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Abstract

Take three integers m ≥ 0, k ≥ 1 and n ≥ 2. Let a ( ̸≡ 0) be a holomorphic function

in a domain D of C such that multiplicities of zeros of a are at most m and divisible by

n+ 1. In this paper, we mainly obtain the following normality criterion: Let F be the

family of meromorphic functions on D such that multiplicities of zeros of each f ∈ F

are at least k +m and such that multiplicities of poles of f are at least m+ 1. If each

pair (f, g) of F satisfies that fnf (k) and gng(k) share a (ignoring multiplicity), then F

is normal.

1 Introduction

In this paper, we use the standard notations of the Nevanlinna theory as presented in

[11, 17, 50, 52]. By definition, two meromorphic functions F and G are said to share a IM

if F − a and G− a assume the same zeros ignoring multiplicity. When a = ∞ the zeros of

F − a mean the poles of F .
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Let D be a domain in C and let F be meromorphic functions defined in the domain D.

Then F is said to be normal in D, in the sense of Montel, if for any sequence {fn} ⊂ F

there exists a subsequence {fnj} such that fnj converges spherically locally uniformly in

D, to a meromorphic function or ∞ (cf. [15, 38]). For simplicity, we take → to stand for

convergence and ⇒ for convergence spherically locally uniformly.

Let M(D) (resp. A(D)) be the set of meromorphic (resp. holomorphic) functions on

D. Let n be an integer and take a positive integer k. We will study normality of the subset

F of M(D) such that fnf (k) satisfies some conditions for each f ∈ F .

First of all, we look at some background for the case n = 0. Hayman [17] proved

that if F ∈ M(C) is transcendental, then either F (k) assumes every finite non-zero complex

number infinitely often for any positive integer k, or F assumes every finite complex number

infinitely often. A normality criterion corresponding to Hayman’s theorem is obtained by

Gu [14] which is stated as follows: If F is the family in M(D) such that each f ∈ F satisfies

f (k) ̸= a and f ̸= b, where a, b are two complex numbers with a ̸= 0, then F is normal in

the sense of Montel. In particular, if F ⊂ A(D), the normality criterion was conjectured

by Montel (see [38], p.125) for k = 1, and proved by Miranda [30]. Further, Yang [51] and

Schwick [40] confirmed that the normality criterion due to Gu is true if a is replaced by a

non-zero holomorphic function on D. In 2001, Jiang and Gao [22] proved that if F is the

family in A(D) such that the multiplicities of zeros of each f ∈ F are least k +m+ 2 for

another non-negative integer m and such that each pair (f, g) of F satisfies that f (k) and

g(k) share a IM (ignoring multiplicity), where a ∈ A(D) and multiplicities of zeros of a are

at most m, then F is normal in D, and obtained a similar result when F ⊂ M(D). For

other generations, see [3], [4], [5], [10], [23], [27], [28], [43], [44] and [46].

Next we introduce some developments for the case n ≥ 1 and k = 1. In 1959, Hayman

[16] proposed a conjecture: If F ∈ M(C) is transcendental, then FnF ′ assumes every finite

non-zero complex number infinitely often for any positive integer n. Hayman himself [16, 18]

showed it is true for n ≥ 3, and for n = 2, F ∈ A(C). Mues [31] confirmed the conjecture for

n = 2 in 1979. Furthermore, the case of n = 1 was considered by Clunie [9] when F ∈ A(C);
finally settled by Bergweiler and Eremenko [2], Chen and Fang [6]. Related to these results

on value distribution, Hayman [18] conjectured that if F is the family of M(D) such that

each f ∈ F satisfies fnf ′ ̸= a for a positive integer n and a non-zero complex number a,

then F is normal. This conjecture has been confirmed by Yang and Zhang [54] (for n ≥ 5,

and for n ≥ 2 with F ⊂ A(D)), Gu [13] (for n = 3, 4), Pang [34] (for n ≥ 2; cf. [12]), and

Oshkin [32] (for n = 1 with F ⊂ A(D); cf. [24]). Finally, Pang [34] (or see [6, 55, 56])

indicated that the conjecture for n = 1 is a consequence of his theorem and Chen-Fang’s

theorem [6]. Recently, based on the ideas of sharing values, Zhang [58] proved that if F

is the family of M(D) such that each pair (f, g) of F satisfies that fnf ′ and gng′ share
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a finite non-zero complex number a IM for n ≥ 2, then F is normal. There are examples

showing that this result is not true for the case n = 1. Further, Jiang [22] concluded that if

F is the family of M(D) such that each pair (f, g) of F satisfies that fnf ′ and gng′ share

a IM for n ≥ 2m+ 2, where a ∈ A(D) and multiplicities of zeros of a are at most m, then

F is normal.

