,Z(n)) for the motivic

cohomology groups of Spec(OF ).
The relationship between motivic cohomology, étale cohomology and K-theory is de-

scribed via Chern characters (cf. [7], Chapter 2 for overview). Here, we want to describe
briefly the profound consequences which the Bloch-Kato Conjecture has for the interplay
between the 3 functors. The Bloch-Kato Conjecture states that for any field F and any
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n ≥ 1 the Galois symbol
KM

n (F )/pm → Hn(F, µ⊗n
pm )

from Milnor K-theory to Galois cohomology is an isomorphism for any p-power pm with
p 6= char(F ). It has been proved by Voevodsky [12]. The special case p = 2, i.e., The
Milnor Conjecture, has been proved by Voevodsky [11]. The first consequence of the Bloch-
Kato Conjecture is that the Quillen-Lichtenbaum Conjecture holds, that is, for any odd
prime p and any number field F , the étale Chern characters

K2n−i(F )⊗ Zp → Hi
ét(F,Zp(n))

are isomorphisms for n ≥ 2 and i = 1, 2. Here Hi
ét(F, •) denotes the i-th étale cohomology

group of Spec(F ) with values in a sheaf •. The second consequence is that the same result
is true for the motivic cohomology groups for all primes p:

Hi
M (F,Z(n))⊗ Zp

∼= Hi
ét(F,Zp(n)).

For the ring of integers OF , one uses the localization sequences in K-theory, in étale coho-
mology and in motivic cohomology to obtain the following analogous result:

Lemma 1 ([7]) Let OF be the ring of integers in a number field F with r1 real embeddings,
and let n ≥ 2. Then for i = 1, 2,

(i) The Chern character

K2n−i(OF ) → Hi
M (OF ,Z(n))

is an isomorphism if 2n−i ≡ 0, 1, 2, 7 (mod 8), injective with cokernel ∼= (Z/2Z)r1 if 2n−i ≡
6 (mod 8), surjective with kernel ∼= (Z/2Z)r1 if 2n− i ≡ 3 (mod 8). In the remaining cases
(n ≡ 3 (mod 4)) there is an exact sequence

0 → K2n−2(OF ) → H2(OF ,Z(n)) → (Z/2Z)r1 → K2n−1(OF ) → H1(OF ,Z(n)) → 0.

(ii) Hi
M (OF ,Z(n))⊗ Zp

∼= Hi
ét(OF [ 1p ],Zp(n)), for all primes p.

We also note that for all n ≥ 2, the motivic groups H2
M (OF ,Z(n)) are finite, H1

M (OF ,Z(n))
∼= H1(F,Z(n)) are finitely generated Z-modules, (H1

M (OF ,Z(n)))tors
∼= H0(F,Q/Z(n)) and

dn = rkZ(H1
M (OF ,Z(n))) =

{
r1 + r2, if n is odd,

r2, if n is even,

where r1 and r2 are respectively the numbers of real and complex places of F .

Lemma 2 ([7]) Let E/F be a Galois extension of number fields with Galois group G. Then
for each n ≥ 2 there is an isomorphism

H1
M (F,Z(n)) ∼= H1

M (E,Z(n))G.
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Let F be a finite Galois extension of a number field k with the Galois group G. R.
Brauer [3] and S. Kuroda [8] proved independently some multiplicative relations between
the Dedekind zeta functions of some subfields of F . For every cyclic subgroup H of G,

cG(H) :=
1

(G : H)

∑

H∗ cyclic H⊆H∗⊆G

µ((H∗ : H)),

where µ is the Möbius function. Then

ζk(s) =
∏

H cyclic H⊆G

ζF H (s)cG(H), (3)

where FH is the subfield of F fixed by H. In what follows we usually assume k = Q, then
ζk = ζ is the Riemann zeta function.

