UNCERTAINTY PRINCIPLE IN TERMS OF ENTROPY FOR THE RIEMANN-LIOUVILLE OPERATOR

BESMA AMRI AND LAKHDAR T. RACHDI

ABSTRACT. We prove Hausdorff-Young inequality for the Fourier transform connected with Riemann-Liouville operator. We use this inequality to establish the uncertainty principle in terms of entropy. Next, we show that we can derive the Heisenberg-Pauli-Weyl inequality for the precedent Fourier transform.

1. INTRODUCTION

Uncertainty principles play an important role in harmonic analysis, they state that a function f and its Fourier transform \hat{f} can not be simultaneously sharply localized in the sense that it is impossible for a nonzero function and its Fourier transform to be simultaneously small.

Many mathematical formulations of this fact can be found in [6, 9, 10, 16, 17, 25]. For a probability density function f on \mathbb{R}^n , the entropy of f is defined according to [29] by

$$\mathsf{E}(\mathsf{f}) = -\int_{\mathbb{R}^n} \mathsf{f}(\mathsf{x}) \ \ln\big(\mathsf{f}(\mathsf{x})\big) d\mathsf{x}.$$

The entropy E(f) is closely related to quantum mechanics [7] and constitutes one of the important way to measure the concentration of f.

The uncertainty principle in terms of entropy consists to compare the entropy of $|\mathbf{f}|^2$ with that of $|\hat{\mathbf{f}}|^2$. A first result has been given in [21], where the author has established a weak version of this uncertainty principle by showing that for every square integrable function \mathbf{f} on \mathbb{R}^n with respect to the Lebesgue measure, such that $||\mathbf{f}||_2 = 1$, we have

$$E(|f|^2) + E(|\hat{f}|^2) \ge 0.$$
 (1.1)

Later in [5], the author has proved the following stronger inequality, that is for every square integrable function f on \mathbb{R}^n ; $||f||_2 = 1$,

$$\mathsf{E}(|\mathsf{f}|^2) + \mathsf{E}(|\hat{\mathsf{f}}|^2) \geq \mathsf{n}(1 - \ln(2)).$$
(1.2)

²⁰¹⁰ Mathematics Subject Classification. 42A38, 43-XX.

Key words and phrases. Riemann-Liouville operator, Fourier transform, Hausdorff-Young inequality, entropy uncertainty principle, Heisenberg-Pauli-Weyl inequality.

The last inequality constitutes a very powerful result which implies in particular the well known Heisenberg-Pauli-Weyl uncertainty principle.

In [1], the authors have defined the Riemann-Liouville operator \mathscr{R}_{α} ; $\alpha \ge 0$, by

$$\mathscr{R}_{\alpha}(f)(\mathbf{r},\mathbf{x}) = \begin{cases} \frac{\alpha}{\pi} \int_{-1}^{1} \int_{-1}^{1} f(\mathbf{r}s\sqrt{1-t^{2}},\mathbf{x}+\mathbf{r}t)(1-t^{2})^{\alpha-1/2} \\ \times (1-s^{2})^{\alpha-1} \, dt \, ds, \text{ if } \alpha > 0, \\ \frac{1}{\pi} \int_{-1}^{1} f(\mathbf{r}\sqrt{1-t^{2}},\mathbf{x}+\mathbf{r}t) \frac{dt}{\sqrt{1-t^{2}}}, \text{ if } \alpha = 0; \end{cases}$$
(1.3)

where f is any continuous function on \mathbb{R}^2 , even with respect to the first variable. The dual ${}^t\mathscr{R}_{\alpha}$ is defined by

$${}^{t}\mathscr{R}_{\alpha}(g)(\mathbf{r}, \mathbf{x}) = \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{2^{\alpha} \Gamma(\alpha+1)} \int_{\mathbf{r}}^{+\infty} \int_{-\sqrt{u^{2}-r^{2}}}^{\sqrt{u^{2}-r^{2}}} g(\mathbf{u}, \mathbf{x}+\mathbf{v}) \\ \times (\mathbf{u}^{2} - \mathbf{v}^{2} - \mathbf{r}^{2})^{\alpha-1} \mathbf{u} \ d\mathbf{u} \ d\mathbf{v}, \text{ if } \alpha > 0, \\ \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(\sqrt{r^{2} + (\mathbf{x}-\mathbf{y})^{2}}, \mathbf{y}) d\mathbf{y}, \text{ if } \alpha = 0; \end{cases}$$
(1.4)

where g is any continuous function on \mathbb{R}^2 , even with respect to the first variable and with compact support.

In particular, for $\alpha = 0$ and by a change of variables, we get

$$\mathscr{R}_{0}(f)(\mathbf{r},\mathbf{x}) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\mathbf{r}\cos\theta,\mathbf{x}+\mathbf{r}\sin\theta)d\theta.$$

This means that $\mathscr{R}_0(f)(r, x)$ is the mean value of f on the circle centered at (0, x) and radius r.

The mean operator \mathscr{R}_0 and its dual ${}^{t}\mathscr{R}_0$ play an important role and have many applications, for example, in image processing of the so-called synthetic aperture radar (SAR) data [19, 20] or in the linearized inverse scattering problem in acoustics [13].

The operators \mathscr{R}_{α} and its dual ${}^{t}\mathscr{R}_{\alpha}$ have the same properties as the Radon transform [18], for this reason, \mathscr{R}_{α} is called sometimes the generalized Radon transform. The Fourier transform \mathscr{F}_{α} associated with the operator \mathscr{R}_{α} is defined by

$$\begin{aligned} \forall (\mu, \lambda) \in \Upsilon, \ \mathscr{F}_{\alpha}(f) &= \int_{0}^{\infty} \int_{\mathbb{R}} f(r, x) \mathscr{R}_{\alpha} \big(\cos(\mu \cdot) e^{-i\lambda \cdot} \big)(r, x) d\nu_{\alpha}(r, x) \quad (1.5) \\ &= \int_{0}^{\infty} \int_{\mathbb{R}} f(r, x) \ \mathfrak{j}_{\alpha}(r\sqrt{\mu^{2} + \lambda^{2}}) e^{-i\lambda x} \big)(r, x) d\nu_{\alpha}(r, x), \end{aligned}$$

where

• Υ is the set given by

$$\Upsilon = \mathbb{R}^2 \cup \{(i\mu, \lambda); \ (\mu, \lambda) \in \mathbb{R}^2; \ |\mu| \leq |\lambda|\}.$$
(1.6)

• $d\nu_{\alpha}(\mathbf{r}, \mathbf{x})$ is the measure defined on $[0, +\infty[\times\mathbb{R} \text{ by}]$

$$d\nu_{\alpha}(r,x)=\frac{r^{2\alpha+1}dr}{2^{\alpha}\Gamma(\alpha+1)}\otimes\frac{dx}{\sqrt{2\pi}}.$$

. j_{α} is the modified Bessel function that will be defined in the second section.

Many harmonic analysis results have been established for the Fourier transform \mathscr{F}_{α} [1, 2, 3, 28]. Also, many uncertainty principles related to the Fourier transform \mathscr{F}_{α} have been proved [23, 26, 27].

Our purpose in this work is to establish the uncertainty principle in terms of entropy for the Fourier transform \mathscr{F}_{α} , from which we derive the Heisenberg-Pauli-Weyl uncertainty principle.

More precisely, we prove first the following Hausdorff-Young inequality

Theorem 1.1. (Hausdorff-Young) The Fourier transform \mathscr{F}_{α} can be extended to a continuous operator from $L^{p}(d\nu_{\alpha})$; $p \in [1,2]$, into $L^{p'}(d\gamma_{\alpha})$; p' = p/(p-1), and for every $f \in L^p(d\nu_{\alpha})$,

$$\left|\left|\mathscr{F}_{\alpha}(f)\right|\right|_{p',\gamma_{\alpha}} \leqslant A_{p}^{\alpha+3/2} \|f\|_{p,\gamma_{\alpha}}.$$

Where 1

Where

$$A_p = \frac{p^{1/p}}{p'^{1/p'}} = \frac{p^{1/p}}{\left(\frac{p}{p-1}\right)^{(p-1)/p}}.$$

 $L^{p}(d\nu_{\alpha}); p \in [1, +\infty]$, is the Lebesgue space formed by the measurable functions f on $[0, +\infty[\times\mathbb{R} \text{ such that } ||f||_{p,\nu_{\alpha}} < +\infty$, with

$$\|f\|_{p,\nu_{\alpha}} = \begin{cases} \left(\int_{0}^{+\infty} \int_{\mathbb{R}} \left| f(r,x) \right|^{p} d\nu_{\alpha}(r,x) \right)^{1/p}, & \text{if } p \in [1,+\infty[,\\ \underset{(r,x)\in [0,+\infty[\times\mathbb{R}]}{\text{ess sup}} \left| f(r,x) \right|, & \text{if } p = +\infty. \end{cases}$$

. $L^p(d\gamma_{\alpha}); p \in [1, +\infty]$, is the Lebesgue space of measurable functions g on the set

$$\Upsilon_{+} = \mathbb{R}_{+} \times \mathbb{R} \cup \big\{ (\mathfrak{i}\mathfrak{t}, \mathfrak{x}); \ (\mathfrak{t}, \mathfrak{x}) \in \mathbb{R}^{2}; \ \mathfrak{0} \leqslant \mathfrak{t} \leqslant |\mathfrak{x}| \big\},$$

such that

$$\|g\|_{p,\gamma_{\alpha}} = \begin{cases} \left(\iint_{\gamma_{+}} \left| g(\mu,\lambda) \right|^{p} d\gamma_{\alpha}(\mu,\lambda) \right)^{1/p} < +\infty, & \text{if } p \in \ [1,+\infty[;\\ \underset{(\mu,\lambda) \in \ \gamma_{+}}{\text{ess sup}} \left| g(\mu,\lambda) \right| < +\infty, & \text{if } p = +\infty, \end{cases}$$

where $d\gamma_{\alpha}$ is the Plancherel measure on γ_+ that will be defined in the second section.

