
UNCERTAINTY PRINCIPLE IN TERMS OF ENTROPY FOR
THE RIEMANN-LIOUVILLE OPERATOR

BESMA AMRI AND LAKHDAR T. RACHDI

Abstract. We prove Hausdorff-Young inequality for the Fourier transform
connected with Riemann-Liouville operator. We use this inequality to establish
the uncertainty principle in terms of entropy. Next, we show that we can derive
the Heisenberg-Pauli-Weyl inequality for the precedent Fourier transform.

1. Introduction

Uncertainty principles play an important role in harmonic analysis, they state

that a function f and its Fourier transform f̂ can not be simultaneously sharply
localized in the sense that it is impossible for a nonzero function and its Fourier
transform to be simultaneously small.
Many mathematical formulations of this fact can be found in [6, 9, 10, 16, 17, 25].
For a probability density function f on Rn, the entropy of f is defined according
to [29] by

E(f) = −

∫
Rn
f(x) ln

(
f(x)

)
dx.

The entropy E(f) is closely related to quantum mechanics [7] and constitutes one
of the important way to measure the concentration of f.
The uncertainty principle in terms of entropy consists to compare the entropy of
|f|2 with that of | f̂ |2. A first result has been given in [21], where the author has
established a weak version of this uncertainty principle by showing that for every
square integrable function f on Rn with respect to the Lebesgue measure, such
that ||f||2 = 1, we have

E
(
|f|2
)
+ E
(
| f̂ |2

)
> 0. (1.1)

Later in [5], the author has proved the following stronger inequality, that is for
every square integrable function f on Rn; ||f||2 = 1,

E
(
|f|2
)
+ E
(
| f̂ |2

)
> n

(
1− ln(2)

)
. (1.2)
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The last inequality constitutes a very powerful result which implies in particular
the well known Heisenberg-Pauli-Weyl uncertainty principle.
In [1], the authors have defined the Riemann-Liouville operator Rα; α > 0, by

Rα(f)(r, x) =


α

π

∫ 1
−1

∫ 1
−1

f(rs
√
1− t2, x+ rt)(1− t2)α−1/2

×(1− s2)α−1 dtds, if α > 0,
1

π

∫ 1
−1

f(r
√
1− t2, x+ rt)

dt√
1− t2

, if α = 0;

(1.3)

where f is any continuous function on R2, even with respect to the first variable.
The dual tRα is defined by

tRα(g)(r, x) =



√
2

π

1

2α Γ(α+ 1)

∫+∞
r

∫√u2−r2
−
√
u2−r2

g(u, x+ v)

×(u2 − v2 − r2)α−1u du dv, if α > 0,
1√
2π

∫
R
g
(√
r2 + (x− y)2, y

)
dy, if α = 0;

(1.4)

where g is any continuous function on R2, even with respect to the first variable
and with compact support.
In particular, for α = 0 and by a change of variables, we get

R0(f)(r, x) =
1

2π

∫ 2π
0

f(r cos θ, x+ r sin θ)dθ.

This means that R0(f)(r, x) is the mean value of f on the circle centered at (0, x)
and radius r.
The mean operator R0 and its dual tR0 play an important role and have many
applications, for example, in image processing of the so-called synthetic aperture
radar (SAR) data [19, 20] or in the linearized inverse scattering problem in acous-
tics [13].
The operators Rα and its dual tRα have the same properties as the Radon trans-
form [18], for this reason, Rα is called sometimes the generalized Radon transform.
The Fourier transform Fα associated with the operator Rα is defined by

∀(µ, λ) ∈ Υ, Fα(f) =

∫∞
0

∫
R
f(r, x)Rα

(
cos(µ·)e−iλ·

)
(r, x)dνα(r, x) (1.5)

=

∫∞
0

∫
R
f(r, x) jα(r

√
µ2 + λ2)e−iλx

)
(r, x)dνα(r, x),

where
� Υ is the set given by

Υ = R2 ∪
{
(iµ, λ); (µ, λ) ∈ R2; |µ| 6 |λ|

}
. (1.6)
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� dνα(r, x) is the measure defined on [0,+∞[×R by

dνα(r, x) =
r2α+1dr

2αΓ(α+ 1)
⊗ dx√

2π
.

� jα is the modified Bessel function that will be defined in the second section.

Many harmonic analysis results have been established for the Fourier transform
Fα [1, 2, 3, 28]. Also, many uncertainty principles related to the Fourier transform
Fα have been proved [23, 26, 27].
Our purpose in this work is to establish the uncertainty principle in terms of
entropy for the Fourier transform Fα, from which we derive the Heisenberg-Pauli-
Weyl uncertainty principle.
More precisely, we prove first the following Hausdorff-Young inequality

Theorem 1.1. (Hausdorff-Young) The Fourier transform Fα can be extended to
a continuous operator from Lp(dνα); p ∈ [1, 2], into Lp

′
(dγα); p

′ = p/(p − 1),
and for every f ∈ Lp(dνα),∣∣∣∣Fα(f)

∣∣∣∣
p ′,γα

6 Aα+3/2p ||f||p,να .

Where

� Ap =
p1/p

p ′1/p ′
=

p1/p(
p
p−1

)(p−1)/p .
� Lp(dνα); p ∈ [1,+∞], is the Lebesgue space formed by the measurable functions
f on [0,+∞[×R such that ||f||p,να < +∞, with

||f||p,να =


( ∫+∞

0

∫
R

∣∣f(r, x)∣∣pdνα(r, x))1/p, if p ∈ [1,+∞[,

ess sup
(r,x)∈ [0,+∞[×R

∣∣f(r, x)∣∣, if p = +∞.
� Lp(dγα); p ∈ [1,+∞], is the Lebesgue space of measurable functions g on the
set

