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Abstract

Let H be a subgroup of a finite group G. Then we say that H is S-propermutable in G
provided G has a subgroup B such that G = NG(H)B and H permutes with all Sylow subgroups
of B. In this paper we analyze the influence of S-propermutable subgroups on the structure of G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is

always supposed to be a prime and π is a non-empty subset of the set P of all primes. We use Mφ(G)

to denote a set of maximal subgroups of G such that Φ(G) coincides with the intersection of all

subgroups in Mφ(G). If for subgroups A and B of G we have AB = BA, then A is said to permute

with B. If G = AB, then B is said to be a supplement of A to G.

Recall that a subgroupH of G is said to be S-permutable, S-quasinormal, or π-quasinormal Kegel

[11] in G provided HP = PH for all Sylow subgroups P of G. The S-permutable subgroups possess

many interesting properties (see [11, 3, 15] or Chapter 1 in [1]), and such subgroups are used for the

analysis of many questions of the group theory (see Section 5 in [20]). This circumstance was the

main motivation for the introduction and study of various generalizations of the S-permutability.

One of the most interesting generalizations of S-permutability was found by Shirong Li, Zhencai

Shen, Jianjun Liu and Xiaochun Liu: A subgroup H of G is called SS-quasinormal [18] in G if H

∗Corresponding author
Keywords: finite group, S-propermutable subgroup, Hall subgroup, Sylow subgroup, p-soluble group, p-supersoluble

group, solubly saturated formation.
Mathematics Subject Classification (2010): 20D10, 20D15, 20D20

1



permutes with all Sylow subgroups of some supplement of H to G. Nice results obtained in the

papers [18, 19, 22] were based on applications of this concept.

In this paper we consider another generalization of S-permutable subgroups.

Definition 1.1. Let H be a subgroup of G. Then we say that H is S-propermutable in G provided

there is a subgroup B of G such that G = NG(H)B and H permutes with all Sylow subgroups of B.

In fact, we meet S-propermutable subgroups quite often.

Example 1.1. 1. Every maximal subgroup of a soluble group G and every its Hall subgroup E with

|G : NG(E)| = pa are S-propermutable in G. Indeed, since G is soluble, there is a Sylow p-subgroup

P of G such that EP = PE. On the other hand, since |G : NG(E)| = pa| we have G = NG(E)P .

Hence E is S-propermutable in G.

2. If |H| = pa and H ≤ Z∞(G), then H ≤ P , where P is the Sylow p-subgroup of Z∞(G).

Therefore, since G/CG(P ) is a p-group (see Lemma 2.9 below), G = NG(H)Gp and H ≤ P ≤ Gp,

where Gp is a Sylow p-subgroup of G. Hence H is S-propermutable in G.

3. If G is metanilpotent, that is G/F (G) is nilpotent, then for every Sylow subgroup P of G

we have G = NG(P )F (G). Therefore, in this case, every characteristic subgroup of every Sylow

subgroup of G is S-propermutable in G. In particular, every Sylow subgroup of a supersoluble group

is S-propermutable.

It is clear that every SS-quasinormal subgroup is S-propermutable. The following elementary

example shows that in general the set of all S-propermutable subgroups of G is wider than the set

of all its SS-quasinormal subgroups.

Example 1.2. Let p > q > r be primes such that qr divides p− 1. Let P be a group of order p and

QR ≤ Aut(P ), where Q and R are groups with order q and r, respectively. Let G = P ⋊ (QR). Then

R is S-propermutable in G. Suppose that R is SS-quasinormal in G. Then QxR = RQx for all x ∈ G

(see Lemma 1.4 below). But QxR ≃ G/P is cyclic, so QG = PQ ≤ NG(R). Hence R is normal in

G, which implies that R ≤ CG(P ) = P . This contradiction shows that R is not SS-quasinormal in

G.

The results of the above-mentioned papers [18, 19, 22] are motivations for the following our

theorem.

Theorem A. Let E be a normal subgroup of G and P a Sylow p-subgroup of E. Suppose that

|P | > p.

(I) If every number V of some fixed Mφ(P ) is S-propermutable in G, then E is p-supersoluble.

(II) If every maximal subgroup of P is S-propermutable in G, then every chief factor of G between

E and Op′(E) is cyclic.
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As a first application of Theorem A, we prove also the following result.

Theorem B. Let X ≤ E be normal subgroups of G. Suppose that every maximal subgroup of every

non-cyclic Sylow subgroup of X is S-propermutable in G. If either X = E or X = F ∗(E), then every

chief factor of G below E is cyclic.

Let F be a class of groups. If 1 ∈ F, then we write GF to denote the intersection of all normal

subgroups N of G with G/N ∈ F. The class F is said to be a formation if either F = ∅ or 1 ∈ F

and every homomorphic image of G/GF belongs to F for any group G. The formation F is said to

be solubly saturated if G ∈ F whenever G/Φ(N) ∈ F for some soluble normal subgroup N of G.

Note that if F is a solubly saturated formation and G/E ∈ F, where every chief factor of G below

E is cyclic, then G ∈ F (see Lemma 2.13 below). Therefore from Theorem B we get

Corollary 1.1. Let F be a solubly saturated formation containing all supersoluble groups and X ≤ E

normal subgroups of G such that G/E ∈ F. Suppose that every maximal subgroup of every non-cyclic

Sylow subgroup of X is S-propermutable in G. If either X = E or X = F ∗(E), then G ∈ F.

Note Theorem A and Corollary 1.4 cover results of many papers and, in particular, some main

results in [14, 18, 19] (see Section 4).