Let l be a prime number and D the dihedral group of order 2l. Let F/Q be a complex
Galois extension with Galois group G, where G = V4 or D. In section 2, when n is even,
we will give the Brauer-Kuroda formulae for higher class numbers by an index of the first
Motivic cohomology groups using the Brauer-Kuroda relations (3) about zeta-functions and
the formula (2). For G = V4, we obtain

hn(F )hn(Q)2

hn(F0)hn(F1)hn(F2)
∈ {1/2, 1, 2}

where F0, F1 and F2 are all quadratic subfields of F . For D = D2l with l = 3, we obtain

hn(F )hn(Q)2

hn(k)hn(K)2
∈ {1/3, 1, 3, 9}

where k is the quadratic subfield of F and K is the real subfield of F .
Acknowledgements. This research was done while author visited the Department of
Mathematics and Statistics at McMaster University in 2011. I would like to thank Manfred
Kolster for his invitation and many enlightening discussions on this subject , and the anony-
mous referees for their very careful reading of the paper and for their useful comments. This
research is supported by Jiangsu Province Foreign Fund, NSFC 10971098 and Post-Doctor
Funds of Jiangsu (1201065C).
2 Main results

Let F be a number field and X(F ) = Hom(F,C) the set of complex embeddings of F .
Denote R(n − 1) = (2πi)n−1R. The Beilinson regualtor map ρn is obtained by composing
the various embeddings of F into C with a Chern character

chn : K2n−1(C) → H1
D(Spec(C),R(n)) ∼= R(n− 1)

into Deligne-cohomology. We obtain

ρn : K2n−1(OF ) → K2n−1(OF )⊗Q→ (R(n− 1)X(F ))+,
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where complex conjugation acts on the set of embeddings and on the coefficients R(n−1)(See
[10, Neukirch’s article] for details). If τ is a complex conjugation of the embedding of F into
C and n is even, then for every a ∈ K2n−1(OF ), we have chn(τ(a)) = −chn(a). By Lemma
1, we can define the n-th motivic regulator map we shall consider is a homomorphism

ρM
n : H1

M (F,Z(n)) → H1
M (F,Z(n))⊗Q ∼= K2n−1(OF )⊗Q→ (R(n− 1)X(F ))+.

By Borel’s results and the fact that the Beilinson regulator map ρn is twice the Borel
regulator map, the kernel of ρM

n is torsion. The image of ρM
n therefore is a full lattice in

the real vectorspace (R(n− 1)X(F ))+ of dimension dn.We denote by Λ(F ) this lattice and
denote by RM

n (F ) the covolume of Λ(F ).
In other words, if a1, a2, · · · , adn

∈ H1
M (F,Z(n)) is a basis of H1

M (F,Z(n)), then
ρM

n (a1), ρM
n (a2), · · · ρM

n (adn
) ∈ (R(n− 1)X(F ))+ generate this lattice, so

RM
n (F ) = |det(chn(σj(ai))1≤i,j≤dn

)|,

where σi, i = 1, 2, · · · , dn are all infinite places of F when n is odd, all complex places of F

when n is even. In the rest of this section, we always assume that n is even.
2.1 Biquadratic fields

Let F/Q be a biquadratic extension with Galois group G =< σ1, σ2 >. Then H0 =<

σ1σ2 >, H1 =< σ1 > and H2 =< σ2 > are all cyclic non-trivial subgroups of G. For
i = 0, 1, 2 denote Fi := FHi . Hence we have the following Brauer-Kuroda relation:

ζF (s)ζQ(s)2 =
2∏

i=0

ζFi
(s). (4)

Assume that F/Q is a complex biquadratic and F0 is the real subfield. So σ1σ2 is the
complex conjugation. Consequently the two complex places of F are represented by 1 and
σ1. The lattices Λ(F1) and Λ(F2) are 1-dimensional. For i = 1, 2 let ai be a generator
of H1

M (Fi,Z(n))/tors. Hence RM
n (Fi) = |chn(ai)|. Obviously, the lattice Λ

′
generated by

ρM
n (a1) and ρM

n (a2) is a sublattice in Λ(F ), and has the covolume equal to the absolute
value of the determinant of the matrix

(
chn(a1) chn(σ1(a1))

chn(a2) chn(σ1(a2))

)
=

(
chn(a1) chn(a1)

chn(a2) −chn(a2)

)
.

Thus
covol(Λ

′
) = 2RM

n (F1)RM
n (F2). (5)

Denote by u(F, n) the torsion part of H1
M (F,Z(n)). We write U(F, n) = H1

M (F,Z(n)),
V (F, n) =

∏2
i=1 H1

M (Fi,Z(n)) and v(F, n) = u(F, n) ∩ V (F, n).