Υ+ = R+ × R ∪
{
(it, x); (t, x) ∈ R2; 0 6 t 6 |x|

}
,

such that

||g||p,γα =


( ∫ ∫

Υ+

∣∣g(µ, λ)∣∣pdγα(µ, λ))1/p < +∞, if p ∈ [1,+∞[;

ess sup
(µ,λ)∈ Υ+

∣∣g(µ, λ)∣∣ < +∞, if p = +∞,
where dγα is the Plancherel measure on Υ+ that will be defined in the second
section.
Using Theorem 1.1, we will demonstrate the main result of this paper, that is
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Theorem 1.2. (Entropy) Let f ∈ L2(dνα) such that ||f||2,να = 1. We assume that∫∞
0

∫
R

∣∣f(r, x)∣∣2 ∣∣∣ ln (∣∣f(r, x)∣∣)∣∣∣dνα(r, x) < +∞,
and ∫ ∫

Υ+

∣∣Fα(f)(µ, λ)
∣∣2 ∣∣∣ ln (∣∣Fα(f)(µ, λ)

∣∣)∣∣∣dγα(µ, λ) < +∞.
Then, we have

Eνα
(
|f|2
)
+ Eγα

(
|Fα(f)|

2
)
> (2α+ 3)(1− ln 2),

where Eνα
(
|f|2
)

(respectively Eγα
(
|Fα(f)|

2
)
) is the entropy of |f|2 (respectively |Fα(f)|

2).

Theorem 1.2 allows us to prove the Heisenberg-Pauli-Weyl inequality.

Theorem 1.3. (Heisenberg-Pauli-Weyl) For every function f ∈ L2(dνα), we
have( ∫∞

o

∫
R
(r2 + x2)

∣∣f(r, x)∣∣2dνα(r, x))1/2( ∫ ∫
Υ+

(µ2 + 2λ2)
∣∣Fα(f)(µ, λ)

∣∣2dγα(µ, λ))1/2
>
(
α+ 3/2

)
||f||22,να .

2. The Riemann-Liouville transform

In this section, we recall some harmonic analysis results related to the con-
volution product and the Fourier transform associated with Riemann-Liouville
operator. For more details see [1, 2, 3, 28].
Let D and Ξ be the singular partial differential operators defined by

D =
∂

∂x
;

Ξ =
∂2

∂r2
+
2α+ 1

r

∂

∂r
−
∂2

∂x2
; (r, x) ∈ ]0,+∞[×R, α > 0.

The partial differential operators D and Ξ satisfy the intertwining properties with
the Riemann-Liouville operator and its dual

tRαΞ(f) =
∂2

∂r2
tRα(f),

tRαD(f) = D tRα(f),

ΞRα(f) = Rα

∂2

∂r2
(f), DRα(f) = RαD(f),

where f is a sufficiently smooth function.
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On the other hand, for all (µ, λ) ∈ C2, the system
Du(r, x) = −iλu(r, x);
Ξu(r, x) = −µ2u(r, x);

u(0, 0) = 1,
∂u

∂r
(0, x) = 0; ∀x ∈ R,

admits a unique solution ϕµ,λ given by

∀(r, x) ∈ [0,+∞[×R, ϕµ,λ(r, x) = jα
(
r
√
µ2 + λ2

)
e−iλx, (2.1)

where jα is the modified Bessel function defined by

jα(z) = 2
αΓ(α+ 1)

Jα(z)

zα
= Γ(α+ 1)

+∞∑
k=0

(−1)k

k!Γ(α+ k+ 1)

(z
2

)2k
,

and Jα is the Bessel function of first kind and index α [11, 12, 24, 32] . The
modified Bessel function jα has the integral representation

jα(z) =
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ 1
−1

(1− t2)α−1/2 exp(−izt)dt. (2.2)

Consequently, for every k ∈ N and z ∈ C, we have∣∣j(k)α (z)
∣∣ 6 e|Im(z)|. (2.3)

The eigenfunction ϕµ,λ satisfies the following properties
� The function ϕµ,λ is bounded on R2 if, and only if (µ, λ) ∈ Υ, where Υ is the
set defined by relation (1.6), and in this case

sup
(r,x)∈ R2

∣∣ϕµ,λ(r, x)∣∣ = 1. (2.4)

� The function ϕµ,λ has the following Mehler integral representation

ϕµ,λ(r, x) =



α

π

∫ 1
−1

∫ 1
−1

cos
(
µrs
√
1− t2

)
exp

(
− iλ(x+ rt)

)
×(1− t2)α−1/2(1− s2)α−1dtds; if α > 0,
1

π

∫ 1
−1

cos
(
rµ
√
1− t2

)
exp

(
− iλ(x+ rt)

)
× dt√

1− t2
, if α = 0.

� The precedent integral representation of the eigenfunction ϕµ,λ and relation (1.3)
show that

∀(r, x) ∈ [0,+∞[×R, ϕµ, λ(r, x) = Rα

(
cos(µ·)e−iλ·

)
(r, x).
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The eigenfunction ϕµ,λ satisfies the product formula

ϕµ,λ(r, x)ϕµ,λ(s, y) =
Γ(α+ 1)√
πΓ(α+ 1/2)

∫π
0

ϕµ,λ
(√
r2 + s2 + 2rs cos θ, x+y

)
sin2α θdθ.

This formula allows us to define the translation operators and the convolution
product.