Similarly, we also have analogues related to some conditions of f
(
f (k)

)l
for a positive

integer l. For example, Zhang and Song [60] announced that if F ∈ M(C) is transcendental;
a(̸≡ 0) a small function of F ; l ≥ 2, then F

(
F (k)

)l − a has infinitely many zeros. A simple

proof was given by Alotaibi [1]. The normality criterion corresponding to this result was

obtained by Jiang and Gao [21] which is stated as follows: Let l, k ≥ 2,m ≥ 0 be three

integers such that m is divisible by l+1 and suppose that a(̸≡ 0) is a holomorphic function

in D with zeros of multiplicity m. If F is the family of A(D) (resp. M(D)) such that

multiplicities of zeros of each f ∈ F is at least k + m (resp. max{k + m, 2m + 2}) and

such that each pair (f, g) of F satisfies that f
(
f (k)

)l
and g

(
g(k)

)l
share a IM, then F is

normal. For more results related to this topic, see Hennekemper [19], Hu and Meng [20], Li

[25, 26], Schwick [39], Wang and Fang [42], C. Yang, L. Yang and Y. Wang [49].

Finally, we consider general cases of n ≥ 1 and k ≥ 1. In 1994, Zhang and Li [61] proved

that if F ∈ M(C) is transcendental, then FnL[F ] − a has infinitely many zeros for n ≥ 2

and a ̸= 0,∞, where

L[F ] = akF
(k) + ak−1F

(k−1) + · · ·+ a0F

in which ai (i = 0, 1, 2, · · · , k) are small functions of F . In 1999, Pang and Zalcman [36]

obtained a corresponding normality criterion as follows: If F is the family of A(D) such

that zeros of each f ∈ F have multiplicities at least k and such that each f ∈ F satisfies

fnf (k) ̸= a for a non-zero complex number a, then F is normal. In 2005, Zhang [59] showed

that when n ≥ 2, this result is also true if a is replaced by a non-vanishing holomorphic

functions in D. For other related results, see Meng and Hu [29], Qi [37], Wang [41], Xu

[45], Yang and Hu [48], L. Yang and C. Yang [53].

Take three integers m ≥ 0, k ≥ 1 and n ≥ 2. Let a (̸≡ 0) be a holomorphic function in

D such that multiplicities of zeros of a are at most m and divisible by n+1. In this paper,

we obtain the following normality criteria:

Theorem 1.1. Let F be the family of M(D) such that multiplicities of zeros of each f ∈ F

are at least k +m and such that multiplicities of poles of f are at least m + 1 whenever f

have zeros and poles. If each pair (f, g) of F satisfies that fnf (k) and gng(k) share a IM,

then F is normal in D.

In special, if a has no zeros, which means m = 0, then Theorem 1.1 has the following

form:
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Corollary 1.1. Let F be the family of M(D) such that multiplicities of zeros of each

f ∈ F are at least k. If each pair (f, g) of F satisfies that fnf (k) and gng(k) share a IM,

then F is normal in D.

It is easy to see that this result extends above normality criteria due to Pang and

Zalcman [36], and Zhang [59]. Furthermore, we can improve partially the normality criterion

due to Jiang [22] as follows:

Theorem 1.2. If F is the family of M(D) such that each f ∈ F satisfies that fnf ′ ̸= a,

then F is normal in D.

The condition a(z) ̸≡ 0 in Theorem 1.1 and Theorem 1.2 is necessary. This fact can be

illustrated by the following example:

Example 1.1. Let D = {z ∈ C | |z| < 1}. Let a(z) ≡ 0 and

F =
{
fj(z) = ej(z−

1
2
)
∣∣∣ j = 1, 2, · · ·

}
Obviously, fn

i f
(k)
i and fn

j f
(k)
j share a IM for distinct positive integers i and j (resp. fn

j f
′
j ̸=

a), but the family F is not normal at z = 1/2.

In Corollary 1.1, the condition that multiplicities of zeros of each f ∈ F are at least k

is sharp. For example, we consider the following family:

Example 1.2. Denote D as in Example 1.1. Let a(z) = ez and

F =

{
fj(z) = j

(
z − 1

2j

)k−1
∣∣∣∣∣ j = 1, 2, · · ·

}
.