Using Theorem 1.1, we will demonstrate the main result of this paper, that is

Theorem 1.2. (Entropy) Let $f \in L^2(d\nu_{\alpha})$ such that $||f||_{2,\nu_{\alpha}} = 1$. We assume that

$$\int_{0}^{\infty}\int_{\mathbb{R}}\left|f(r,x)\right|^{2}\,\Big|\ln\big(\big|f(r,x)\big|\big)\Big|d\nu_{\alpha}(r,x)<+\infty,$$

and

$$\int\!\int_{\gamma_+} \left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|^2 \, \Big| \ln \left(\left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right| \right) \Big| d\gamma_{\alpha}(\mu,\lambda) < +\infty.$$

Then, we have

$$\mathsf{E}_{\nu_{\alpha}}(|\mathsf{f}|^{2}) + \mathsf{E}_{\gamma_{\alpha}}(|\mathscr{F}_{\alpha}(\mathsf{f})|^{2}) \ge (2\alpha + 3)(1 - \ln 2),$$

where $E_{\nu_{\alpha}}(|f|^2)$ (respectively $E_{\gamma_{\alpha}}(|\mathscr{F}_{\alpha}(f)|^2)$) is the entropy of $|f|^2$ (respectively $|\mathscr{F}_{\alpha}(f)|^2$).

Theorem 1.2 allows us to prove the Heisenberg-Pauli-Weyl inequality.

Theorem 1.3. (Heisenberg-Pauli-Weyl) For every function $f \in L^2(d\nu_\alpha),$ we have

$$\begin{split} & \Big(\int_{o}^{\infty}\int_{\mathbb{R}}(r^{2}+x^{2})\big|f(r,x)\big|^{2}d\nu_{\alpha}(r,x)\Big)^{1/2}\Big(\int\int_{\gamma_{+}}(\mu^{2}+2\lambda^{2})\big|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\big|^{2}d\gamma_{\alpha}(\mu,\lambda)\Big)^{1/2} \\ & \geqslant \big(\alpha+3/2\big)\|f\|_{2,\nu_{\alpha}}^{2}. \end{split}$$

2. The Riemann-Liouville transform

In this section, we recall some harmonic analysis results related to the convolution product and the Fourier transform associated with Riemann-Liouville operator. For more details see [1, 2, 3, 28].

Let D and Ξ be the singular partial differential operators defined by

$$\begin{cases} D = \frac{\partial}{\partial x}; \\ \Xi = \frac{\partial^2}{\partial r^2} + \frac{2\alpha + 1}{r} \frac{\partial}{\partial r} - \frac{\partial^2}{\partial x^2}; \quad (r, x) \in]0, +\infty[\times \mathbb{R}, \ \alpha \ge 0. \end{cases}$$

The partial differential operators D and Ξ satisfy the intertwining properties with the Riemann-Liouville operator and its dual

$${}^{t}\mathscr{R}_{\alpha}\Xi(f) = \frac{\partial^{2}}{\partial r^{2}} {}^{t}\mathscr{R}_{\alpha}(f), \qquad {}^{t}\mathscr{R}_{\alpha}D(f) = D {}^{t}\mathscr{R}_{\alpha}(f),$$
$$\Xi\mathscr{R}_{\alpha}(f) = \mathscr{R}_{\alpha}\frac{\partial^{2}}{\partial r^{2}}(f), \qquad D\mathscr{R}_{\alpha}(f) = \mathscr{R}_{\alpha}D(f),$$

where f is a sufficiently smooth function.

On the other hand, for all $(\mu, \lambda) \in \mathbb{C}^2$, the system

$$\begin{cases} \operatorname{Du}(\mathbf{r}, \mathbf{x}) = -i\lambda \mathbf{u}(\mathbf{r}, \mathbf{x});\\ \Xi \mathbf{u}(\mathbf{r}, \mathbf{x}) = -\mu^2 \mathbf{u}(\mathbf{r}, \mathbf{x});\\ \mathbf{u}(\mathbf{0}, \mathbf{0}) = \mathbf{1}, \quad \frac{\partial \mathbf{u}}{\partial \mathbf{r}}(\mathbf{0}, \mathbf{x}) = \mathbf{0}; \ \forall \mathbf{x} \in \ \mathbb{R}, \end{cases}$$

admits a unique solution $\phi_{\mu,\lambda}$ given by

$$\forall (\mathbf{r}, \mathbf{x}) \in [0, +\infty[\times\mathbb{R}, \quad \varphi_{\mu,\lambda}(\mathbf{r}, \mathbf{x}) = j_{\alpha}(\mathbf{r}\sqrt{\mu^{2} + \lambda^{2}}) e^{-i\lambda \mathbf{x}}, \qquad (2.1)$$

where j_{α} is the modified Bessel function defined by

$$\mathfrak{j}_{\alpha}(z)=2^{\alpha}\Gamma(\alpha+1)\frac{J_{\alpha}(z)}{z^{\alpha}}=\Gamma(\alpha+1)\sum_{k=0}^{+\infty}\frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}\left(\frac{z}{2}\right)^{2k},$$

and J_α is the Bessel function of first kind and index α [11, 12, 24, 32] . The modified Bessel function j_α has the integral representation

$$j_{\alpha}(z) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} \int_{-1}^{1} (1-t^2)^{\alpha-1/2} \exp(-izt) dt.$$
(2.2)

Consequently, for every $k \in \mathbb{N}$ and $z \in \mathbb{C}$, we have

$$\left|\mathbf{j}_{\alpha}^{(k)}(z)\right| \leqslant e^{|\mathrm{Im}(z)|}. \tag{2.3}$$

The eigenfunction $\phi_{\mu,\lambda}$ satisfies the following properties

• The function $\varphi_{\mu,\lambda}$ is bounded on \mathbb{R}^2 if, and only if $(\mu,\lambda) \in \Upsilon$, where Υ is the set defined by relation (1.6), and in this case

$$\sup_{(\mathbf{r},\mathbf{x})\in\mathbb{R}^2} |\varphi_{\mu,\lambda}(\mathbf{r},\mathbf{x})| = 1.$$
(2.4)

. The function $\phi_{\mu,\lambda}$ has the following Mehler integral representation

$$\label{eq:phi_alpha} \phi_{\mu,\lambda}(r,x) = \begin{cases} \displaystyle \frac{\alpha}{\pi} \int_{-1}^{1} \int_{-1}^{1} \cos\left(\mu r s \sqrt{1-t^2}\right) \exp\left(-i\lambda(x+rt)\right) \\ \times (1-t^2)^{\alpha-1/2} (1-s^2)^{\alpha-1} dt ds; & \text{if } \alpha > 0, \\ \displaystyle \frac{1}{\pi} \int_{-1}^{1} \cos\left(r \mu \sqrt{1-t^2}\right) \exp\left(-i\lambda(x+rt)\right) \\ \times \frac{dt}{\sqrt{1-t^2}}, & \text{if } \alpha = 0. \end{cases}$$

. The precedent integral representation of the eigenfunction $\phi_{\mu,\lambda}$ and relation (1.3) show that

$$\forall (r,x) \in \ [0,+\infty[\times \mathbb{R}, \quad \phi_{\mu,\ \lambda}(r,x) = \mathscr{R}_{\alpha}\big(\cos(\mu \cdot)e^{-i\lambda \cdot}\big)(r,x).$$

The eigenfunction $\varphi_{\mu,\lambda}$ satisfies the product formula

$$\varphi_{\mu,\lambda}(\mathbf{r},\mathbf{x})\varphi_{\mu,\lambda}(\mathbf{s},\mathbf{y}) = \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} \int_0^{\pi} \varphi_{\mu,\lambda} \left(\sqrt{\mathbf{r}^2 + \mathbf{s}^2 + 2\mathbf{r}\mathbf{s}\cos\theta}, \mathbf{x} + \mathbf{y}\right) \sin^{2\alpha}\theta d\theta.$$

This formula allows us to define the translation operators and the convolution product.

Definition 2.1. i) For every $(r, x) \in [0, +\infty[\times\mathbb{R}, \text{the translation operator } \tau_{(r,x)}]$ associated with Riemann-Liouville operator is defined on $L^p(d\nu_{\alpha})$; $p \in [1, +\infty]$, by

$$\begin{aligned} &\tau_{(\mathbf{r},\mathbf{x})} \mathbf{f}(\mathbf{s},\mathbf{y}) \\ &= \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+1/2)} \int_0^{\pi} \mathbf{f} \left(\sqrt{\mathbf{r}^2 + \mathbf{s}^2 + 2\mathbf{r}\mathbf{s}\cos\theta}, \mathbf{x} + \mathbf{y} \right) \sin^{2\alpha}(\theta) d\theta. \end{aligned} \tag{2.5}$$

ii) The convolution product of $f,g\in L^1(d\nu_\alpha)$ is defined for every $(r,x)\in [0,+\infty[\times\mathbb{R},$ by

$$f * g(\mathbf{r}, \mathbf{x}) = \int_{0}^{+\infty} \int_{\mathbb{R}} \tau_{(\mathbf{r}, -\mathbf{x})}(\check{f})(s, \mathbf{y}) g(s, \mathbf{y}) d\nu_{\alpha}(s, \mathbf{y}), \qquad (2.6)$$

where $\check{f}(s, y) = f(s, -y)$.

The set $[0, +\infty[\times\mathbb{R}]$ equipped with the convolution product * is an hypergroup in the sense of [8].