Proposition 1
RM

n (F )
RM

n (F1)RM
n (F2)

=
2(u(F, n) : v(F, n))
(U(F, n) : V (F, n))

.
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Proof It is easy to see that we have the following commutative diagram with exact rows

1 → v(F, n) → V (F, n) → ρM
n (V (F, n)) → 0

↓ ↓ f ↓
1 → u(F, n) → U(F, n) → ρM

n (U(F, n)) → 0

,

where the map f is induced by inclusions H1
M (Fi,Z(n)) ⊆ H1

M (F,Z(n)), for i = 1, 2. So, by
the snake Lemma, we see that

(U(F, n) : V (F, n)) = (u(F, n) : v(F, n))(ρM
n (U(F, n)) : ρM

n (V (F, n)))

since V (F, n) has finite index in U(F, n). Since ρM
n (V (F, n)) = Λ

′
is a sublattice of

ρM
n (U(F, n)) = Λ(F ), we have covol(Λ

′
) = RM

n (F )(ρM
n (U(F, n)) : ρM

n (V (F, n))). Thus
by (5),

RM
n (F )

RM
n (F1)RM

n (F2)
=

2(u(F, n) : v(F, n))
(U(F, n) : V (F, n))

.

Proposition 2
RM

n (F )
RM

n (F1)RM
n (F2)

= 1 or 2 or 1/2.

Proof Consider the commutative diagram

1 → v(F, n) → V (F, n) → V (F, n)/v(F, n) → 0

↓ ↓ f ↓ f

1 → u(F, n) → U(F, n) → U(F, n)/u(F, n) → 0

.

Since f is injective, the snake lemma, applied to the above diagram, implies that

(U(F, n) : V (F, n))
(u(F, n) : v(F, n))

= |cokerf |.

For every x ∈ U(F, n), we have x1+σi ∈ H1
M (Fi,Z(n))(i = 1, 2), xσ1+σ2 ∈ H1

M (F0,Z(n))
and x1+σ1+σ2+σ2σ2 ∈ H1

M (Q,Z(n)) by Lemma 2. We know that H1
M (F0,Z(n)) ⊆ u(F, n)

and H1
M (Q,Z(n)) ⊆ u(F, n) since Q and F0 are two totally real number fields. From the

following identity

x1+σ1x1+σ2x1+σ1+σ2+σ2σ2 = x2xσ1+σ2x1+σ1+σ2+σ2σ2 ,

we have x2 = x1+σ1x1+σ2 . That is, for every x ∈ U(F, n)/u(F, n) we have x2 ∈ im(f). Since
rkZ(H1

M (F,Z(n))) = 2, we have |coker(f)||4. By Proposition 1,

RM
n (F )

RM
n (F1)RM

n (F2)
= 1 or 2 or 1/2.
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Theorem 1 Let F be a complex biquadratic extension of Q with quadratic subfields F0, F1

and F2, where F0 is real. Then for n > 1 we have

hn(F )hn(Q)2∏2
i=0 hn(Fi)

= 1 or 2 or 1/2.

Proof Since F0 and Q are totally real number fields, we know that RM
n (F0) and RM

n (Q)
are trivial. By Proposition 2, the formulae (2) and (4), we have

hn(F )hn(Q)2∏2
i=0 hn(Fi)

=
wn(F )wn(Q)2∏2

i=0 wn(Fi)
or

wn(F )wn(Q)2

2
∏2

i=0 wn(Fi)
or

2wn(F )wn(Q)2∏2
i=0 wn(Fi)

.

Now, it is necessary to prove
wn(F )wn(Q)2∏2

i=0 wn(Fi)
= 1.

Let E be a number field. For every prime number p,

w(p)
n (E) := max{pv|Gal(E(ζpv )/E) has exponent dividing n}.

So it is easy to obtain wn(E) =
∏

p w
(p)
n (E) and the following statements:

(1) Let b be the maximal power of 2 dividing n. Then we have w
(2)
n (F1) = w

(2)
n (F2) =

w
(2)
n (Q) = 22+b and

w(2)
n (F ) = w(2)

n (F0) =

{
23+b,

√
2 ∈ F,

22+b, otherwise.