Any fj ∈ F has only a zero of multiplicity k − 1 in D and for distinct positive integers i

and j, fn
i f

(k)
i and fn

j f
(k)
j share a IM. However, the family F is not normal at z = 0.

2 Preliminary lemmas

In order to prove our results, we require the following Zalcman’s lemma (cf. [56]):

Lemma 2.1. Take a positive integer k. Let F be a family of meromorphic functions in

the unit disc △ with the property that zeros of each f ∈ F are of multiplicity at least k. If

F is not normal at a point z0 ∈ ∆, then for 0 ≤ α < k, there exist a sequence {zn} ⊂ ∆

of complex numbers with zn → z0; a sequence {fn} of F ; and a sequence {ρn} of positive

numbers with ρn → 0 such that gn(ξ) = ρ−α
n fn(zn + ρnξ) locally uniformly (with respect

to the spherical metric) to a nonconstant meromorphic function g(ξ) on C. Moreover, the

zeros of g(ξ) are of multiplicity at least k, and the function g(ξ) may be taken to satisfy the

normalization g♯(ξ) ≤ g♯(0) = 1 for any ξ ∈ C. In particular, g(ξ) has at most order 2.
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This result is Pang’s generalization (cf. [33, 35, 47]) to the Main Lemma in [55] (where α

is taken to be 0), with improvements due to Schwick [39], Chen and Gu [7]. In Lemma 2.1,

the order of g is defined by using the Nevanlinna’s characteristic function T (r, g):

ord(g) = lim sup
r→∞

log T (r, g)

log r
.

Here, as usual, g♯ denotes the spherical derivative

g♯(ξ) =
|g′(ξ)|

1 + |g(ξ)|2
.

Lemma 2.2. Let p ≥ 0, k ≥ 1 and n ≥ 2 be three integers, and let a be a non-zero

polynomial of degree p. If f is a non-constant rational function which has only zeros of

multiplicity at least k + p and has only poles of multiplicity at least p + 1, then fnf (k) − a

has at least one zero.

Proof. If f is a polynomial, then f (k) ̸≡ 0 since f is non-constant and has only zeros of

multiplicity at least k + p which further means deg(f) ≥ k + p. Noting that n ≥ 2, we

immediately obtain that

deg
(
fnf (k)

)
≥ n deg(f) ≥ n(k + p) > p = deg(a).

Therefore, it follows that fnf (k)−a is also a non-constant polynomial, and hence fnf (k)−a

has at least one zero. Next we assume that f has poles. Set

f(z) =
A(z − α1)

m1(z − α2)
m2 · · · (z − αs)

ms

(z − β1)n1(z − β2)n2 · · · (z − βt)nt
, (2.1)

where A is a non-zero constant, αi distinct zeroes of f with s ≥ 0, and βj distinct poles of

f with t ≥ 1. For simplicity, we put

m1 +m2 + · · ·+ms = M ≥ (k + p)s, (2.2)

n1 + n2 + · · ·+ nt = N ≥ (p+ 1)t. (2.3)

From (2.1), we obtain

f (k)(z) =
(z − α1)

m1−k(z − α2)
m2−k · · · (z − αs)

ms−kg(z)

(z − β1)n1+k(z − β2)n2+k · · · (z − βt)nt+k
, (2.4)

where g is a polynomial of degree ≤ k(s+ t− 1). From (2.1) and (2.4), we get

fn(z)f (k)(z) =
An(z − α1)

M1(z − α2)
M2 · · · (z − αs)

Msg(z)

(z − β1)N1(z − β2)N2 · · · (z − βt)Nt
, (2.5)

5



in which

Mi = (n+ 1)mi − k, i = 1, 2, · · · , s,

Nj = (n+ 1)nj + k, j = 1, 2, · · · , t.

Differentiating (2.5) yields{
fnf (k)

}(p+1)
(z) =

(z − α1)
M1−p−1(z − α2)

M2−p−1 · · · (z − αs)
Ms−p−1g0(z)

(z − β1)N1+p+1 · · · (z − βt)Nt+p+1
, (2.6)

where g0(z) is a polynomial of degree ≤ (p+ k+1)(s+ t− 1). We assume, to the contrary,

that fnf (k) − a has no zero, then

fn(z)f (k)(z) = a(z) +
C

(z − β1)N1(z − β2)N2 · · · (z − βt)Nt
, (2.7)

where C is a non-zero constant. Subsequently, (2.7) yields{
fnf (k)

}(p+1)
(z) =

g1(z)

(z − β1)N1+p+1 · · · (z − βt)Nt+p+1
, (2.8)

where g1(z) is a polynomial of degree ≤ (p+ 1)(t− 1).