Definition 2.1. i) For every (r, x) ∈ [0,+∞[×R, the translation operator τ(r,x)
associated with Riemann-Liouville operator is defined on Lp(dνα); p ∈ [1,+∞],
by

τ(r,x)f(s, y)

=
Γ(α+ 1)√
πΓ(α+ 1/2)

∫π
0

f
(√
r2 + s2 + 2rs cos θ, x+ y

)
sin2α(θ)dθ. (2.5)

ii) The convolution product of f, g ∈ L1(dνα) is defined for every (r, x) ∈
[0,+∞[×R, by

f ∗ g(r, x) =

∫+∞
o

∫
R
τ(r,−x)(f̌)(s, y)g(s, y)dνα(s, y), (2.6)

where f̌(s, y) = f(s,−y).

The set [0,+∞[×R equipped with the convolution product ∗ is an hypergroup
in the sense of [8].

Moreover, we have the following properties
� The eigenfunction ϕµ,λ satisfies the product formula

τ(r,x)(ϕµ,λ)(s, y) = ϕµ,λ(r, x)ϕµ,λ(s, y).

� For every f ∈ Lp(dνα); 1 6 p 6 +∞, and for every (r, x) ∈ [0,+∞[×R, the
function τ(r,x)(f) belongs to Lp(dνα) and we have∣∣∣∣τ(r,x)(f)∣∣∣∣p,να 6 ||f||p,να . (2.7)

� For every f ∈ L1(dνα) and (r, x) ∈ [0,+∞[×R,∫∞
0

∫
R
τ(r,x)(f)(s, y)dνα(s, y) =

∫∞
0

∫
R
f(s, y)dνα(s, y). (2.8)

� For every f ∈ Lp(dνα); p ∈ [1,+∞[, we have

lim
(r,x)→(0,0)

∣∣∣∣τ(r,x)(f) − f∣∣∣∣p = 0 . (2.9)
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� Let ϕ be a nonnegative measurable function on R×R, even with respect to the
first variable, such that ∫+∞

0

∫
R
ϕ(r, x)dνα(r, x) = 1.

Then by the relation (2.9), the sequence (ϕk)k∈ N∗ defined by

∀(r, x) ∈ R× R, ϕk(r, x) = k2α+3ϕ(kr, kx)
is an approximation of the identity in Lp(dνα); p ∈ [1,+∞[, that is for every
f ∈ Lp(dνα), we have

lim
k→+∞

∣∣∣∣ϕk ∗ f− f∣∣∣∣p,να = 0. (2.10)

� For f, g ∈ L1(dνα), the function f ∗ g belongs to L1(dνα), the convolution
product is commutative, associative and we have

||f ∗ g||1,να 6 ||f||1,να ||g||1,να .

Moreover, if 1 6 p, q, r 6 +∞ are such that 1/r = 1/p + 1/q − 1 and if f ∈
Lp(dνα), g ∈ Lq(dνα), then the function f ∗ g belongs to Lr(dνα), and we have
the Young’s inequality

||f ∗ g||r,να 6 ||f||p,να ||g||q,να . (2.11)

In the sequel, we need the following notations
� BΥ+ is the σ-algebra defined on Υ+ by

BΥ+ =
{
θ−1(B), B ∈ Bor

(
[0,+∞[×R

)}
,

where θ is the bijective function defined on the set Υ+ by

θ(µ, λ) =
(√
µ2 + λ2, λ

)
, (2.12)

and Bor
(
[0,+∞[×R

)
is the usual Borel σ-algebra on [0,+∞[×R.

� dγα is the measure defined on BΥ+ by

∀A ∈ BΥ+ , γα(A) = να
(
θ(A)

)
.

Proposition 2.2. i. For all nonnegative measurable function g on Υ+, we
have ∫ ∫

Υ+

g(µ, λ)dγα(µ, λ)

=
1

2αΓ (α+ 1)
√
2π

( ∫+∞
0

∫
R
g(µ, λ)(µ2 + λ2)αµdµdλ

+

∫
R

∫ |λ|
0

g(iµ, λ)(λ2 − µ2)αµdµdλ
)
.
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ii. For all nonnegative measurable function f on [0,+∞[×R (respectively in-
tegrable on [0,+∞[×R with respect to the measure dνα ), f◦θ is a nonneg-
ative measurable function on Υ+ (respectively integrable on Υ+ with respect
to the measure dγα ) and we have∫ ∫

Υ+

(f ◦ θ)(µ, λ)dγα(µ, λ) =

∫+∞
0

∫
R
f(r, x)dνα(r, x). (2.13)

Now, using the eigenfunction ϕµ,λ given by the relation (2.1), we can define the
Fourier transform.

Definition 2.3. The Fourier transform associated with the Riemann-Liouville
operator is defined on L1(dνα) by

∀(µ, λ) ∈ Υ, Fα(f)(µ, λ) =

∫+∞
0

∫
R
f(r, x)ϕµ,λ(r, x)dνα(r, x).

We have the following properties

� From the relation (2.4), we deduce that for f ∈ L1(dνα), the function Fα(f)
belongs to the space L∞(dγα) and we have∣∣∣∣Fα(f)

∣∣∣∣∞,γα 6 ||f||1,να . (2.14)

� For f ∈ L1(dνα), we have

∀(µ, λ) ∈ Υ, Fα(f)(µ, λ) = F̃α(f) ◦ θ(µ, λ), (2.15)

where for every (µ, λ) ∈ R2,

F̃α(f)(µ, λ) =

∫+∞
0

∫
R
f(r, x)jα(rµ) exp(−iλx)dνα(r, x), (2.16)

and θ is the function defined by the relation (2.12).
� Let f ∈ L1(dνα) such that the function Fα(f) belongs to the space L1(dγα),
then we have the following inversion formula for Fα, for almost every (r, x) ∈
[0,+∞[×R,

f(r, x) =

∫ ∫
Υ+

Fα(f)(µ, λ)ϕµ,λ(r, x)dγα(µ, λ). (2.17)

� Let f ∈ L1(dνα). For every (r, x) ∈ [0,+∞[×R, we have

∀(µ, λ) ∈ Υ, Fα

(
τ(r,x)(f)

)
(µ, λ) = ϕµ,λ(r, x)Fα(f)(µ, λ).