(2) For every odd prime number p, we have

w(p)
n (F ) = w(p)

n (F0) = w(p)
n (F1) = w(p)

n (F2) = w(p)
n (Q)

if F ∩Q(ζp) = Q. If F ∩Q(ζp) 6= Q, then F ∩Q(ζp) is a quadratic subfield of F . Assuming
F ∩Q(ζp) = F1, we have w

(p)
n (F ) = w

(p)
n (F1) and

w(p)
n (F0) = w(p)

n (F2) = w(p)
n (Q).

Therefore, we obtain wn(F )wn(Q)2/
∏2

i=0 wn(Fi) = 1.

Colloary 1 |K2(OF )| = ∏2
i=0 |K2(OFi

)|/2 or
∏2

i=0 |K2(OFi
)|/4 or

∏2
i=0 |K2(OFi

)|/8.

Proof By Lemma 1 (i), we have |K2(OE)| = h2(E) for every number field E. This result
follows from K2(Z) ∼= Z/2Z and Theorem 1.
2.2 The case of the dihedral Galois group

Now let l be an odd prime number. Let D denote the dihedral group of order 2l:

D = {< τ, σ > |τ l = σ2 = 1, στσ = τ−1}.
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Let F be a Galois extension of Q with the Galois group D. It has a unique quadratic subfield
k fixed by τ . Let K (resp. K

′
) be the subfield of F fixed by < σ > (resp. by < τ2σ >).

Assume that the field F is complex and σ is the complex conjugation. Then K is the
unique maximal real subfield of F . We have r2(F ) = l, r2(k) = 1 and r2(K) = r2(K

′
) =

(l−1)/2. Obviously, 1 is the complex place of k, and τ j , j = 0, 1, · · · , l−1 are complex places
of F . Since στ j = τ−jσ, we get that complex places of K are τ, τ2, · · · , τ t and complex
places of K

′
are 1, τ, τ2, · · · , τ t−1, where t = (l − 1)/2.

Now we describe lattices of the fields k, K and K
′
.

Let H1
M (k,Z(n)) be generated by b0 and H1

M (K,Z(n)) (resp. H1
M (K

′
,Z(n))) be gen-

erated by b1, b2, · · · , bt (resp. by bt+1, bt+2, · · · , b2t). Then RM
n (k) = |chn(b0)|,

RM
n (K) = |det(α1, α2, · · · , αt)|, where αj =




chn(τ j(b1))

· · ·
chn(τ j(bt)


 , j = 1, 2, · · · , t,

RM
n (K

′
) = |det(β1, β2, · · · , βt)|, where βj =




chn(τ t+j(bt+1))

· · ·
chn(τ t+j(b2t))


 , j = 1, 2, · · · , t.

Since the motivic cohomology group H1
M (k,Z(n)), H1

M (K,Z(n)), H1
M (K

′
,Z(n)) can

be mapped canonically into H1
M (F,Z(n)), the elements b0, b1, · · · , b2t defined above can be

considered as elements of H1
M (F,Z(n)). Therefore the lattice Λ

′
generated ρM

n (bj), j =
0, 1, · · · , 2t is a sublattice of the lattice Λ(F ). Consequently,

covol(Λ
′
) = |det




chn(b0) chn(τ(b0)) · · · chn(τ2t(b0))

chn(b1) chn(τ(b1)) · · · chn(τ2t(b1))

· · · · · · · · · · · ·
chn(b2t) chn(τ(b2t)) · · · ch2t

n (τ(b2t))



|.

The first row of this matrix is simply

(chn(b0), chn(τ(b0)), · · · , chn(τ2t(b0))) = chn(b0)(1, 1, · · · , 1).

The (j+1)st row, where 1 ≤ j ≤ t, is

(chn(bj), chn(τ(bj)), · · · , chn(τ2t(bj)))

= (0, chn(τ(bj)), · · · , chn(τ t(bj)), · · · ,−chn(τ t(bj)), · · · ,−chn(τ(bj))),

since τ i(bj) and τ l−i(bj) are complex conjugate, and bj is real.
The (j+1)st row, where t + 1 ≤ j ≤ 2t, is

(chn(bj), chn(τ(bj)), · · · , chn(τ2t(bj)))
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= (chn(bj), chn(τ(bj)), · · · , chn(τ t−1(bj)), · · · ,−chn(τ t−1(bj)), · · · ,−chn(τ(bj)), 0)

since τ i(bj) and τ2t−i−1(bj) are complex conjugate, and τ l−1(bj) is real.
Hence, by [5, Lemma 1], we have

covol(Λ
′
) = |chn(b0)||det




1 1 · · · 1 1 1 · · · 1 1

0 α1 · · · αt−1 αt −αt · · · −α2 −α1

β1 β2 · · · βt −βt −βt−1 · · · −β1 0


 |

= lRM
n (k)RM

n (K)RM
n (K

′
).