Comparing (2.6) with (2.8), we get

(p+ 1)(t− 1) ≥ deg(g1) ≥ (n+ 1)M − ks− (p+ 1)s,

and hence

M <
p+ k + 1

n+ 1
s+

p+ 1

n+ 1
t. (2.9)

From (2.5) and (2.7) we have

(n+ 1)N + kt+ p = (n+ 1)M − ks+ deg(g).

Since deg(g) ≤ k(s+ t− 1), we find

(n+ 1)N ≤ (n+ 1)M − ks+ k(s+ t− 1)− kt− p,

and thus

N < M. (2.10)

By (2.9), (2.10) and noting that M ≥ (k + p)s, N ≥ (p+ 1)t, we deduce that

M <
p+ k + 1

n+ 1
s+

p+ 1

n+ 1
t ≤

{
p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1

}
M. (2.11)

Note that n ≥ 2 implies

p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1
=

2(k + p) + 1

(n+ 1)(k + p)
≤ 1.

Hence it follows from (2.11) that M < M , which is a contradiction. Lemma 2.2 is proved.
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Lemma 2.3. Let p ≥ 0, k ≥ 1 and n ≥ 2 be three integers, and let a be a non-zero

polynomial of degree p. If f is a non-constant rational function which has only zeros of

multiplicity at least k + p and has only poles of multiplicity at least p + 1, then fnf (k) − a

has at least two distinct zeros.

Proof. Lemma 2.2 implies that fnf (k) − a has at least one zero. Assume, to the contrary,

that fnf (k) − a has only one zero z0. If f is a polynomial, then we can write

fn(z)f (k)(z)− a(z) = A′(z − z0)
d,

where A′ is a non-zero constant and d is a positive integer. Since f is a non-constant

polynomial which has only zeros of multiplicity at least k + p, we find f (k) ̸≡ 0, and hence

d = deg(fnf (k) − a) ≥ deg(fn) ≥ n(k + p) ≥ 2p+ 2.

By computing we find{
fnf (k)

}(p+1)
(z) = A′d(d− 1)...(d− p)(z − z0)

d−p−1,

hence
{
fnf (k)

}(p+1)
has a unique zero z0. Take a zero ξ0 of f , then it is a zero of fn

with multiplicity at least 2p + 2. It follows that ξ0 is a common zero of
{
fnf (k)

}(p)
and{

fnf (k)
}(p+1)

, which further implies that ξ0 = z0. Therefore, we obtain
{
fnf (k)

}(p)
(z0) =

0.

On the other hand, we get{
fnf (k)

}(p)
(z) = a(p)(z) +A′d(d− 1)...(d− p+ 1)(z − z0)

d−p,

which means {
fnf (k)

}(p)
(z0) = a(p)(z0) ̸= 0

since deg(a) = p. This is contradictory to
{
fnf (k)

}(p)
(z0) = 0.

If f has poles, we can express f by (2.1) again, and then find

fn(z)f (k)(z) = a(z) +
C ′(z − z0)

l

(z − β1)N1(z − β2)N2 · · · (z − βt)Nt
, (2.12)

where C ′ is a non-zero constant and l is a positive integer. We distinguish two cases to

deduce contradictions.

Case 1. p ≥ l. Since p ≥ l, the expression (2.5) together with (2.12) implies that

(n+ 1)N + kt+ p = (n+ 1)M − ks+ deg(g).
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Therefore, we can also conclude (2.10), that is, N < M . Differentiating (2.12), we obtain{
fnf (k)

}(p+1)
(z) =

g2(z)

(z − β1)N1+p+1 · · · (z − βt)Nt+p+1
,

where g2(z) is a polynomial of degree at most (p+ 1)t− (p− l + 1), and hence

(p+ 1)t− (p− l + 1) ≥ deg(g2) ≥ (n+ 1)M − ks− (p+ 1)s.

where the last estimate follows from (2.6). Then we have

p− l

n+ 1
<

p+ k + 1

n+ 1
s+

p+ 1

n+ 1
t−M ≤

{
p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1
− 1

}
M (2.13)

since M ≥ (k + p)s,N ≥ (p+ 1)t,M > N . It follows that

p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1
≤ 1

since n ≥ 2. Therefore, from (2.13) we conclude that p − l < 0, a contradiction with the

assumption p ≥ l.