� For f, g ∈ L1(dνα), we have

∀(µ, λ) ∈ Υ, Fα(f ∗ g)(µ, λ) = Fα(f)(µ, λ)Fα(g)(µ, λ).
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� Let p ∈ [1,+∞]. From the relation (2.13), the function f belongs to Lp(dνα) if,
and only if the function f ◦ θ belongs to the space Lp(dγα) and we have∣∣∣∣f ◦ θ∣∣∣∣

p,γα
= ||f||p,να . (2.18)

Since the mapping F̃α is an isometric isomorphism from L2(dνα) onto itself
[22], then the relations (2.15) and (2.18) show that the Fourier transform Fα

is an isometric isomorphism from L2(dνα) into L2(dγα). Namely, for every f ∈
L2(dνα), the function Fα(f) belongs to the space L2(dγα) and we have∣∣∣∣Fα(f)

∣∣∣∣
2,γα

= ||f||2,να . (2.19)

� Using the relations (2.14), (2.19) and the Riesz-Thorin theorem’s [30, 31], we
deduce that for every f ∈ Lp(dνα); p ∈ [1, 2], the function Fα(f) lies in
Lp
′
(dγα); p

′ = p/(p− 1), and we have∣∣∣∣Fα(f)
∣∣∣∣
p ′,γα

6 ||f||p,να . (2.20)

However, the inequality (2.20) is not optimal and we have

Theorem 2.4. (Hausdorff-Young) The Fourier transform Fα can be extended to
a continuous operator from Lp(dνα); p ∈ [1, 2], into Lp

′
(dγα); p

′ = p/(p − 1),
and for every f ∈ Lp(dνα),∣∣∣∣Fα(f)

∣∣∣∣
p ′,γα

6 Aα+3/2p ||f||p,να , (2.21)

where Ap =
p1/p

p ′1/p ′
=

p1/p(
p
p−1

)(p−1)/p is the Babenko-Beckner constant.

Proof. Let Hα be the Hankel transform with respect to the first variable defined
by

Hα(f)(r, x) =

∫∞
0

f(s, x)jα(rs)dωα(s),

where dωα is the measure defined on [0,+∞[ by

dωα(s) =
1

2αΓ(α+ 1)
s2α+1ds.

Then, for every f ∈ Lp(dνα) and for almost every x ∈ R, the function f(., x)
belongs to Lp(dωα) and from [14], we get( ∫∞

0

∣∣Hα(f)(r, x)
∣∣p ′dωα(r)

)1/p ′
6 Aα+1p

( ∫∞
0

∣∣f(r, x)∣∣pdωα(r)
)1/p

. (2.22)
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Also, we define the usual Fourier transform with respect to the second variable
by setting

Λ(f)(r, x) =

∫
R
f(r, y) e−ixydm(y),

where dm is the measure defined on R by dm(y) =
dy√
2π

. Then, for every

f ∈ Lp(dνα) and for almost every r ∈ [0,+∞[, the function f(r, .) belongs to
Lp(dm) and from [4], we get

( ∫
R

∣∣Λ(f)(r, x)∣∣p ′dm(x)
)1/p ′

6 A1/2p

( ∫
R

∣∣f(r, x)∣∣pdm(x)
)1/p

. (2.23)

Now, from the relations (2.13), (2.15) and by Fubini’s theorem, we have

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ))1/p ′

=
( ∫∞

0

∫
R

∣∣F̃α(f)(r, x)
∣∣p ′dνα(r, x))1/p ′

=
[ ∫∞

0

( ∫
R

∣∣∣Λ(Hα(f)
)
(r, x)

∣∣∣p ′dm(x)
)
dωα(r)

]1/p ′
,

and by the relation (2.23), we get

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ))1/p ′

6
[ ∫∞

0

Ap
′/2
p

( ∫
R

∣∣Hα(f)(r, x)
∣∣pdm(x)

)p ′/p
dωα(r)

]1/p ′
6 A1/2p

{[ ∫∞
0

( ∫
R

∣∣Hα(f)(r, x)
∣∣pdm(x)

)p ′/p
dωα(r)

]p/p ′}1/p
.

From Minkowski’s inequality [15], we obtain

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ))1/p ′

6 A1/2p
{∫∞

0

( ∫
R

∣∣Hα(f)(r, x)
∣∣p ′dωα(r)

)p/p ′
dm(x)

}1/p
,
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and by the relation (2.22), it follows that( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ))1/p ′

6 A
1
2
+α+1

p

{∫∞
0

( ∫∞
0

∣∣f(r, x)∣∣pdωα(r)
)
dm(x)

}1/p
= Aα+3/2p ||f||p,να .

�

3. Entropy uncertainty principle

This section is devoted to establish the main result of this paper, that is the
entropy uncertainty principle.
We start this section by some intermediated results.

Lemma 3.1. Let x be a positive real number. Then,

i. For every p ∈ [1, 2[, we have

x2 − x 6
xp − x2

p− 2
6 x2 ln x. (3.1)

ii. For every p ∈ ]2, 3], we have

x2 ln x 6
xp − x2

p− 2
6 x3 − x2. (3.2)

Proof. Let ϑ be the function defined by

ϑ(p) =
xp − x2

p− 2
.

The function ϑ is differentiable on [1, 2[ and ]2, 3] and we have

ϑ ′(p) =
(p− 2)xp ln(x) + x2 − xp

(p− 2)2
.