Moreover, we have the following properties

. The eigenfunction $\phi_{\mu,\lambda}$ satisfies the product formula

$$\tau_{(\mathbf{r},\mathbf{x})}(\phi_{\mu,\lambda})(s,\mathbf{y}) = \phi_{\mu,\lambda}(\mathbf{r},\mathbf{x})\phi_{\mu,\lambda}(s,\mathbf{y}).$$

• For every $f \in L^p(d\nu_{\alpha})$; $1 \leq p \leq +\infty$, and for every $(r, x) \in [0, +\infty[\times\mathbb{R}, \text{the function } \tau_{(r,x)}(f) \text{ belongs to } L^p(d\nu_{\alpha}) \text{ and we have}$

$$\left|\left|\boldsymbol{\tau}_{(\mathbf{r},\mathbf{x})}(\mathbf{f})\right|\right|_{\mathbf{p},\mathbf{v}_{\alpha}} \leqslant \|\mathbf{f}\|_{\mathbf{p},\mathbf{v}_{\alpha}}.$$
(2.7)

. For every $f \in L^1(d\nu_\alpha)$ and $(r,x) \in [0,+\infty[\times\mathbb{R},$

$$\int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(r,x)}(f)(s,y) d\nu_{\alpha}(s,y) = \int_{0}^{\infty} \int_{\mathbb{R}} f(s,y) d\nu_{\alpha}(s,y).$$
(2.8)

. For every $f\in\ L^p(d\nu_\alpha);\ p\in\ [1,+\infty[,$ we have

$$\lim_{(\mathbf{r},\mathbf{x})\to(0,0)} \left| \left| \tau_{(\mathbf{r},\mathbf{x})}(\mathbf{f}) - \mathbf{f} \right| \right|_{\mathbf{p}} = \mathbf{0} .$$
 (2.9)

$$\int_{0}^{+\infty}\int_{\mathbb{R}}\phi(\mathbf{r},\mathbf{x})d\nu_{\alpha}(\mathbf{r},\mathbf{x})=1.$$

Then by the relation (2.9), the sequence $(\varphi_k)_{k \in \mathbb{N}^*}$ defined by

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}, \ \phi_k(r,x) = k^{2\alpha+3} \phi(kr,kx)$$

is an approximation of the identity in $L^{p}(d\nu_{\alpha})$; $p \in [1, +\infty[$, that is for every $f \in L^{p}(d\nu_{\alpha})$, we have

$$\lim_{k \to +\infty} \left| \left| \varphi_k * f - f \right| \right|_{p, \nu_{\alpha}} = 0.$$
 (2.10)

• For f, $g \in L^1(d\nu_{\alpha})$, the function f * g belongs to $L^1(d\nu_{\alpha})$, the convolution product is commutative, associative and we have

$$\|f \ast g\|_{1,\nu_{\alpha}} \leqslant \|f\|_{1,\nu_{\alpha}} \|g\|_{1,\nu_{\alpha}}.$$

Moreover, if $1 \leq p, q, r \leq +\infty$ are such that 1/r = 1/p + 1/q - 1 and if $f \in L^p(d\nu_{\alpha})$, $g \in L^q(d\nu_{\alpha})$, then the function f * g belongs to $L^r(d\nu_{\alpha})$, and we have the Young's inequality

$$\|\mathbf{f} * \mathbf{g}\|_{\mathbf{r}, \mathbf{v}_{\alpha}} \leqslant \|\mathbf{f}\|_{\mathbf{p}, \mathbf{v}_{\alpha}} \|\mathbf{g}\|_{\mathbf{q}, \mathbf{v}_{\alpha}}.$$

$$(2.11)$$

In the sequel, we need the following notations

. \mathscr{B}_{Υ_+} is the $\sigma\text{-algebra defined on }\Upsilon_+$ by

$$\mathscr{B}_{\Upsilon_{+}} = \big\{ \theta^{-1}(B), \ B \in \ \mathscr{B}_{\mathrm{Or}} \big([0, +\infty[\times \mathbb{R}) \big\}, \big)$$

where θ is the bijective function defined on the set Υ_+ by

$$\theta(\mu, \lambda) = (\sqrt{\mu^2 + \lambda^2}, \lambda),$$
(2.12)

and $\mathscr{B}_{\mathrm{Or}}([0, +\infty[\times\mathbb{R})])$ is the usual Borel σ -algebra on $[0, +\infty[\times\mathbb{R}])$.

. $d\gamma_{\alpha}$ is the measure defined on $\mathscr{B}_{\gamma_{+}}$ by

$$orall A\in \ \mathscr{B}_{\Upsilon_{+}}, \ \gamma_{lpha}(A)=
u_{lpha}ig(heta(A)ig).$$

Proposition 2.2. i. For all nonnegative measurable function g on Υ_+ , we have

$$\begin{split} & \int \int_{\gamma_{+}} g(\mu,\lambda) d\gamma_{\alpha}(\mu,\lambda) \\ &= \frac{1}{2^{\alpha} \Gamma^{(}\alpha+1) \sqrt{2\pi}} \Big(\int_{0}^{+\infty} \int_{\mathbb{R}} g(\mu,\lambda) (\mu^{2}+\lambda^{2})^{\alpha} \mu d\mu d\lambda \\ &+ \int_{\mathbb{R}} \int_{0}^{|\lambda|} g(i\mu,\lambda) (\lambda^{2}-\mu^{2})^{\alpha} \mu d\mu d\lambda \Big) \; . \end{split}$$

ii. For all nonnegative measurable function f on [0, +∞[×ℝ (respectively integrable on [0, +∞[×ℝ with respect to the measure dv_α), f ∘ θ is a nonnegative measurable function on Y₊ (respectively integrable on Y₊ with respect to the measure dγ_α) and we have

$$\iint_{\Upsilon_{+}} (f \circ \theta)(\mu, \lambda) d\gamma_{\alpha}(\mu, \lambda) = \int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) d\nu_{\alpha}(r, x).$$
(2.13)

Now, using the eigenfunction $\varphi_{\mu,\lambda}$ given by the relation (2.1), we can define the Fourier transform.

Definition 2.3. The Fourier transform associated with the Riemann-Liouville operator is defined on $L^1(d\nu_{\alpha})$ by

$$\forall (\mu, \lambda) \in \Upsilon, \qquad \mathscr{F}_{\alpha}(f)(\mu, \lambda) = \int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) \varphi_{\mu, \lambda}(r, x) d\nu_{\alpha}(r, x).$$

We have the following properties

• From the relation (2.4), we deduce that for $f \in L^1(d\nu_{\alpha})$, the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^{\infty}(d\gamma_{\alpha})$ and we have

$$\left|\left|\mathscr{F}_{\alpha}(\mathsf{f})\right|\right|_{\infty,\gamma_{\alpha}} \leqslant \|\mathsf{f}\|_{1,\gamma_{\alpha}}.$$
(2.14)

• For $f \in L^1(d\nu_{\alpha})$, we have

$$\forall (\mu, \lambda) \in \Upsilon, \qquad \mathscr{F}_{\alpha}(f)(\mu, \lambda) = \widetilde{\mathscr{F}}_{\alpha}(f) \circ \theta(\mu, \lambda), \qquad (2.15)$$

where for every $(\mu, \lambda) \in \mathbb{R}^2$,

$$\widetilde{\mathscr{F}}_{\alpha}(f)(\mu,\lambda) = \int_{0}^{+\infty} \int_{\mathbb{R}} f(r,x) \mathfrak{j}_{\alpha}(r\mu) \exp(-i\lambda x) d\nu_{\alpha}(r,x), \qquad (2.16)$$

and θ is the function defined by the relation (2.12).

• Let $f \in L^{1}(d\nu_{\alpha})$ such that the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^{1}(d\gamma_{\alpha})$, then we have the following inversion formula for \mathscr{F}_{α} , for almost every $(\mathbf{r}, \mathbf{x}) \in [0, +\infty[\times\mathbb{R},$

$$f(\mathbf{r},\mathbf{x}) = \iint_{\gamma_{+}} \mathscr{F}_{\alpha}(f)(\mu,\lambda) \overline{\varphi_{\mu,\lambda}(\mathbf{r},\mathbf{x})} d\gamma_{\alpha}(\mu,\lambda).$$
(2.17)

• Let $f \in L^1(d\nu_{\alpha})$. For every $(r, x) \in [0, +\infty[\times\mathbb{R}, \text{ we have }$

$$\forall (\mu, \lambda) \in \Upsilon, \qquad \mathscr{F}_{\alpha} \big(\tau_{(r, x)}(f) \big) (\mu, \lambda) = \overline{\phi_{\mu, \lambda}(r, x)} \mathscr{F}_{\alpha}(f)(\mu, \lambda).$$

• For $f, g \in L^1(d\nu_{\alpha})$, we have

$$\forall (\mu, \lambda) \in \Upsilon, \qquad \mathscr{F}_{\alpha}(f \ast g)(\mu, \lambda) = \mathscr{F}_{\alpha}(f)(\mu, \lambda) \mathscr{F}_{\alpha}(g)(\mu, \lambda).$$

• Let $p \in [1, +\infty]$. From the relation (2.13), the function f belongs to $L^{p}(d\nu_{\alpha})$ if, and only if the function $f \circ \theta$ belongs to the space $L^{p}(d\gamma_{\alpha})$ and we have

$$\left|\left|\mathbf{f}\circ\boldsymbol{\theta}\right|\right|_{\mathbf{p},\boldsymbol{\gamma}_{\alpha}} = \|\mathbf{f}\|_{\mathbf{p},\boldsymbol{\nu}_{\alpha}}.$$
(2.18)

Since the mapping $\widetilde{\mathscr{F}}_{\alpha}$ is an isometric isomorphism from $L^2(d\nu_{\alpha})$ onto itself [22], then the relations (2.15) and (2.18) show that the Fourier transform \mathscr{F}_{α} is an isometric isomorphism from $L^2(d\nu_{\alpha})$ into $L^2(d\gamma_{\alpha})$. Namely, for every $f \in L^2(d\nu_{\alpha})$, the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^2(d\gamma_{\alpha})$ and we have

$$\left|\left|\mathscr{F}_{\alpha}(\mathsf{f})\right|\right|_{2,\gamma_{\alpha}} = \||\mathsf{f}\|_{2,\gamma_{\alpha}}.$$
(2.19)