Case 2. l > p. The expression (2.12) yields{
fnf (k)

}(p+1)
(z) =

(z − z0)
l−p−1g3(z)

(z − β1)N1+p+1 · · · (z − βt)Nt+p+1
, (2.14)

where g3(z) is a polynomial with deg(g3) ≤ (p + 1)t. We claim that z0 ̸= αi for each i.

Otherwise, if z0 = αi for some i, then (2.12) yields

a(p)(z0) =
{
fnf (k)

}(p)
(αi) = 0

because each αi is a zero of fnf (k) of multiplicity ≥ n(k + p) ≥ 2p+ 2. This is impossible

since deg(a) = p. Hence (z − z0)
l−p−1 is a factor of the polynomial g0 in (2.6). By (2.6)

and (2.14), we conclude that

(p+ 1)t ≥ deg(g3) ≥ (n+ 1)M − ks− (p+ 1)s,

which is equivalent to

M ≤ p+ k + 1

n+ 1
s+

p+ 1

n+ 1
t. (2.15)

If l ̸= (n+ 1)N + kt+ p, then (2.5) together with (2.12) implies

(n+ 1)N + kt+ p ≤ (n+ 1)M − ks+ deg(g),
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so we get N < M from deg(g) ≤ k(s+t−1). Therefore, by using the factsM ≥ (k+p)s,N ≥
(p+ 1)t, (2.15) implies a contradiction

M <

{
p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1

}
M ≤ M.

Hence l = (n+ 1)N + kt+ p.

Now we must have N ≥ M , otherwise, when N < M , we can deduce the contradiction

M < M from (2.15). Comparing (2.6) with (2.14), we find

(p+ k + 1)(s+ t− 1) ≥ deg(g0) ≥ l − p− 1

since (z − z0)
l−p−1|g0, and hence

(n+ 1)N + kt+ p = l ≤ (p+ k + 1)s+ (p+ k + 1)t− k,

which further yields

N <
p+ k + 1

n+ 1
s+

p+ 1

n+ 1
t.

Since M ≥ (k + p)s and N ≥ (p+ 1)t, it follows from (2.15) that

N <
p+ k + 1

(n+ 1)(k + p)
M +

1

n+ 1
N.

Hence N ≥ M yields

N <

{
p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1

}
N. (2.16)

Since n ≥ 2, we obtain consequently

p+ k + 1

(n+ 1)(k + p)
+

1

n+ 1
≤ 1.

Hence (2.16) yields N < N . This is a contradiction. Proof of Lemma 2.3 is completed.

Lemma 2.4. Let p ≥ 0 and n ≥ 2 be two integers such that p is divisible by n + 1, and

let a be a non-zero polynomial of degree p. If f is a non-constant rational function, then

fnf ′ − a has at least one zero.

Proof. If f is a non-constant polynomial, then f ′ ̸≡ 0. We consequently conclude that

deg
(
fnf ′) = (n+ 1) deg(f)− 1 ̸= p

since p is divisible by n+ 1. It follows that fnf ′ − a is also a non-constant polynomial, so

that fnf ′ − a has at least one zero.
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If f has poles, we can express f by (2.1) again, and then, by differentiating (2.1), we

deduce that

f ′(z) =
(z − α1)

m1−1(z − α2)
m2−1 · · · (z − αs)

ms−1h(z)

(z − β1)n1+1(z − β2)n2+1 · · · (z − βt)nt+1
, (2.17)

where h(z) is a polynomial of form

h(z) = (M −N)zs+t−1 + · · · .

From (2.1) and (2.17), we obtain

fnf ′ =
P

Q
,

in which

P (z) = An(z − α1)
(n+1)m1−1(z − α2)

(n+1)m2−1 · · · (z − αs)
(n+1)ms−1h(z),

Q(z) = (z − β1)
(n+1)n1+1(z − β2)

(n+1)n2+1 · · · (z − βt)
(n+1)nt+1.

We suppose, to the contrary, that fnf ′ − a has no zero. When M ̸= N , we have

fnf ′ = a+
B

Q
=

P

Q
,

where B is a non-zero constant. Therefore, we obtain

deg(P ) = deg(Qa+B) = deg(Q) + p.

This implies that

(n+ 1)M − s+ (s+ t− 1) = (n+ 1)N + t+ p,

or equivalently

M −N =
p+ 1

n+ 1
,

in which p is divisible by n+ 1. This is impossible since M −N is an integer.