Let h(p) = (p− 2)xp ln(x) + x2 − xp. We have

h ′(p) = (p− 2)xp (ln(x))2,

which means that the function h is decreasing on [1, 2] and increasing on [2, 3].
Since h(2) = 0, we deduce that for every p > 1; h(p) > 0 and that the function
ϑ is increasing on [1, 2[ and ]2, 3].
Consequently,

∀p ∈ [1, 2[, ϑ(1) 6 ϑ(p) 6 lim
p−→2− ϑ(p),

∀p ∈ ]2, 3], lim
p−→2− ϑ(p) 6 ϑ(p) 6 ϑ(3).
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This proves the lemma.
�

Definition 3.2. i. For every nonnegative measurable function f on [0,+∞[×R
such that ∫∞

0

∫
R
f(r, x)

∣∣∣ ln (f(r, x))∣∣∣dνα(r, x) < +∞,
the weighted entropy of f is defined by

Eνα(f) = −

∫∞
0

∫
R
f(r, x) ln

(
f(r, x)

)
dνα(r, x).

ii. For every nonnegative measurable function g on Υ+ such that∫ ∫
Υ+

g(µ, λ)
∣∣∣ ln (g(µ, λ))∣∣∣dγα(µ, λ) < +∞,

the weighted entropy of g is defined by

Eγα(g) = −

∫ ∫
Υ+

g(µ, λ) ln
(
g(µ, λ)

)
dγα(µ, λ).

The first important result of this section is the following theorem, that is
the uncertainty principle in terms of entropy for a function f ∈ L1(dνα)∩
L2(dνα).

Theorem 3.3. Let f ∈ L1(dνα) ∩ L2(dνα) ; ||f||2,να = 1, such that∫∞
0

∫
R

∣∣f(r, x)∣∣2 ∣∣∣ ln (∣∣f(r, x)∣∣)∣∣∣dνα(r, x) < +∞,
and ∫ ∫

Υ+

∣∣Fα(f)(µ, λ)
∣∣2 ∣∣∣ ln (∣∣Fα(f)(µ, λ)

∣∣)∣∣∣dγα(µ, λ) < +∞.
Then, we have

Eνα
(
|f|2
)
+ Eγα

(
|Fα(f)|

2
)
> (2α+ 3)(1− ln 2). (3.3)

Proof. Let f ∈ L1(dνα)∩L2(dνα) such that ||f||2,να = 1. By a convexity argument;
for every p ∈ [1, 2], the function f belongs to the space Lp(dνα) and Fα(f) belongs
to Lp

′
(dγα); p

′ = p/(p− 1).
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Let ϕ be the function defined on ]1, 2] by

ϕ(p) =

∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ)

− Ap
′(α+3/2)
p

( ∫∞
0

∫
R

∣∣f(r, x)∣∣pdνα(r, x))p ′/p
=

∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p/(p−1)dγα(µ, λ)

−
( p1/p(

p
p−1

)(p−1)/p) p
p−1

(α+3/2) ( ∫∞
0

∫
R

∣∣f(r, x)∣∣pdνα(r, x))1/(p−1).
From Theorem 2.4 and the relation (2.19), we deduce that for every p ∈ ]1, 2]; ϕ(p) 6
0 and ϕ(2) = 0, which implies that

lim
p→2−

ϕ(p) −ϕ(2)

p− 2
= lim

p→2−
ϕ(p)

p− 2

= ϕ ′(2−) > 0. (3.4)

Now,

d

dp

( ∫∞
0

∫
R

∣∣f(r, x)∣∣pdνα(r, x))∣∣∣
p=2

= lim
p→2−

∫∞
0

∫
R

∣∣f(r, x)∣∣p − ∣∣f(r, x)∣∣2
p− 2

dνα(r, x),

and from Lemma 3.1,

∣∣∣ ∣∣f(r, x)∣∣p − ∣∣f(r, x)∣∣2
p− 2

∣∣∣ 6 ∣∣f(r, x)∣∣2 + ∣∣f(r, x)∣∣+ ∣∣f(r, x)∣∣2∣∣∣ ln ∣∣f(r, x)∣∣∣∣∣.
Since f ∈ L1(dνα) ∩ L2(dνα) and∫∞

0

∫
R

∣∣f(r, x)∣∣2 ∣∣∣ ln ∣∣f(r, x)∣∣∣∣∣dνα(r, x) < +∞,
then, by the dominated convergence theorem, we get

d

dp

( ∫∞
0

∫
R

∣∣f(r, x)∣∣pdνα(r, x))∣∣∣
p=2

=

∫∞
0

∫
R

∣∣f(r, x)∣∣2 ln
(∣∣f(r, x)∣∣)dνα(r, x)

= −
1

2
Eνα
(
|f|2
)
. (3.5)
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As the same way,

d

dp

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p/p−1dγα(µ, λ))∣∣∣

p=2−

= −
d

dp ′

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′dγα(µ, λ))∣∣∣

p ′=2+

= − lim
p ′→2+

∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p ′ − ∣∣Fα(f)(µ, λ)

∣∣2
p ′ − 2

dγα(µ, λ).