• Using the relations (2.14), (2.19) and the Riesz-Thorin theorem's [30, 31], we deduce that for every $f \in L^{p}(d\nu_{\alpha})$; $p \in [1, 2]$, the function $\mathscr{F}_{\alpha}(f)$ lies in $L^{p'}(d\gamma_{\alpha})$; p' = p/(p-1), and we have

$$\left|\left|\mathscr{F}_{\alpha}(\mathsf{f})\right|\right|_{\mathfrak{p}',\gamma_{\alpha}} \leqslant \|\mathsf{f}\|_{\mathfrak{p},\nu_{\alpha}}.$$
(2.20)

However, the inequality (2.20) is not optimal and we have

Theorem 2.4. (Hausdorff-Young) The Fourier transform \mathscr{F}_{α} can be extended to a continuous operator from $L^{p}(d\nu_{\alpha})$; $p \in [1,2]$, into $L^{p'}(d\gamma_{\alpha})$; p' = p/(p-1), and for every $f \in L^{p}(d\nu_{\alpha})$,

$$\left|\left|\mathscr{F}_{\alpha}(\mathsf{f})\right|\right|_{\mathfrak{p}',\gamma_{\alpha}} \leqslant A_{\mathfrak{p}}^{\alpha+3/2} \||\mathsf{f}\|_{\mathfrak{p},\nu_{\alpha}}, \qquad (2.21)$$

where $A_p = \frac{p^{1/p}}{p'^{1/p'}} = \frac{p^{1/p}}{\left(\frac{p}{p-1}\right)^{(p-1)/p}}$ is the Babenko-Beckner constant.

Proof. Let \mathscr{H}_{α} be the Hankel transform with respect to the first variable defined by

$$\mathscr{H}_{\alpha}(f)(\mathbf{r},\mathbf{x}) = \int_{0}^{\infty} f(s,\mathbf{x}) \mathbf{j}_{\alpha}(\mathbf{r}s) d\omega_{\alpha}(s),$$

where $d\omega_{\alpha}$ is the measure defined on $[0, +\infty)$ by

$$\mathrm{d}\omega_{\alpha}(s) = rac{1}{2^{lpha}\Gamma(lpha+1)} \; s^{2lpha+1} \mathrm{d}s.$$

Then, for every $f \in L^p(d\nu_{\alpha})$ and for almost every $x \in \mathbb{R}$, the function f(.,x) belongs to $L^p(d\omega_{\alpha})$ and from [14], we get

$$\left(\int_{0}^{\infty} \left|\mathscr{H}_{\alpha}(f)(\mathbf{r}, \mathbf{x})\right|^{p'} d\omega_{\alpha}(\mathbf{r})\right)^{1/p'} \leqslant A_{p}^{\alpha+1} \left(\int_{0}^{\infty} \left|f(\mathbf{r}, \mathbf{x})\right|^{p} d\omega_{\alpha}(\mathbf{r})\right)^{1/p}. (2.22)$$

Also, we define the usual Fourier transform with respect to the second variable by setting

$$\Lambda(f)(\mathbf{r},\mathbf{x}) = \int_{\mathbb{R}} f(\mathbf{r},\mathbf{y}) \ e^{-i\mathbf{x}\mathbf{y}} d\mathbf{m}(\mathbf{y}),$$

where dm is the measure defined on $\mathbb R$ by $dm(y)=\frac{dy}{\sqrt{2\pi}}$. Then, for every $f\in L^p(d\nu_\alpha)$ and for almost every $r\in [0,+\infty[,$ the function f(r,.) belongs to $L^p(dm)$ and from [4], we get

$$\left(\int_{\mathbb{R}} \left|\Lambda(f)(r,x)\right|^{p'} d\mathfrak{m}(x)\right)^{1/p'} \leqslant A_p^{1/2} \left(\int_{\mathbb{R}} \left|f(r,x)\right|^p d\mathfrak{m}(x)\right)^{1/p}.$$
 (2.23)

Now, from the relations (2.13), (2.15) and by Fubini's theorem, we have

$$\begin{split} & \left(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} d\gamma_{\alpha}(\mu,\lambda) \right)^{1/p'} \\ &= \left(\int_{0}^{\infty} \int_{\mathbb{R}} \left| \widetilde{\mathscr{F}}_{\alpha}(f)(r,x) \right|^{p'} d\nu_{\alpha}(r,x) \right)^{1/p'} \\ &= \left[\int_{0}^{\infty} \left(\int_{\mathbb{R}} \left| \Lambda \left(\mathscr{H}_{\alpha}(f) \right)(r,x) \right|^{p'} dm(x) \right) d\omega_{\alpha}(r) \right]^{1/p'}, \end{split}$$

and by the relation (2.23), we get

$$\begin{split} & \left(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} d\gamma_{\alpha}(\mu,\lambda) \right)^{1/p'} \\ & \leq \left[\int_{0}^{\infty} A_{p}^{p'/2} \left(\int_{\mathbb{R}} \left| \mathscr{H}_{\alpha}(f)(r,x) \right|^{p} dm(x) \right)^{p'/p} d\omega_{\alpha}(r) \right]^{1/p'} \\ & \leq A_{p}^{1/2} \left\{ \left[\int_{0}^{\infty} \left(\int_{\mathbb{R}} \left| \mathscr{H}_{\alpha}(f)(r,x) \right|^{p} dm(x) \right)^{p'/p} d\omega_{\alpha}(r) \right]^{p/p'} \right\}^{1/p}. \end{split}$$

From Minkowski's inequality [15], we obtain

$$\begin{split} & \left(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} d\gamma_{\alpha}(\mu,\lambda) \right)^{1/p'} \\ & \leqslant A_{p}^{1/2} \left\{ \int_{0}^{\infty} \left(\int_{\mathbb{R}} \left| \mathscr{H}_{\alpha}(f)(r,x) \right|^{p'} d\omega_{\alpha}(r) \right)^{p/p'} dm(x) \right\}^{1/p}, \end{split}$$

and by the relation (2.22), it follows that

$$\begin{split} & \left(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} d\gamma_{\alpha}(\mu,\lambda) \right)^{1/p'} \\ & \leqslant A_{p}^{\frac{1}{2}+\alpha+1} \left\{ \int_{0}^{\infty} \left(\int_{0}^{\infty} \left| f(r,x) \right|^{p} d\omega_{\alpha}(r) \right) dm(x) \right\}^{1/p} \\ & = A_{p}^{\alpha+3/2} \left\| \left| f \right\|_{p,\gamma_{\alpha}}. \end{split}$$

3. Entropy uncertainty principle

This section is devoted to establish the main result of this paper, that is the entropy uncertainty principle.

We start this section by some intermediated results.

Lemma 3.1. Let \mathbf{x} be a positive real number. Then,

i. For every $p \in [1, 2]$, we have

$$x^2 - x \leqslant \frac{x^p - x^2}{p - 2} \leqslant x^2 \ln x.$$
(3.1)

ii. For every $p \in [2,3]$, we have

$$x^{2} \ln x \leqslant \frac{x^{p} - x^{2}}{p - 2} \leqslant x^{3} - x^{2}.$$
 (3.2)

Proof. Let ϑ be the function defined by

$$\vartheta(\mathbf{p}) = \frac{x^{\mathbf{p}} - x^2}{\mathbf{p} - 2}.$$

The function ϑ is differentiable on [1, 2[and]2, 3] and we have

$$\vartheta'(p) = \frac{(p-2)x^p \ln(x) + x^2 - x^p}{(p-2)^2}.$$

Let $h(p) = (p-2)x^{p} \ln(x) + x^{2} - x^{p}$. We have

$$h'(p) = (p-2)x^p (\ln(x))^2,$$

which means that the function h is decreasing on [1, 2] and increasing on [2, 3]. Since h(2) = 0, we deduce that for every $p \ge 1$; $h(p) \ge 0$ and that the function ϑ is increasing on [1, 2[and]2, 3].

Consequently,

$$\begin{array}{ll} \forall p \in \ [1,2[, \ \vartheta(1) \leqslant \vartheta(p) \leqslant \lim_{p \longrightarrow 2^{-}} \vartheta(p), \\ \forall p \in]2,3], \ \lim_{p \longrightarrow 2^{-}} \vartheta(p) \leqslant \vartheta(p) \leqslant \vartheta(3). \end{array}$$

This proves the lemma.

Definition 3.2. i. For every nonnegative measurable function f on $[0, +\infty[\times\mathbb{R}$ such that

$$\int_{0}^{\infty}\int_{\mathbb{R}}f(r,x)\ \Big|\ln\big(f(r,x)\big)\Big|d\nu_{\alpha}(r,x)<+\infty,$$

the weighted entropy of f is defined by

$$E_{\nu_{\alpha}}(f) = -\int_{0}^{\infty} \int_{\mathbb{R}} f(r, x) \ln (f(r, x)) d\nu_{\alpha}(r, x).$$

ii. For every nonnegative measurable function g on Υ_+ such that

$$\int\!\!\int_{\gamma_+} g(\mu,\lambda) \, \Big| \ln \big(g(\mu,\lambda) \big) \Big| d\gamma_\alpha(\mu,\lambda) < +\infty,$$

the weighted entropy of g is defined by

$$\mathsf{E}_{\gamma_{\alpha}}(g) = -\int\!\!\int_{\gamma_{+}} g(\mu, \lambda) \ \ln\big(g(\mu, \lambda)\big) d\gamma_{\alpha}(\mu, \lambda).$$

The first important result of this section is the following theorem, that is the uncertainty principle in terms of entropy for a function $f \in L^1(d\nu_{\alpha}) \cap L^2(d\nu_{\alpha})$.