If M = N , we can rewrite (2.1) as follows

f(z) = A+
B′(z − γ1)

l1(z − γ2)
l2 · · · (z − γr)

lr

(z − β1)n1(z − β2)n2 · · · (z − βt)nt
,

where B′ is a non-zero constant, γi are distinct with li ≥ 1, r ≥ 0 and

M ′ = l1 + · · ·+ lr < N.

Thus we find

f ′(z) =
(z − γ1)

l1−1(z − γ2)
l2−1 · · · (z − γr)

lr−1~(z)
(z − β1)n1+1(z − β2)n2+1 · · · (z − βt)nt+1

,
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where ~(z) is a polynomial of form

~(z) = (M ′ −N)zr+t−1 + · · · .

Similarly, since deg(P ) = deg(Q) + p we have

nM +M ′ − r + (r + t− 1) = (n+ 1)N + t+ p = (n+ 1)M + t+ p,

that is,

M ′ = M + p+ 1.

This is impossible since M ′ < N = M . Therefore, fnf ′ − a has at least one zero.

The following lemma is a direct consequence of a result from [61]:

Lemma 2.5. Let n, k be two positive integers with n ≥ 2 and let a (̸≡ 0) be a polynomial.

If f is a transcendental meromorphic function in C, then fnf (k) − a has infinitely zeros.

3 Proof of Theorem 1.1

Without loss of generality, we may assume that D = {z ∈ C | |z| < 1}. For any point z0

in D, either a(z0) = 0 or a(z0) ̸= 0 holds. For simplicity, we assume z0 = 0 and distinguish

two cases.

Case 1. a(0) ̸= 0. To the contrary, we suppose that F is not normal at z0 = 0. Then,

by Lemma 2.1, there exist a sequence {zj} of complex numbers with zj → 0 (j → ∞); a

sequence {fj} of F ; and a sequence {ρj} of positive numbers with ρj → 0 (j → ∞) such

that

gj(ξ) = ρ
− k

n+1

j fj(zj + ρjξ)

converges uniformly to a non-constant meromorphic function g(ξ) in C with respect to the

spherical metric. Moreover, g(ξ) is of order at most 2. By Hurwitz’s theorem, the zeros of

g(ξ) have at least multiplicity k +m.

On every compact subset of C which contains no poles of g, we have uniformly

fn
j (zj + ρjξ)f

(k)
j (zj + ρjξ)− a(zj + ρjξ)

= gnj (ξ)g
(k)
j (ξ)− a(zj + ρjξ) ⇒ gn(ξ)g(k)(ξ)− a(0). (3.1)

If gng(k) ≡ a(0), then g has no zeros and poles. Then there exist constants ci such that

(c1, c2) ̸= (0, 0), and

g(ξ) = ec0+c1ξ+c2ξ2

since g is a non-constant meromorphic function of order at most 2. Obviously, this is

contrary to the case gng(k) ≡ a(0). Hence we have gng(k) ̸≡ a(0).
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By Lemma 2.3 and 2.5, the function gng(k) − a(0) has two distinct zeros ξ0 and ξ∗0 . We

choose a positive number δ small enough such that D1∩D2 = ∅ and such that gng(k)−a(0)

has no other zeros in D1 ∪D2 except for ξ0 and ξ∗0 , where

D1 = {ξ ∈ C | |ξ − ξ0| < δ}, D2 = {ξ ∈ C | |ξ − ξ∗0 | < δ}.

By (3.1) and Hurwitz’s theorem, there exist points ξj ∈ D1, ξ
∗
j ∈ D2 such that

fn
j (zj + ρjξj)f

(k)
j (zj + ρjξj)− a(zj + ρjξj) = 0,

and

fn
j (zj + ρjξ

∗
j )f

(k)
j (zj + ρjξ

∗
j )− a(zj + ρjξ

∗
j ) = 0

for sufficiently large j.

By the assumption in Theorem 1.1, fn
1 f

(k)
1 and fn

j f
(k)
j share a IM for each j. It follows

fn
1 (zj + ρjξj)f

(k)
1 (zj + ρjξj)− a(zj + ρjξj) = 0,

and

fn
1 (zj + ρjξ

∗
j )f

(k)
1 (zj + ρjξ

∗
j )− a(zj + ρjξ

∗
j ) = 0.

By letting j → ∞, and noting zj + ρjξj → 0, zj + ρjξ
∗
j → 0, we obtain

fn
1 (0)f

(k)
1 (0)− a(0) = 0.