Applying Lemma 3.1 ii), we deduce that for p ′ ∈ ]2, 3],∣∣∣ ∣∣Fα(f)(µ, λ)
∣∣p ′ − ∣∣Fα(f)(µ, λ)

∣∣2
p ′ − 2

∣∣∣ 6 ∣∣Fα(f)(µ, λ)
∣∣3 + ∣∣Fα(f)(µ, λ)

∣∣2
+

∣∣Fα(f)(µ, λ)
∣∣2∣∣∣ ln (∣∣Fα(f)(µ, λ)

∣∣)∣∣∣.
Since Fα(f) belongs to L2(dγα) ∩ L3(dγα) and since∫ ∫

Υ+

∣∣Fα(f)(µ, λ)
∣∣2 ∣∣∣ ln (∣∣Fα(f)(µ, λ)

∣∣)∣∣∣dγα(µ, λ) < +∞,
then, again by the dominated convergence theorem, we obtain

d

dp

( ∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣p/(p−1)dγα(µ, λ))∣∣∣

p=2−

= −

∫ ∫
Υ+

∣∣Fα(f)(µ, λ)
∣∣2 ln

(∣∣Fα(f)(µ, λ)
∣∣)dγα(µ, λ)

=
1

2
Eγα
(∣∣Fα(f)

∣∣2). (3.6)

Finally, we have

d

dp

{( p1/p(
p
p−1

)(p−1)/p) p
p−1

(α+3/2)}∣∣∣
p=2

=
(
α+ 3/2

)
(1− ln 2). (3.7)

Applying the relations (3.4), (3.5), (3.6) and (3.7), we get

Eνα
(
|(f)|2

)
+ Eγα

(∣∣Fα(f)
∣∣2) > (2α+ 3)(1− ln 2).

�

Lemma 3.4. Let f be a measurable function on [0,+∞[×R and let

ω : [0,+∞[−→ [0,+∞[

be a nondecreasing convex function such that the functionω
(
|f|
)

belongs to L1(dνα).
Let (fk) be a sequence of measurable nonnegative functions on
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[0,+∞[×R such that for every k ∈ N; ||fk||1,να = 1, and the sequence (fk ∗ f)k
converges pointwise to f.
Then, for every k ∈ N, the function ω

(
|fk ∗ f|

)
belongs to L1(dνα) and we have

lim
k→+∞

∫∞
o

∫
R
ω
(
|fk ∗ f|

)
(r, x)dνα(r, x) =

∫∞
o

∫
R
ω
(
|f|
)
(r, x)dνα(r, x).

Proof. From the relation (2.8), it follows that for every k ∈ N and (s, y) ∈
[0,+∞[×R,∫∞

o

∫
R
τ(s,−y)(f̆k)(r, x)dνα(r, x) =

∫∞
o

∫
R
f̆k(r, x)dνα(r, x)

=

∫∞
o

∫
R
fk(r, x)dνα(r, x) = 1.

This means that for every k ∈ N, (s, y) ∈ [0,+∞[×R; τ(s,−y)(f̆k)(r, x)dνα(r, x)
is a probability measure on [0,+∞[×R.
Applying Jensen’s inequality and the fact that the function ω is convex, we get

ω
(
|fk ∗ f|

)
(s, y) = ω

(∣∣∣ ∫∞
o

∫
R
f(r, x)τ(s,−y)(f̆k)(r, x)dνα(r, x)

∣∣∣)
6 ω

( ∫∞
o

∫
R

∣∣f(r, x)∣∣τ(s,−y)(f̆k)(r, x)dνα(r, x))
6
∫∞
o

∫
R
ω
(
|f|
)
(r, x)τ(s,−y)(f̆k)(r, x)dνα(r, x)

= ω
(
|f|
)
∗ fk(s, y). (3.8)

From the relations (2.11) and (3.8), we deduce that for every k ∈ N, the function
ω
(
|fk ∗ f|

)
belongs to L1(dνα) and we have∣∣∣∣ω(|fk ∗ f|)∣∣∣∣1,να 6 ∣∣∣∣ω(|f|)∣∣∣∣

1,να
||fk||1,να

=
∣∣∣∣ω(|f|)∣∣∣∣

1,να
.

This implies that

lim sup
k→+∞

∣∣∣∣ω(|fk ∗ f|)∣∣∣∣1,να 6 ∣∣∣∣ω(|f|)∣∣∣∣
1,να
. (3.9)

On the other hand, by Fatou’s lemma,∣∣∣∣ω(|f|)∣∣∣∣
1,να

=

∫∞
o

∫
R

lim
k→+∞ω

(
|fk ∗ f|

)
(r, x)dνα(r, x)

6 lim inf
k→+∞

∣∣∣∣ω(|fk ∗ f|)∣∣∣∣1,να. (3.10)

The proof is complete by combining the relations (3.9) and (3.10).
�
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We denote by Se(R2) the space of infinitely differentiable functions on R2, rapidly
decreasing together with all their derivatives, even with respect to the first vari-
able.
The space Se(R2) is endowed with the topology generated by the family of norms

ρm(ϕ) = sup
(r,x)∈ [0,+∞[×R

k+|β|6m

(
1+ r2 + x2

)k∣∣Dβ(ϕ)(r, x)
∣∣. (3.11)

Now, we are able to prove the uncertainty principle in terms of entropy in its final
form.

Theorem 3.5. (Entropy) Let f ∈ L2(dνα) such that ||f||2,να = 1. We assume that∫∞
0

∫
R

∣∣f(r, x)∣∣2 ∣∣∣ ln (∣∣f(r, x)∣∣)∣∣∣dνα(r, x) < +∞,
and ∫ ∫

Υ+

∣∣Fα(f)(µ, λ)
∣∣2 ∣∣∣ ln (∣∣Fα(f)(µ, λ)

∣∣)∣∣∣dγα(µ, λ) < +∞.
Then, we have

Eνα
(
|f|2
)
+ Eγα

(
|Fα(f)|

2
)
> (2α+ 3)(1− ln 2).

Proof. Let f be a function satisfying the hypothesis. We will construct a sequence
(fk)k ⊂ L1(dνα) ∩ L2(dνα) such that

lim
k→+∞ ||fk||2,να = ||f||2,να ,

lim
k→+∞Eνα

(
|fk|

2
)
= Eνα

(
|f|2
)
,

and

lim
k→+∞Eγα

(
|Fα(fk)|

2
)
= Eγα

(
|Fα(f)|

2
)
.