 $\label{eq:constraint} \textbf{Theorem 3.3.} \ \textit{Let} \ f \in \ L^1(d\nu_\alpha) \cap L^2(d\nu_\alpha) \ ; \ \|f\|_{2,\nu_\alpha} = 1, \ \textit{such that}$

$$\int_{0}^{\infty}\int_{\mathbb{R}}\left|f(r,x)\right|^{2}\,\Big|\ln\big(\big|f(r,x)\big|\big)\Big|d\nu_{\alpha}(r,x)<+\infty,$$

and

$$\int\!\!\int_{\Upsilon_+} \left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|^2 \, \left|\ln\left(\left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|\right)\right| d\gamma_{\alpha}(\mu,\lambda) < +\infty.$$

Then, we have

$$\mathsf{E}_{\nu_{\alpha}}(|\mathsf{f}|^{2}) + \mathsf{E}_{\gamma_{\alpha}}(|\mathscr{F}_{\alpha}(\mathsf{f})|^{2}) \geq (2\alpha + 3)(1 - \ln 2). \tag{3.3}$$

Proof. Let $f \in L^1(d\nu_{\alpha}) \cap L^2(d\nu_{\alpha})$ such that $||f||_{2,\nu_{\alpha}} = 1$. By a convexity argument; for every $p \in [1, 2]$, the function f belongs to the space $L^p(d\nu_{\alpha})$ and $\mathscr{F}_{\alpha}(f)$ belongs to $L^{p'}(d\gamma_{\alpha})$; p' = p/(p-1).

Let φ be the function defined on]1,2] by

From Theorem 2.4 and the relation (2.19), we deduce that for every $p \in]1,2]$; $\phi(p) \leq 0$ and $\phi(2) = 0$, which implies that

$$\lim_{p \to 2^{-}} \frac{\phi(p) - \phi(2)}{p - 2} = \lim_{p \to 2^{-}} \frac{\phi(p)}{p - 2} = \phi'(2^{-}) \ge 0.$$
(3.4)

Now,

$$\frac{d}{dp}\Big(\int_0^\infty \int_{\mathbb{R}} \left|f(r,x)\right|^p d\nu_{\alpha}(r,x)\Big)\Big|_{p=2} = \lim_{p \to 2^-} \int_0^\infty \int_{\mathbb{R}} \frac{\left|f(r,x)\right|^p - \left|f(r,x)\right|^2}{p-2} \ d\nu_{\alpha}(r,x),$$

and from Lemma 3.1,

$$\left|\frac{\left|f(r,x)\right|^{p} - \left|f(r,x)\right|^{2}}{p-2}\right| \leqslant \left|f(r,x)\right|^{2} + \left|f(r,x)\right| + \left|f(r,x)\right|^{2} \left|\ln\left|f(r,x)\right|\right|.$$

Since $f\in\ L^1(d\nu_\alpha)\cap L^2(d\nu_\alpha)$ and

$$\int_{0}^{\infty}\int_{\mathbb{R}}\left|f(r,x)\right|^{2}\,\Big|\ln\big|f(r,x)\big|\Big|d\nu_{\alpha}(r,x)<+\infty,$$

then, by the dominated convergence theorem, we get

$$\frac{\mathrm{d}}{\mathrm{d}p} \Big(\int_{0}^{\infty} \int_{\mathbb{R}} \left| f(\mathbf{r}, \mathbf{x}) \right|^{p} \mathrm{d}\nu_{\alpha}(\mathbf{r}, \mathbf{x}) \Big) \Big|_{p=2} = \int_{0}^{\infty} \int_{\mathbb{R}} \left| f(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| f(\mathbf{r}, \mathbf{x}) \right| \right) \mathrm{d}\nu_{\alpha}(\mathbf{r}, \mathbf{x}) \\ = -\frac{1}{2} E_{\nu_{\alpha}} \Big(|\mathbf{f}|^{2} \Big).$$
(3.5)

As the same way,

$$\begin{split} & \frac{d}{dp} \Big(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p/p-1} d\gamma_{\alpha}(\mu,\lambda) \Big) \Big|_{p=2^{-}} \\ &= - \frac{d}{dp'} \Big(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} d\gamma_{\alpha}(\mu,\lambda) \Big) \Big|_{p'=2^{+}} \\ &= - \lim_{p' \to 2^{+}} \int \int_{\gamma_{+}} \frac{\left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} - \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{2}}{p'-2} d\gamma_{\alpha}(\mu,\lambda) \end{split}$$

Applying Lemma 3.1 ii), we deduce that for $p'\in]2,3],$

$$\begin{split} \left| \frac{\left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p'} - \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{2}}{p'-2} \right| &\leqslant \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{3} + \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{2} \\ &+ \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{2} \left| \ln \left(\left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right| \right) \right|. \end{split}$$

Since $\mathscr{F}_\alpha(f)$ belongs to $L^2(d\gamma_\alpha)\cap L^3(d\gamma_\alpha)$ and since

$$\left|\int_{\gamma_+}\left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|^2 \ \left|\ln\left(\left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|\right)\right| d\gamma_{\alpha}(\mu,\lambda) < +\infty,$$

then, again by the dominated convergence theorem, we obtain

$$\begin{split} & \frac{\mathrm{d}}{\mathrm{d}p} \Big(\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{p/(p-1)} \mathrm{d}\gamma_{\alpha}(\mu,\lambda) \Big) \Big|_{p=2^{-}} \\ &= - \int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right|^{2} \ln \left(\left| \mathscr{F}_{\alpha}(f)(\mu,\lambda) \right| \right) \mathrm{d}\gamma_{\alpha}(\mu,\lambda) \\ &= \frac{1}{2} E_{\gamma_{\alpha}} \Big(\left| \mathscr{F}_{\alpha}(f) \right|^{2} \Big). \end{split}$$
(3.6)

Finally, we have

$$\frac{d}{dp} \left\{ \left(\frac{p^{1/p}}{\left(\frac{p}{p-1}\right)^{(p-1)/p}} \right)^{\frac{p}{p-1}(\alpha+3/2)} \right\} \Big|_{p=2} = (\alpha+3/2)(1-\ln 2).$$
(3.7)

Applying the relations (3.4), (3.5), (3.6) and (3.7), we get

$$\mathsf{E}_{\nu_{\alpha}}\big(|(f)|^{2}\big) + \mathsf{E}_{\gamma_{\alpha}}\big(\big|\mathscr{F}_{\alpha}(f)\big|^{2}\big) \geqslant (2\alpha + 3)(1 - \ln 2).$$

Lemma 3.4. Let f be a measurable function on $[0,+\infty[\times\mathbb{R}\ \text{and}\ \text{let}$

$$\omega: [0, +\infty[\longrightarrow [0, +\infty[$$

be a nondecreasing convex function such that the function $\omega(|f|)$ belongs to $L^1(d\nu_{\alpha})$. Let (f_k) be a sequence of measurable nonnegative functions on

 $[0, +\infty[\times\mathbb{R} \text{ such that for every } k \in \mathbb{N}; ||f_k||_{1,\nu_{\alpha}} = 1, \text{ and the sequence } (f_k * f)_k$ converges pointwise to f.

Then, for every $k \in \mathbb{N}$, the function $\omega(|f_k * f|)$ belongs to $L^1(d\nu_{\alpha})$ and we have

$$\lim_{k\to+\infty}\int_{0}^{\infty}\int_{\mathbb{R}}\omega\big(|f_{k}*f|\big)(r,x)d\nu_{\alpha}(r,x)=\int_{0}^{\infty}\int_{\mathbb{R}}\omega\big(|f|\big)(r,x)d\nu_{\alpha}(r,x).$$

Proof. From the relation (2.8), it follows that for every $k \in \mathbb{N}$ and $(s, y) \in [0, +\infty[\times\mathbb{R},$

$$\begin{split} \int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(s,-y)}(\breve{f}_{k})(r,x) d\nu_{\alpha}(r,x) &= \int_{0}^{\infty} \int_{\mathbb{R}} \breve{f}_{k}(r,x) d\nu_{\alpha}(r,x) \\ &= \int_{0}^{\infty} \int_{\mathbb{R}} f_{k}(r,x) d\nu_{\alpha}(r,x) = 1. \end{split}$$

This means that for every $k \in \mathbb{N}$, $(s, y) \in [0, +\infty[\times\mathbb{R}; \tau_{(s,-y)}(\check{f}_k)(r, x)d\nu_{\alpha}(r, x)$ is a probability measure on $[0, +\infty[\times\mathbb{R}]$.