Since the zeros of fn
1 (ξ)f

(k)
1 (ξ)− a(ξ) has no accumulation points, in fact we have

zj + ρjξj = 0, zj + ρjξ
∗
j = 0,

or equivalently

ξj = −zj
ρj

, ξ∗j = −zj
ρj

.

This contradicts with the facts that ξj ∈ D1, ξ
∗
j ∈ D2, D1 ∩D2 = ∅. Thus F is normal at

z0 = 0.

Case 2. a(0) = 0. We assume that z0 = 0 is a zero of a of multiplicity p. Then we have

p ≤ m by the assumption. Write a(z) = zpb(z), in which b(0) = bp ̸= 0. Since multiplicities

of all zeros of a are divisible by n + 1, then d = p/(n + 1) is just a positive integer. Thus

we obtain a new family of M(D) as follows

H =

{
f(z)

zd

∣∣∣∣ f ∈ F

}
.

We claim that H is normal at 0.

12



Otherwise, if H is not normal at 0, then by lemma 2.1 there exist a sequence {zj} of

complex numbers with zj → 0 (j → ∞); a sequence {hj} of H ; and a sequence {ρj} of

positive numbers with ρj → 0 (j → ∞) such that

gj(ξ) = ρ
− k

n+1

j hj(zj + ρjξ) (3.2)

converges uniformly to a non-constant meromorphic function g(ξ) in C with respect to the

spherical metric, where g♯(ξ) ≤ 1, ord(g) ≤ 2, and hj has the following form

hj(z) =
fj(z)

zd
.

We will deduce contradiction by distinguishing two cases.

Subcase 2.1. There exists a subsequence of zj/ρj , for simplicity we still denote it as

zj/ρj , such that zj/ρj → c as j → ∞, where c is a finite number. Thus we have

Fj(ξ) =
fj(ρjξ)

ρ
k

n+1
+d

j

=
(ρjξ)

dhj(zj + ρj(ξ − zj
ρj
))

(ρj)d(ρj)
k

n+1

⇒ ξdg(ξ − c) = h(ξ),

and

Fn
j (ξ)F

(k)
j (ξ)− a(ρjξ)

ρpj
=

fn
j (ρjξ)f

(k)
j (ρjξ)− a(ρjξ)

ρpj
⇒ hn(ξ)h(k)(ξ)− bpξ

p. (3.3)

Noting p ≤ m, it follows from Lemma 2.3 and 2.5 that hn(ξ)h(k)(ξ)−bpξ
p has two distinct

zeros at least. Additionally, with similar discussion to the proof of Case 1, we can conclude

that hn(ξ)h(k)(ξ)− bpξ
p ̸≡ 0. Let ξ1 and ξ∗1 be two distinct zeros of hn(ξ)h(k)(ξ)− bpξ

p. We

choose a positive number γ properly, such thatD3∩D4 = ∅ and such that hn(ξ)h(k)(ξ)−bpξ
p

has no other zeros in D3 ∪D4 except for ξ1 and ξ∗1 , where

D3 = {ξ ∈ C | |ξ − ξ1| < γ}, D4 = {ξ ∈ C | |ξ − ξ∗1 | < γ}.

By (3.3) and Hurwitz’s theorem, there exist points ζj ∈ D3, ζ
∗
j ∈ D4 such that

fn
j (ρjζj)f

(k)
j (ρjζj)− a(ρjζj) = 0,

and

fn
j (ρjζ

∗
j )f

(k)
j (ρjζ

∗
j )− a(ρjζ

∗
j ) = 0

for sufficiently large j. By the similar arguments in Case 1, we obtain a contradiction.
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Subcase 2.2. There exists a subsequence of zj/ρj , for simplicity we still denote it as

zj/ρj , such that zj/ρj → ∞ as j → ∞. Then

f
(k)
j (zj + ρjξ) =

{
(zj + ρjξ)

dhj(zj + ρjξ)
}(k)

= (zj + ρjξ)
dh

(k)
j (zj + ρjξ) +

k∑
i=1

ai(zj + ρjξ)
d−ih

(k−i)
j (zj + ρjξ)