Let (gk)k∈ N be the sequence defined by

gk(r, x) = 2
α+3/2 k2α+3 e−k

2(r2+x2).

From the relation (2.10), the sequence (gk)k is an approximation of the identity,
in particular, for every f ∈ L2(dνα),

lim
k→+∞ ||gk ∗ f− f||2,να = 0. (3.12)

Now, for every ϕ ∈ Se(R2) and f ∈ L2(dνα), the function ϕ.f belongs to
L1(dνα) ∩ L2(dνα) and we have

F̃α(ϕ.f) = F̃α(ϕ) ∗ F̃α(f). (3.13)
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Let hk = F̃α

−1
(gk) = F̃α(gk). For every (r, x) ∈ [0,+∞[×R, we have

hk(r, x) = e
− r
2+x2

4k2 .

We define the sequence (ϕk)k by setting ϕk = hkf. Then, from the relation (3.13),
we get

F̃α(ϕk) = F̃α(hk) ∗ F̃α(f) = gk ∗ F̃α(f).

On the other hand, for every k ∈ N, the function ϕk belongs to L1(dνα)∩L2(dνα)
and from dominated convergence theorem, the sequence (ϕk)k converges to f in
L2(dνα) and the sequence

F̃α(ϕk) = gk ∗ F̃α(f)

converges to F̃α(f) in L2(dνα). So, there is a subsequence
(
gθ(k) ∗ F̃α(f)

)
k

which

converges pointwise almost every where to F̃α(f).
Let

fk = hθ(k).f = ϕθ(k).

Then, (fk)k converges to f in L2(dνα) and
(
F̃α(fk)

)
k

converges in L2(dνα) and

pointwise to F̃α(f). Applying the relation (3.3) to
fk

||fk||2,να
, we deduce that for

every k ∈ N,

−

∫∞
o

∫
R

∣∣fk(r, x)∣∣2 ln
(∣∣fk(r, x)∣∣)dνα(r, x)

−

∫ ∫
Υ+

∣∣Fα(fk)(µ, λ)
∣∣2 ln

(∣∣Fα(fk)(µ, λ)
∣∣)dγα(µ, λ)

> (α+ 3/2)(1− ln(2))||fk||
2
2,να

− ||fk||
2
2,να

ln
(
||fk||

2
2,να

)
. (3.14)

As said above, we have

lim
k→+∞ ||fk||2,να = ||f||2,να. (3.15)

On the other hand, there exists C > 0 such that for every k ∈ N,∣∣∣∣∣fk(r, x)∣∣2. ln (∣∣fk(r, x)∣∣2)∣∣∣ 6 C (∣∣f(r, x)∣∣2 + ∣∣f(r, x)∣∣2∣∣∣ ln (∣∣f(r, x)∣∣2)∣∣∣).
Again, by dominated convergence theorem,

lim
k→+∞

∫∞
o

∫
R

∣∣fk(r, x)∣∣2 ln
(∣∣fk(r, x)∣∣2)dνα(r, x)

=

∫∞
o

∫
R

∣∣f(r, x)∣∣2 ln
(∣∣f(r, x)∣∣2)dνα(r, x). (3.16)
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Let us checking∫ ∫
Υ+

∣∣Fα(fk)(µ, λ)
∣∣2 ln

(∣∣Fα(fk)(µ, λ)
∣∣)dγα(µ, λ)

=

∫∞
o

∫
R

∣∣F̃α(fk)(r, x)
∣∣2 ln

(∣∣F̃α(fk)(r, x)
∣∣)dνα(r, x).

Let ω1, ω2 : [0,+∞[−→ [0,+∞[, defined by

ω1(t) =

{
t2 ln t; if t > 1,
0; if t 6 1,

and

ω2(t) =

{
2t2; if t > 1,
−t2 ln t+ 2t2; if t 6 1.

The functions ω1 and ω2 are nondecreasing convex functions on [0,+∞[, and we
have ∫∞

o

∫
R
ω1

(∣∣F̃α(f)
∣∣)(r, x)dνα(r, x)

=

∫ ∫∣∣F̃α(f)(r,x)∣∣>1 ∣∣F̃α(f)(r, x)
∣∣2 ln

(∣∣F̃α(f)(r, x)
∣∣)dνα(r, x)

6
∫∞
o

∫
R

∣∣F̃α(f)(r, x)
∣∣2 ∣∣∣ ln (∣∣F̃α(f)(r, x)

∣∣)∣∣∣dνα(r, x) < +∞.
As the same way,∫∞

o

∫
R
ω2

(∣∣F̃α(f)
∣∣)(r, x)dνα(r, x)

=

∫ ∫∣∣F̃α(f)(r,x)∣∣61
(
2
∣∣F̃α(f)(r, x)

∣∣2 − ∣∣F̃α(f)(r, x)
∣∣2 ln

(∣∣F̃α(f)(r, x)
∣∣))dνα(r, x)

+

∫ ∫∣∣F̃α(f)(r,x)∣∣>1 2∣∣F̃α(f)(r, x)
∣∣2dνα(r, x) < +∞.