Applying Jensen's inequality and the fact that the function ω is convex, we get

$$\begin{split} \omega \big(|f_{k} * f| \big)(s, y) &= \omega \Big(\Big| \int_{o}^{\infty} \int_{\mathbb{R}} f(r, x) \tau_{(s, -y)}(\breve{f}_{k})(r, x) d\nu_{\alpha}(r, x) \Big| \Big) \\ &\leqslant \omega \Big(\int_{o}^{\infty} \int_{\mathbb{R}} \big| f(r, x) \big| \tau_{(s, -y)}(\breve{f}_{k})(r, x) d\nu_{\alpha}(r, x) \Big) \\ &\leqslant \int_{o}^{\infty} \int_{\mathbb{R}} \omega \big(|f| \big)(r, x) \tau_{(s, -y)}(\breve{f}_{k})(r, x) d\nu_{\alpha}(r, x) \\ &= \omega \big(|f| \big) * f_{k}(s, y). \end{split}$$
(3.8)

From the relations (2.11) and (3.8), we deduce that for every $k \in \mathbb{N}$, the function $\omega(|f_k * f|)$ belongs to $L^1(d\nu_{\alpha})$ and we have

$$\begin{split} \left| \left| \omega \left(|f_k * f| \right) \right| \right|_{1,\nu_{\alpha}} &\leqslant \quad \left| \left| \omega \left(|f| \right) \right| \right|_{1,\nu_{\alpha}} \| f_k \|_{1,\nu_{\alpha}} \\ &= \quad \left| \left| \omega \left(|f| \right) \right| \right|_{1,\nu_{\alpha}}. \end{split}$$

This implies that

$$\limsup_{k \to +\infty} \left| \left| \omega \left(|\mathbf{f}_k * \mathbf{f}| \right) \right| \right|_{\mathbf{1}, \mathbf{v}_{\alpha}} \leqslant \left| \left| \omega \left(|\mathbf{f}| \right) \right| \right|_{\mathbf{1}, \mathbf{v}_{\alpha}}.$$
(3.9)

On the other hand, by Fatou's lemma,

$$\begin{aligned} \left| \left| \omega \left(|\mathsf{f}| \right) \right| \right|_{1,\nu_{\alpha}} &= \int_{0}^{\infty} \int_{\mathbb{R}} \lim_{k \to +\infty} \omega \left(|\mathsf{f}_{k} * \mathsf{f}| \right) (\mathsf{r}, \mathsf{x}) d\nu_{\alpha}(\mathsf{r}, \mathsf{x}) \\ &\leqslant \liminf_{k \to +\infty} \left| \left| \omega \left(|\mathsf{f}_{k} * \mathsf{f}| \right) \right| \right|_{1,\nu_{\alpha}}. \end{aligned}$$
(3.10)

The proof is complete by combining the relations (3.9) and (3.10).

We denote by $\mathscr{S}_{e}(\mathbb{R}^{2})$ the space of infinitely differentiable functions on \mathbb{R}^{2} , rapidly decreasing together with all their derivatives, even with respect to the first variable.

The space $\mathscr{S}_{e}(\mathbb{R}^{2})$ is endowed with the topology generated by the family of norms

$$\rho_{\mathfrak{m}}(\varphi) = \sup_{\substack{(r,x) \in [0,+\infty[\times\mathbb{R} \\ k+|\beta| \leq \mathfrak{m}}} (1+r^2+x^2)^k |D^{\beta}(\varphi)(r,x)|.$$
(3.11)

Now, we are able to prove the uncertainty principle in terms of entropy in its final form.

Theorem 3.5. (Entropy) Let $f \in L^2(d\nu_{\alpha})$ such that $||f||_{2,\nu_{\alpha}} = 1$. We assume that

$$\int_{0}^{\infty}\int_{\mathbb{R}}\left|f(r,x)\right|^{2}\,\left|\ln\left(\left|f(r,x)\right|\right)\right|d\nu_{\alpha}(r,x)<+\infty,$$

and

$$\int\!\int_{\gamma_+} \left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right|^2 \, \Big| \ln \left(\left|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\right| \right) \Big| d\gamma_{\alpha}(\mu,\lambda) < +\infty.$$

Then, we have

$$\mathsf{E}_{\nu_{\alpha}}(|\mathsf{f}|^{2}) + \mathsf{E}_{\gamma_{\alpha}}(|\mathscr{F}_{\alpha}(\mathsf{f})|^{2}) \ge (2\alpha + 3)(1 - \ln 2).$$

Proof. Let f be a function satisfying the hypothesis. We will construct a sequence $(f_k)_k \subset L^1(d\nu_\alpha) \cap L^2(d\nu_\alpha)$ such that

$$\begin{split} &\lim_{k\to+\infty} \|f_k\|_{2,\nu_\alpha} = \|f\|_{2,\nu_\alpha},\\ &\lim_{k\to+\infty} \mathsf{E}_{\nu_\alpha}\big(|f_k|^2\big) = \mathsf{E}_{\nu_\alpha}\big(|f|^2\big), \end{split}$$

and

$$\lim_{k\to+\infty}\mathsf{E}_{\gamma_{\alpha}}\big(|\mathscr{F}_{\alpha}(f_{k})|^{2}\big)=\mathsf{E}_{\gamma_{\alpha}}\big(|\mathscr{F}_{\alpha}(f)|^{2}\big).$$

Let $(g_k)_{k \in \mathbb{N}}$ be the sequence defined by

$$g_k(\mathbf{r}, \mathbf{x}) = 2^{\alpha + 3/2} k^{2\alpha + 3} e^{-k^2(\mathbf{r}^2 + \mathbf{x}^2)}.$$

From the relation (2.10), the sequence $(g_k)_k$ is an approximation of the identity, in particular, for every $f \in L^2(d\nu_{\alpha})$,

$$\lim_{k \to +\infty} \|\mathbf{g}_k * \mathbf{f} - \mathbf{f}\|_{2, \nu_{\alpha}} = \mathbf{0}.$$
(3.12)

Now, for every $\phi \in \mathscr{S}_e(\mathbb{R}^2)$ and $f \in L^2(d\nu_{\alpha})$, the function $\phi.f$ belongs to $L^1(d\nu_{\alpha}) \cap L^2(d\nu_{\alpha})$ and we have

$$\widetilde{\mathscr{F}}_{\alpha}(\varphi.f) = \widetilde{\mathscr{F}}_{\alpha}(\varphi) * \widetilde{\mathscr{F}}_{\alpha}(f).$$
(3.13)

Let
$$h_k = \widetilde{\mathscr{F}}_{\alpha}^{-1}(g_k) = \widetilde{\mathscr{F}}_{\alpha}(g_k)$$
. For every $(r, x) \in [0, +\infty[\times\mathbb{R}, we have h_k(r, x) = e^{-\frac{r^2 + x^2}{4k^2}}$.

We define the sequence $(\phi_k)_k$ by setting $\phi_k = h_k f$. Then, from the relation (3.13), we get

$$\widetilde{\mathscr{F}}_{\alpha}(\phi_k) = \widetilde{\mathscr{F}}_{\alpha}(h_k) * \widetilde{\mathscr{F}}_{\alpha}(f) = g_k * \widetilde{\mathscr{F}}_{\alpha}(f).$$

On the other hand, for every $k \in \mathbb{N}$, the function φ_k belongs to $L^1(d\nu_{\alpha}) \cap L^2(d\nu_{\alpha})$ and from dominated convergence theorem, the sequence $(\varphi_k)_k$ converges to f in $L^2(d\nu_{\alpha})$ and the sequence

$$\widetilde{\mathscr{F}}_{\alpha}(\phi_k) = g_k \ast \widetilde{\mathscr{F}}_{\alpha}(f)$$

converges to $\widetilde{\mathscr{F}}_{\alpha}(f)$ in $L^2(d\nu_{\alpha})$. So, there is a subsequence $(g_{\theta(k)} * \widetilde{\mathscr{F}}_{\alpha}(f))_k$ which converges pointwise almost every where to $\widetilde{\mathscr{F}}_{\alpha}(f)$. Let

$$f_k = h_{\theta(k)} f = \phi_{\theta(k)}$$

Then, $(f_k)_k$ converges to f in $L^2(d\nu_\alpha)$ and $(\widetilde{\mathscr{F}}_{\alpha}(f_k))_k$ converges in $L^2(d\nu_\alpha)$ and pointwise to $\widetilde{\mathscr{F}}_{\alpha}(f)$. Applying the relation (3.3) to $\frac{f_k}{\|f_k\|_{2,\nu_\alpha}}$, we deduce that for every $k \in \mathbb{N}$,

$$-\int_{0}^{\infty} \int_{\mathbb{R}} \left| f_{k}(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| f_{k}(\mathbf{r}, \mathbf{x}) \right| \right) d\nu_{\alpha}(\mathbf{r}, \mathbf{x})$$

$$-\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(f_{k})(\mu, \lambda) \right|^{2} \ln \left(\left| \mathscr{F}_{\alpha}(f_{k})(\mu, \lambda) \right| \right) d\gamma_{\alpha}(\mu, \lambda)$$

$$\geqslant (\alpha + 3/2)(1 - \ln(2)) \| f_{k} \|_{2, \nu_{\alpha}}^{2} - \| f_{k} \|_{2, \nu_{\alpha}}^{2} \ln \left(\| f_{k} \|_{2, \nu_{\alpha}}^{2} \right).$$

$$(3.14)$$

As said above, we have

$$\lim_{k \to +\infty} \|f_k\|_{2,\nu_{\alpha}} = \|f\|_{2,\nu_{\alpha}}.$$
(3.15)

On the other hand, there exists C > 0 such that for every $k \in \mathbb{N}$,

$$\left|\left|f_{k}(r,x)\right|^{2} \cdot \ln\left(\left|f_{k}(r,x)\right|^{2}\right)\right| \leqslant C \left(\left|f(r,x)\right|^{2} + \left|f(r,x)\right|^{2}\right| \ln\left(\left|f(r,x)\right|^{2}\right)\right|\right).$$

Again, by dominated convergence theorem,

$$\lim_{k \to +\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \left| f_{k}(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| f_{k}(\mathbf{r}, \mathbf{x}) \right|^{2} \right) d\nu_{\alpha}(\mathbf{r}, \mathbf{x})$$
$$= \int_{0}^{\infty} \int_{\mathbb{R}} \left| f(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| f(\mathbf{r}, \mathbf{x}) \right|^{2} \right) d\nu_{\alpha}(\mathbf{r}, \mathbf{x}).$$
(3.16)