Since K and K
′
are isomorphic, they have the same regulators. So we have

covol(Λ
′
) = lRM

n (k)RM
n (K)2. (6)

Proposition 3 Let F be a complex Galois extension of Q with the dihedral Galois group
D. Let k be the unique quadratic subfield of F and K (resp. K

′
) the subfield of F fixed by

< σ > (resp. by < τ2σ >). Then we have

RM
n (F )

RM
n (k)RM

n (K)2
=

l(u(F, n) : v(F, n))
(H1

M (F,Z(n)) : V (F, n))
,

where V (F, n) = H1
M (k,Z(n))H1

M (K,Z(n))H1
M (K

′
,Z(n)), u(F, n) is the torsion part of

H1
M (F,Z(n)) and v(F, n) = u(F, n) ∩ V (F, n).

Proof The proof is the same as that of Proposition 1.

Theorem 2 With notations as in Proposition 3, we have

hn(F )hn(Q)2

hn(k)hn(K)2
=

(H1
M (F,Z(n)) : V (F, n))
l(u(F, n) : v(F, n))

.

Proof By [6, Lemma 1.1], we have wn(F ) = wn(k) and wn(K) = wn(Q). This result
follows from the Brauer-Kuroda relation ζF (s)ζQ(s)2 = ζk(s)ζK(s)2, the formula (2) and
Proposition 3.

Proposition 4 With notations as in Proposition 3, if l = 3, we have

hn(F )hn(Q)2

hn(k)hn(K)2
= 1/3 or 1 or 3 or 9.

Proof Consider the commutative diagram

1 → v(F, n) → V (F, n) → V (F, n)/v(F, n) → 0

↓ ↓ f ↓ f

1 → u(F, n) → H1
M (F,Z(n)) → H1

M (F,Z(n))/u(F, n) → 0

.
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Since f is injective, the snake lemma, applied to the above diagram, implies that

(H1
M (F,Z(n)) : V (F, n))
(u(F, n) : v(F, n))

= |cokerf |.

For every x ∈ H1
M (F,Z(n)), we have x1+σ ∈ H1

M (K,Z(n)),x1+στ ∈ H1
M (K

′
,Z(n)), x1+τ+τ2 ∈

H1
M (k,Z(n)) and x1+σ+τ+τ2+στ+τσ ∈ H1

M (Q,Z(n)) by Lemma 2. Since Q is a totally real
number field, we know that H1

M (Q,Z(n)) ⊆ u(F, n). It is easy to verify the following iden-
tities

1 + τσ = (1 + σ)(1 + τσ)− σ − τ2,

(στ)(σ + τ2) = σ + τ2.

So xσ+τ2 ∈ H1
M (K

′
,Z(n)).

Hence
x3x1+σ+τ+τ2+στ+τσ = x1+σx1+τ+τ2

x1+στx1+τσ

= x(1+σ)(2+τσ)x1+τ+τ2
x1+στ−σ−τ2

.

we have x3 = x(1+σ)(2+τσ)x1+τ+τ2x1+στ−σ−τ2 . That is, for every x ∈ H1
M (F,Z(n))/u(F, n)

we have x3 ∈ im(f). Since rkZ(H1
M (F,Z(n))) = 3, we have |coker(f)||27. By Theorem 2,

hn(F )hn(Q)2

hn(k)hn(K)2
= 1/3 or 1 or 3 or 9.

Colloary 2 Let K = Q( 3
√

m) and F = K(ζ3), where m is a cubefree integers not equal 1
and −1, ζ3 is a primitive cube root of unity. Then

|K2(OF )| = |K2(OK)|2/12 or |K2(OK)|2/4 or 3|K2(OK)|2/4 or 9|K2(OK)|2/4.

Proof By Lemma 1 (i), we have |K2(OE)| = h2(E) for every number field E. Since
k = Q(ζ3), we know that K2(Ok) is trivial by results of Browkin and Gangl in [4]. This
result follows from K2(Z) ∼= Z/2Z and Proposition 4.
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