= (zj + ρjξ)
dρ

− nk
n+1

j g
(k)
j (ξ) +

k∑
i=1

ai(zj + ρjξ)
d−iρ

− nk
n+1

+i

j g
(k−i)
j (ξ),

in which ai(i = 1, 2, ..., k) are all constants. Since zj/ρj → ∞, b(zj + ρjξ) → bp as j → ∞,

it follows that

bp
fn
j (zj + ρjξ)f

(k)
j (zj + ρjξ)

a(zj + ρjξ)
− bp

= bp
(zj + ρjξ)

pgnj (ξ)g
(k)
j (ξ)

b(zj + ρjξ)(zj + ρjξ)p
+

k∑
i=1

bp
(zj + ρjξ)

pgnj (ξ)g
(k−i)
j (ξ)

b(zj + ρjξ)(zj + ρjξ)p

(
ρj

zj + ρjξ

)i

− bp

⇒ gn(ξ)g(k)(ξ)− bp (3.4)

on every compact subset of C which contains no poles of g. Since all zeros of fj ∈ F have at

least multiplicity k +m, then multiplicities of zeros of g are at least k. Then from Lemma

2.3 and 2.5, the function gn(ξ)g(k)(ξ) − bp has at least two distinct zeros. With similar

discussion to the proof of Case 1, we can get a contradiction.

Hence the claim is proved, that is, H is normal at z0 = 0. Therefore, for any sequence

{ft} ⊂ F there exist ∆r = {z : |z| < r} and a subsequence {htk} of {ht(z) = ft(z)/z
d} ⊂ H

such that htk ⇒ I or ∞ in ∆r, where I is a meromorphic function. Next we distinguish two

cases.

Case A. Assume ftk(0) ̸= 0 when k is sufficiently large. Then I(0) = ∞, and hence for

arbitrary R > 0, there exists a positive number δ with 0 < δ < r such that |I(z)| > R when

z ∈ ∆δ. Hence when k is sufficiently large, we have |htk(z)| > R/2, which means that 1/ftk
is holomorphic in ∆δ. In fact, when |z| = δ/2,∣∣∣∣ 1

ftk(z)

∣∣∣∣ = ∣∣∣∣ 1

htk(z)z
d

∣∣∣∣ ≤ M =
2d+1

Rδd
.

By applying maximum principle, we have∣∣∣∣ 1

ftk(z)

∣∣∣∣ ≤ M

for z ∈ ∆δ/2. It follows from Motel’s normal criterion that there exists a convergent subse-

quence of {ftk}, that is, F is normal at 0.
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Case B. There exists a subsequence of ftk , for simplicity we still denote it as ftk , such

that ftk(0) = 0. Then we get I(0) = 0 since htk(z) = ftk(z)/z
d ⇒ I(z), and hence there

exists a positive number ρ with 0 < ρ < r such that I(z) is holomorphic in ∆ρ and has a

unique zero z = 0 in ∆ρ. Therefore, we have ftk(z) ⇒ zdI(z) in ∆ρ since htk converges

spherically locally uniformly to a holomorphic function I in ∆ρ. Thus F is normal at 0.

Similarly, we can prove that F is normal at arbitrary z0 ∈ D, hence F is normal in D.

4 Proof of Corollary 1.1

By using Lemma 2.3 and 2.5, we find that if f is a non-constant meromorphic function

which has only zeros of multiplicity at least k, then fnf (k)−a has at least two distinct zeros

for a non-zero complex number a. Therefore, noting that a has no zeroes, we can verify

that F is normal in D by utilizing the same method in the proof of Theorem 1.1.

5 Proof of Theorem 1.2

Without loss of generality, we assume that D = {z ∈ C | |z| < 1} and z0 = 0. Now we

distinguish two cases by either a(0) = 0 or a(0) ̸= 0.

Case 1. a(0) ̸= 0. To the contrary, we suppose that F is not normal at 0. By using

the notations in the proof of Theorem 1.1, we also obtain

fn
j (zj + ρjξ)f

′
j(zj + ρjξ)− a(zj + ρjξ) (5.1)

= gnj (ξ)g
′
j(ξ)− a(zj + ρjξ) ⇒ gn(ξ)g′(ξ)− a(0),

where gng(k) ̸≡ a(0).

By Lemma 2.4 and 2.5, the function gng′ − a(0) has a zero ξ2. By (5.1) and Hurwitz’s

theorem, there exist points ηj → ξ2 (j → ∞) such that for sufficiently large j, zj+ρjηj ∈ D

and

fn
j (zj + ρjηj)f

′
j(zj + ρjηj)− a(zj + ρjηj) = 0,

which contradicts the assumption that fnf ′ ̸= a.

Case 2. a(0) = 0. By using the notations in the proof of Theorem 1.1, we also get the

formulas (3.1)–(3.4). Therefore, with the similar method in Case 1, we can prove that F

is normal at z0, and hence F is normal in D.
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