Let us checking

$$\begin{split} &\int \int_{\gamma_{+}} \left| \mathscr{F}_{\alpha}(\mathbf{f}_{k})(\boldsymbol{\mu},\boldsymbol{\lambda}) \right|^{2} \ln \left(\left| \mathscr{F}_{\alpha}(\mathbf{f}_{k})(\boldsymbol{\mu},\boldsymbol{\lambda}) \right| \right) d\gamma_{\alpha}(\boldsymbol{\mu},\boldsymbol{\lambda}) \\ &= \int_{0}^{\infty} \int_{\mathbb{R}} \left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f}_{k})(\mathbf{r},\mathbf{x}) \right|^{2} \ln \left(\left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f}_{k})(\mathbf{r},\mathbf{x}) \right| \right) d\nu_{\alpha}(\mathbf{r},\mathbf{x}). \end{split}$$

Let $\omega_1, \ \omega_2: \ [0, +\infty[\longrightarrow [0, +\infty[$, defined by

$$\label{eq:w1} \omega_1(t) = \left\{ \begin{array}{ll} t^2 \ln t; & \mathrm{if} \ t \geqslant 1, \\ 0; & \mathrm{if} \ t \leqslant 1, \end{array} \right.$$

and

$$\omega_2(t) = \left\{ \begin{array}{ll} 2t^2; & \mathrm{if} \ t \geqslant 1, \\ -t^2 \ln t + 2t^2; & \mathrm{if} \ t \leqslant 1. \end{array} \right.$$

The functions ω_1 and ω_2 are nondecreasing convex functions on $[0, +\infty[$, and we have

As the same way,

$$\begin{split} &\int_{0}^{\infty} \int_{\mathbb{R}} \omega_{2} \big(\big| \widetilde{\mathscr{F}}_{\alpha}(f) \big| \big)(r, x) d\nu_{\alpha}(r, x) \\ &= \int \int_{\left| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \right| \leq 1} \Big(2 \big| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \big|^{2} - \big| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \big|^{2} \ \ln \big(\big| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \big| \big) \Big) d\nu_{\alpha}(r, x) \\ &+ \int \int_{\left| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \right| \geq 1} 2 \big| \widetilde{\mathscr{F}}_{\alpha}(f)(r, x) \big|^{2} d\nu_{\alpha}(r, x) < +\infty. \end{split}$$

On the other hand, we have

$$\widetilde{\mathscr{F}}_{\alpha}(f_k) = g_{\theta(k)} * \widetilde{\mathscr{F}}_{\alpha}(f),$$

with $\|g_{\theta(k)}\|_{1,\nu_{\alpha}} = 1$ for every $k \in \mathbb{N}$. From Lemma 3.4, it follows that for every $i \in \{1, 2\}$,

$$\lim_{k \to +\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \omega_{i} (|\widetilde{\mathscr{F}}_{\alpha}(f_{k})|)(r, x) d\nu_{\alpha}(r, x)$$

$$= \lim_{k \to +\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \omega_{i} (|g_{\theta(k)} * \widetilde{\mathscr{F}}_{\alpha}(f)|)(r, x) d\nu_{\alpha}(r, x)$$

$$= \int_{0}^{\infty} \int_{\mathbb{R}} \omega_{i} (|\widetilde{\mathscr{F}}_{\alpha}(f)|)(r, x) d\nu_{\alpha}(r, x).$$
(3.17)

However, for every $t \in [0, +\infty)$, we have

$$t^2 \ln t = \omega_1(t) - \omega_2(t) + 2t^2.$$
 (3.18)

From the relations (3.17) and (3.18), it follows that

$$\lim_{k \to +\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f}_{k})(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f}_{k})(\mathbf{r}, \mathbf{x}) \right| \right) d\nu_{\alpha}(\mathbf{r}, \mathbf{x}) \\
= \int_{0}^{\infty} \int_{\mathbb{R}} \left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f})(\mathbf{r}, \mathbf{x}) \right|^{2} \ln \left(\left| \widetilde{\mathscr{F}}_{\alpha}(\mathbf{f})(\mathbf{r}, \mathbf{x}) \right| \right) d\nu_{\alpha}(\mathbf{r}, \mathbf{x}). \tag{3.19}$$

Using the relations (3.14), (3.15), (3.16) and (3.19) and the fact that $||f||_{2,\nu_{\alpha}} = 1$, we get

$$\mathsf{E}_{\mathsf{v}_{\alpha}}(|\mathsf{f}|^{2}) + \mathsf{E}_{\mathsf{v}_{\alpha}}(|\mathscr{F}_{\alpha}(\mathsf{f})|^{2}) \ge (2\alpha + 3)(1 - \ln 2),$$

which achieves the proof.

4. Heisenberg-Pauli-Weyl uncertainty principle

In this section; we will show that from the uncertainty principle in terms of entropy, we can find the well known Heisenberg-Pauli-Weyl inequality for the Fourier transform \mathscr{F}_{α} . We recall that this inequality has been proved by the second author and the other in [27], where we have used Hermite and Laguerre orthogonal polynomials.

Theorem 4.1. (Heisenberg-Pauli-Weyl) For every function $f \in L^2(d\nu_{\alpha})$, we have

$$\begin{split} & \Big(\int_{o}^{\infty}\int_{\mathbb{R}}(r^{2}+x^{2})\big|f(r,x)\big|^{2}d\nu_{\alpha}(r,x)\Big)^{1/2}\Big(\int\int_{\gamma_{+}}(\mu^{2}+2\lambda^{2})\big|\mathscr{F}_{\alpha}(f)(\mu,\lambda)\big|^{2}d\gamma_{\alpha}(\mu,\lambda)\Big)^{1/2} \\ & \geqslant \big(\alpha+3/2\big)\|f\|_{2,\nu_{\alpha}}^{2}. \end{split}$$

Proof. For every s > 0, we denote by g_s the Gauss Kernel associated with Riemann-Liouville operator, defined by

$$g_s(\mathbf{r}, \mathbf{x}) = \frac{e^{\frac{-(\mathbf{r}^2 + \mathbf{x}^2)}{2s^2}}}{s^{2\alpha+3}}.$$

Then, for every s > 0, we have

$$\int_{o}^{\infty}\int_{\mathbb{R}}g_{s}(r,x)d\nu_{\alpha}(r,x)=1.$$

This shows that for every s > 0,

$$d\mu_{\alpha,s}(\mathbf{r},\mathbf{x}) = g_s(\mathbf{r},\mathbf{x})d\nu_{\alpha}(\mathbf{r},\mathbf{x})$$

is a probability measure on $[0, +\infty[\times\mathbb{R}. \text{ Since } \omega(t) = t \text{ ln } t \text{ is a convex function}$ on $[0, +\infty[$, then by Jensen's inequality, for every $f \in L^2(d\nu_{\alpha})$; $||f||_{2,\nu_{\alpha}} = 1$, we get

$$\omega\Big(\int_{o}^{\infty}\int_{\mathbb{R}}\frac{|f(r,x)|^{2}}{g_{s}(r,x)}d\mu_{\alpha,s}(r,x)\Big) \hspace{2mm}\leqslant \hspace{2mm}\int_{o}^{\infty}\int_{\mathbb{R}}\omega\Big(\frac{|f(r,x)|^{2}}{g_{s}(r,x)}\Big)d\mu_{\alpha,s}(r,x),$$

which means that

$$\int_{o}^{\infty}\int_{\mathbb{R}}|f(r,x)|^{2} \ \ln\Big(\frac{|f(r,x)|^{2}}{g_{s}(r,x)}\Big)d\nu_{\alpha,s}(r,x) \geqslant 0.$$

So,

$$\begin{split} - \int_{0}^{\infty} \int_{\mathbb{R}} |f(r,x)|^{2} \; \ln \left(|f(r,x)|^{2} \right) d\nu_{\alpha}(r,x) &\leqslant \; \ln(s^{2\alpha+3}) ||f||_{2,\nu_{\alpha}}^{2} \\ &+ \; \frac{1}{2s^{2}} \int_{0}^{\infty} \int_{\mathbb{R}} (r^{2}+x^{2}) |f(r,x)|^{2} d\nu_{\alpha}(r,x). \end{split}$$

Since $\|f\|_{2,\nu_\alpha}=1$ and by Definition 3.2 , we get

$$\mathsf{E}_{\nu_{\alpha}}(|f|^{2}) \leqslant \ln(s^{2\alpha+3}) + \frac{1}{2s^{2}} \int_{o}^{\infty} \int_{\mathbb{R}} (r^{2} + x^{2}) |f(r, x)|^{2} d\nu_{\alpha}(r, x).$$
(4.1)

On the other hand, the function $\widetilde{\mathscr{F}}_{\alpha}(f)$ belongs to $L^2(d\nu_{\alpha})$ and

$$\|\widetilde{\mathscr{F}}_{\alpha}(f)\|_{2,\nu_{\alpha}} = \|f\|_{2,\nu_{\alpha}} = 1,$$

then the relation (4.1) implies that

$$\begin{split} \mathsf{E}_{\mathbf{v}_{\alpha}} \left(|\widetilde{\mathscr{F}}_{\alpha}(f)|^{2} \right) &= \mathsf{E}_{\gamma_{\alpha}} \left(|\mathscr{F}_{\alpha}(f)|^{2} \right) \\ &\leqslant \ln(s^{2\alpha+3}) + \frac{1}{2s^{2}} \int_{0}^{\infty} \int_{\mathbb{R}} (\mu^{2} + \lambda^{2}) |\widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda)|^{2} d\nu_{\alpha}(\mu, \lambda) \\ &= \ln(s^{2\alpha+3}) + \frac{1}{2s^{2}} \iint_{\gamma_{+}} (\mu^{2} + 2\lambda^{2}) |\mathscr{F}_{\alpha}(f)(\mu, \lambda)|^{2} d\gamma_{\alpha}(\mu, \lambda) (4.2) \end{split}$$