On the other hand, we have

F̃α(fk) = gθ(k) ∗ F̃α(f),
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with ||gθ(k)||1,να = 1 for every k ∈ N. From Lemma 3.4, it follows that for every
i ∈ {1, 2},

lim
k→+∞

∫∞
o

∫
R
ωi

(∣∣F̃α(fk)
∣∣)(r, x)dνα(r, x)

= lim
k→+∞

∫∞
o

∫
R
ωi

(∣∣gθ(k) ∗ F̃α(f)
∣∣)(r, x)dνα(r, x)

=

∫∞
o

∫
R
ωi

(∣∣F̃α(f)
∣∣)(r, x)dνα(r, x). (3.17)

However, for every t ∈ [0,+∞[, we have

t2 ln t = ω1(t) −ω2(t) + 2t
2. (3.18)

From the relations (3.17) and (3.18), it follows that

lim
k→+∞

∫∞
o

∫
R

∣∣F̃α(fk)(r, x)
∣∣2 ln

(∣∣F̃α(fk)(r, x)
∣∣)dνα(r, x)

=

∫∞
o

∫
R

∣∣F̃α(f)(r, x)
∣∣2 ln

(∣∣F̃α(f)(r, x)
∣∣)dνα(r, x). (3.19)

Using the relations (3.14), (3.15), (3.16) and (3.19) and the fact that ||f||2,να =
1, we get

Eνα
(
|f|2
)
+ Eγα

(
|Fα(f)|

2
)
> (2α+ 3)(1− ln 2),

which achieves the proof. �

4. Heisenberg-Pauli-Weyl uncertainty principle

In this section; we will show that from the uncertainty principle in terms of
entropy, we can find the well known Heisenberg-Pauli-Weyl inequality for the
Fourier transform Fα. We recall that this inequality has been proved by the
second author and the other in [27], where we have used Hermite and Laguerre
orthogonal polynomials.

Theorem 4.1. (Heisenberg-Pauli-Weyl) For every function f ∈ L2(dνα), we
have( ∫∞

o

∫
R
(r2 + x2)

∣∣f(r, x)∣∣2dνα(r, x))1/2( ∫ ∫
Υ+

(µ2 + 2λ2)
∣∣Fα(f)(µ, λ)

∣∣2dγα(µ, λ))1/2
>
(
α+ 3/2

)
||f||22,να .

Proof. For every s > 0, we denote by gs the Gauss Kernel associated with
Riemann-Liouville operator, defined by

gs(r, x) =
e

−(r2+x2)

2s2

s2α+3
.
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Then, for every s > 0, we have∫∞
o

∫
R
gs(r, x)dνα(r, x) = 1.

This shows that for every s > 0,

dµα,s(r, x) = gs(r, x)dνα(r, x)

is a probability measure on [0,+∞[×R. Since ω(t) = t ln t is a convex function
on [0,+∞[, then by Jensen’s inequality, for every f ∈ L2(dνα); ||f||2,να = 1, we
get

ω
( ∫∞

o

∫
R

|f(r, x)|2

gs(r, x)
dµα,s(r, x)

)
6
∫∞
o

∫
R
ω
( |f(r, x)|2
gs(r, x)

)
dµα,s(r, x),

which means that ∫∞
o

∫
R
|f(r, x)|2 ln

( |f(r, x)|2
gs(r, x)

)
dνα,s(r, x) > 0.

So,

−

∫∞
o

∫
R
|f(r, x)|2 ln

(
|f(r, x)|2

)
dνα(r, x) 6 ln(s2α+3)||f||22,να

+
1

2s2

∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x).

Since ||f||2,να = 1 and by Definition 3.2 , we get

Eνα(|f|
2) 6 ln(s2α+3) +

1

2s2

∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x). (4.1)

On the other hand, the function F̃α(f) belongs to L2(dνα) and

||F̃α(f)||2,να = ||f||2,να = 1,

then the relation (4.1) implies that

Eνα
(
|F̃α(f)|

2
)

= Eγα
(
|Fα(f)|

2
)

6 ln(s2α+3) +
1

2s2

∫∞
o

∫
R
(µ2 + λ2)|F̃α(f)(µ, λ)|

2dνα(µ, λ)

= ln(s2α+3) +
1

2s2

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ).(4.2)
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The relations (4.1) and (4.2) lead to

Eνα
(
|f|2
)
+ Eγα

(
|Fα(f)|

2
)
6 2 ln(s2α+3) +

1

2s2

[ ∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x)

+

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

]
.

Using Theorem 3.5, we deduce that for every s > 0,∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x) +

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

> 2s2
[
(2α+ 3)(1− ln 2) − 2 ln(s2α+3)

]
= 2s2

[
(2α+ 3) − ln

(
(2s2)2α+3

)]
.

In particular, for s =
√
2/2, it follows that for every f ∈ L2(dνα); ||f||2,να = 1, we

have∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x) +

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

> 2α+ 3. (4.3)

Replacing f by
f

||f||2,να
with f ∈ L2(dνα), we get∫∞

o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x) +

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

> (2α+ 3)||f||22,να. (4.4)

The inequality (4.4) is sometimes called Heisenberg summation formula.
Now, for every f ∈ L2(dνα) and t > 0, we define the dilated ft of f by

ft(r, x) = f(tr, tx).

Then, ||ft||
2
2,να

= 1
t2α+3

||f||22,να and for every (µ, λ) ∈ Υ, we have

Fα(ft)(µ, λ) =
1

t2α+3
Fα(f)

(µ
t
,
λ

t

)
.

Replacing f by ft in the relation (4.4), we deduce that for every f ∈ L2(dνα) and
every real t > 0, we have

1

t2

∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x) + t

2

∫ ∫
Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

> (2α+ 3)||f||22,να.
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In particular, if we pick

t =

( ∫∞
o

∫
R
(r2 + x2)|f(r, x)|2dνα(r, x)

)1/4
( ∫ ∫

Υ+

(µ2 + 2λ2)|Fα(f)(µ, λ)|
2dγα(µ, λ)

)1/4 ,
we get( ∫∞

o

∫
R
(r2 + x2)

∣∣f(r, x)∣∣2dνα(r, x))1/2( ∫ ∫
Υ+

(µ2 + 2λ2)
∣∣Fα(f)(µ, λ)

∣∣2dγα(µ, λ))1/2
>
(
α+ 3/2

)
||f||22,να .

�
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