The relations (4.1) and (4.2) lead to

$$\begin{split} \mathsf{E}_{\nu_{\alpha}}\big(|f|^{2}\big) + \mathsf{E}_{\gamma_{\alpha}}\big(|\mathscr{F}_{\alpha}(f)|^{2}\big) \\ &\leqslant 2\ln(s^{2\alpha+3}) + \frac{1}{2s^{2}}\Big[\int_{o}^{\infty}\int_{\mathbb{R}}(r^{2}+x^{2})|f(r,x)|^{2}d\nu_{\alpha}(r,x) \\ &+ \int\!\int_{\gamma_{+}}(\mu^{2}+2\lambda^{2})|\mathscr{F}_{\alpha}(f)(\mu,\lambda)|^{2}d\gamma_{\alpha}(\mu,\lambda)\Big]. \end{split}$$

Using Theorem 3.5, we deduce that for every s > 0,

$$\begin{split} &\int_{0}^{\infty} \int_{\mathbb{R}} (r^{2} + x^{2}) |f(r, x)|^{2} d\nu_{\alpha}(r, x) + \int \int_{\gamma_{+}} (\mu^{2} + 2\lambda^{2}) |\mathscr{F}_{\alpha}(f)(\mu, \lambda)|^{2} d\gamma_{\alpha}(\mu, \lambda) \\ &\geqslant 2s^{2} \big[(2\alpha + 3)(1 - \ln 2) - 2\ln(s^{2\alpha + 3}) \big] \\ &= 2s^{2} \Big[(2\alpha + 3) - \ln\left((2s^{2})^{2\alpha + 3} \right) \Big]. \end{split}$$

In particular, for $s = \sqrt{2}/2$, it follows that for every $f \in L^2(d\nu_{\alpha})$; $||f||_{2,\nu_{\alpha}} = 1$, we have

$$\begin{split} &\int_{0}^{\infty} \int_{\mathbb{R}} (r^{2} + x^{2}) |f(r, x)|^{2} d\nu_{\alpha}(r, x) + \int \int_{\gamma_{+}} (\mu^{2} + 2\lambda^{2}) |\mathscr{F}_{\alpha}(f)(\mu, \lambda)|^{2} d\gamma_{\alpha}(\mu, \lambda) \\ &\geqslant 2\alpha + 3. \end{split}$$

$$\tag{4.3}$$

Replacing f by $\frac{f}{\|f\|_{2,\nu_{\alpha}}}$ with $f \in L^{2}(d\nu_{\alpha})$, we get $\int_{0}^{\infty} \int_{\mathbb{R}} (r^{2} + x^{2})|f(r,x)|^{2}d\nu_{\alpha}(r,x) + \int \int_{\gamma_{+}} (\mu^{2} + 2\lambda^{2})|\mathscr{F}_{\alpha}(f)(\mu,\lambda)|^{2}d\gamma_{\alpha}(\mu,\lambda)$ $\geq (2\alpha + 3)\|f\|_{2,\nu_{\alpha}}^{2}.$ (4.4)

The inequality (4.4) is sometimes called Heisenberg summation formula. Now, for every $f \in L^2(d\nu_{\alpha})$ and t > 0, we define the dilated f_t of f by

$$f_t(r, x) = f(tr, tx).$$

Then, $\|f_t\|_{2,\nu_{\alpha}}^2 = \frac{1}{t^{2\alpha+3}} \|f\|_{2,\nu_{\alpha}}^2$ and for every $(\mu,\lambda) \in \Upsilon$, we have

$$\mathscr{F}_{\alpha}(f_{t})(\mu,\lambda) = \frac{1}{t^{2\alpha+3}}\mathscr{F}_{\alpha}(f)(\frac{\mu}{t},\frac{\lambda}{t})$$

Replacing f by f_t in the relation (4.4), we deduce that for every $f \in L^2(d\nu_{\alpha})$ and every real t > 0, we have

$$\begin{split} &\frac{1}{t^2}\int_o^{\infty}\int_{\mathbb{R}}(r^2+x^2)|f(r,x)|^2d\nu_{\alpha}(r,x)+t^2\int\int_{\gamma_+}(\mu^2+2\lambda^2)|\mathscr{F}_{\alpha}(f)(\mu,\lambda)|^2d\gamma_{\alpha}(\mu,\lambda)\\ &\geqslant (2\alpha+3)||f||_{2,\nu_{\alpha}}^2. \end{split}$$

In particular, if we pick

$$t = \frac{\left(\int_{0}^{\infty}\int_{\mathbb{R}} (r^{2} + x^{2})|f(r, x)|^{2}d\nu_{\alpha}(r, x)\right)^{1/4}}{\left(\int\int_{\gamma_{+}} (\mu^{2} + 2\lambda^{2})|\mathscr{F}_{\alpha}(f)(\mu, \lambda)|^{2}d\gamma_{\alpha}(\mu, \lambda)\right)^{1/4}},$$

we get

$$\left(\int_{0}^{\infty} \int_{\mathbb{R}} (r^{2} + x^{2}) \left| f(r, x) \right|^{2} d\nu_{\alpha}(r, x) \right)^{1/2} \left(\int \int_{\gamma_{+}} (\mu^{2} + 2\lambda^{2}) \left| \mathscr{F}_{\alpha}(f)(\mu, \lambda) \right|^{2} d\gamma_{\alpha}(\mu, \lambda) \right)^{1/2} \\ \geq (\alpha + 3/2) \|f\|_{2, \nu_{\alpha}}^{2}.$$

References

- C. Baccar, N. B. Hamadi and L. T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, *Int. J. Math. Math. Sci.*, 2006 (2006) 1-26.
- [2] C. Baccar, N. B. Hamadi and L. T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, *Commun. Math. Anal.*, 5, No. 01, (2008) 65-83.
- [3] C. Baccar and L. T. Rachdi, Spaces of D_L^p-type and a convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl., Vol. 1, Iss. 3 (2009) 16-41.
- [4] W. Beckner, Inequalities in Fourier analysis, Ann. of Math., 102 (1975) 159-182.
- [5] W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc., (1995) 1897-1905.
- [6] A. Beurling, The collected works of Arne Beurling, Birkhäuser, Vol.1-2, Boston 1989.
- [7] I. Bialynicki-Birula, Entropic uncertainty relations in quantum mechanics, quantum probability and applications II, Eds. L. Accardi and W. Von Waldenfels, *Lecture Notes in Mathematics*, **1136** (1985) 90-103.
- [8] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter studies in mathematics 20, walter de Gruyter, Berlin-New York 1995.
- [9] A. Bonami, B. Demange, and P. Jaming, Hermite functions and uncertainty priciples for the Fourier and the widowed Fourier transforms, *Rev. Mat. Iberoamericana*, **19** (2003) 23–55.
- [10] M.G. Cowling and J. F. Price, Generalizations of Heisenberg inequality in Harmonic analysis, (Cortona, 1982), *Lecture Notes in Math.*, **992** (1983) 443–449.
- [11] A. Erdely and all, Tables of integral transforms, Mc Graw-Hill Book Compagny., Vol.2, New York 1954.
- [12] A. Erdely and all, Asymptotic expansions, Dover publications, New-York 1956.
- [13] J. A. Fawcett, Inversion of n-dimensional spherical averages, SIAM Journal on Applied Mathematics 45, No. 02, (1985), 336-341.
- [14] A. Fitouhi, Inégalité de Babenko et inégalité logarithmique de Sobolev pour l'opérateur de Bessel, C. R. Acad. Sci. Paris, t. 305, Srie I, (1987) 877-880.
- [15] G. B. Folland, Real analysis modern thechniques and their applications, Pure and Applied Mathematics, John Wiley and Sons, New York 1984.
- [16] G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997) 207–238.

- [17] G. H. Hardy, A theorem concerning Fourier transform, J. London. Math. Soc., 8 (1933) 227–231.
- [18] S. Helgason. The Radon Transform. Birkhäuser, 2nd edition, 1999.
- [19] H. Hellsten and L.-E. Andersson, An inverse method for the processing of synthetic aperture radar data, *Inverse Problems*, 3 (1987), No. 1, 111-124.
- [20] M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D30430-3.2, National Defense Research Institude, FOA, Box 1165; S-581 11, Linköping, 1986.
- [21] I. I. Hirschman, A note on entropy, Amer. J. Math., 79, 1 (1957) 152-156.
- [22] I. I. Hirschman, Variation diminishing Hankel transforms, J. Anal. Math., Vol. 8, No. 01, (1960) 307-336.
- [23] Kh. Hleili, S. Omri and L. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo, Vol. 13, No. 03, (2011) 91-115.
- [24] N. N. Lebedev, Special Functions and Their Applications, Dover publications, New-York 1972.
- [25] G. W. Morgan, A note on Fourier transforms, J. London. Math. Soc., 9 (1934) 178–192.
- [26] S. Omri and L. T. Rachdi, An L^p L^q version of Morgan's theorem associated with Riemann-Liouville transform, Int. J. Math. Anal., Vol. 1, No. 17, (2007) 805–824.
- [27] S. Omri and L. T. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator, J. Inequal. Pure and Appl. Math., 9, Iss. 3, Art 88 (2008).
- [28] L. T. Rachdi and A. Rouz, On the range of the Fourier transform connected with Riemann-Liouville operator. Ann. Math. Blaise Pascal, Vol. 16, No. 02, (2009) 355-397.
- [29] C. Shanon, A mathematical theory of communication, Bell System Tech. J., 27 (1948/1949), 379-423 and 623-656.
- [30] E. M. Stein, Interpolation of linear operator, Transactions of the American Mathematical Society, 83, No. 02, (1956) 482-492.
- [31] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University, New Jersey 1971.
- [32] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge univ. Press., 2nd ed., Cambridge 1959.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES OF TUNIS, 2092 EL MANAR 2 TUNIS, TUNISIA

E-mail address: besmaa.amri@gmail.com

Department of Mathematics, Faculty of Sciences of Tunis, 2092 El Manar 2 Tunis, Tunisia

E-mail address: lakhdartannech.rachdi@fst.rnu.tn