The proof of Theorem A consists of many steps, and the following useful result is one of them.

Theorem C. Let E be a normal subgroup of G and P is a Sylow p-subgroups of E. If P is S-

propermutable in G, then E is p-soluble.

All unexplained notation and terminology are standard. The reader is referred to [17], [4], [6] or

[2] if necessary.

2 Preliminaries

Lemma 2.1 (See [9]). Let A and B be subgroups of G with G = AB.

(1) If G is π-soluble, then there are Hall π-subgroups Aπ, Bπ and Gπ of A, B and G, respectively,

such that Gπ = AπBπ

(2) For any prime p dividing |G|, there are Sylow p-subgroups Ap, Bp and Gp of A, B and G,

respectively, such that Gp = ApBp.

Lemma 2.2 (See Lemma 1.6 in [4]). Let H, K and N be subgroups of G. If HK = KH and

HN = NH, then H〈K,N〉 = 〈K,N〉H.

We say that H is propermutable in G provided there is a subgroup B of G such that G = NG(H)B

and H permutes with all subgroups of B.
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Lemma 2.3. Let H ≤ G and N be a normal subgroup of G. Suppose that H is S-propermutable

(propermutable) in G.

(1) HN/N is S-propermutable (propermutable, respectively) in G/N .

(2) H permutes with some Sylow p-subgroup of G for any prime p dividing |G|.

(3) If G is π-soluble, then H permutes with some Hall π-subgroup of G.

(4) |G : NG(H ∩N)| is a π-number, where π = π(N) ∪ π(H).

Proof. (1) First suppose that H is S-propermutable in G. By hypothesis there is a subgroup B of G

such that G = NG(H)B and H permutes with all Sylow p-subgroups of B for all primes p dividing

|B|. Then

G/N = (NG(H)N/N)(BN/N) = NG/N (HN/N)(BN/N).

Suppose that p divides |BN/N | and let K/N be any Sylow p-subgroup of BN/N . Then K =

(K ∩ B)N , so by Lemma 2.1, there are Sylow p-subgroups Kp, P and Np of K, K ∩ B and N ,

respectively, such that Kp = PNp. Let P ≤ Bp, where Bp is a Sylow p-subgroup of B. Then

K/N ≤ BpN/N , which implies that K/N = BpN/N . But H permutes with Bp, so that HN/N

permutes with K/N . Therefore HN/N is S-propermutable in G/N . The second assertion of (1) is

proved similarly.

(2) By Lemma 2.1 there are Sylow p-subgroups P1, P2 and P of NG(H), B and G, respectively,

such that P = P1P2. Then

HP = H(P1P2) = (HP1)P2 = (P1H)P2 =

P1(HP2) = P1(P2H) = (P1P2)H = PH.

(3) See the proof of (2) and use Lemma 2.2.

(4) Let p be a prime such that p 6∈ π. Then by (3) there is a Sylow p-subgroup P of G such that

HP = PH is a subgroup of G. Hence HP ∩N = H ∩N is a normal subgroup of HP . Thus p does

not divide |G : NG(H ∩N)|.

Lemma 2.4. Let H and B be subgroups of G. If G = NG(H)B and HV b = V bH for some subgroup

V of B and for all b ∈ B, then HV x = V xH for all x ∈ G.

Proof. Since G = NG(H)B we have x = bn for some b ∈ B and n ∈ NG(H). Hence HV x = HV bn =

Hn(V b)n−1 = n(V b)n−1H = V xH.

Lemma 2.5. Suppose that for subgroups A an B of G we have AB = BA and G = NG(A)B. Then

(1) AG = A(AG ∩B).

(2) If A permutes with all Sylow p-subgroups of B, then A permutes with all Sylow p-subgroups

of AG ∩B.
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Proof. (1) Since AB = BA, AB is a subgroup of G and so AG = ANG(A)B = AB ≤ 〈A,B〉 = AB.

Hence AG = AG ∩AB = A(AG ∩B).

(2) By (1) we have AG = A(AG ∩ B). Let P be any Sylow p-subgroup of AG ∩ B and P ≤ Bp,

where Bp is a Sylow of B. Then ABp = BpA and P = AG ∩B ∩Bp = AG ∩Bp. Hence ABp ∩AG =

A(Bp ∩AG) = AP = PA.

Lemma 2.6 (See Kegel [12]). Let A and B be subgroups of G such that G 6= AB and ABx = BxA,

for all x ∈ G. Then G has a proper normal subgroup N such that either A ≤ N or B ≤ N .

In our proofs we shall need the following well-known properties of supersoluble and p-supersoluble

groups.

Lemma 2.7. Let N and R be normal subgroups of G.

(1) If N ≤ Φ(G) ∩R and R/N is p-supersoluble, then R is p-supersoluble.

(2) If G is p-supersoluble and Op′(G) = 1, then p is the largest prime dividing |G|, G is supersol-

uble and F (G) = Op(G) is a normal Sylow p-subgroup of G.

(3) If G is supersoluble, then G′ ≤ F (G).

Lemma 2.8 (See Knyagina and Monakhov [13]). Let H, K and N be subgroups of G. If N is normal

in G, H permutes with K and H is a Hall subgroup of G, then

N ∩HK = (N ∩H)(N ∩K).

We use A(p− 1) to denote the class of all abelian groups of exponent dividing p− 1. The symbol

ZU(G) denotes the product of all normal subgroups N of G such that every chief factor of G below

N is cyclic.

Lemma 2.9 (See Lemma 2.2 in [21]). Let E be a normal p-subgroup of a group G. If E ≤ ZU(G)

(if E ≤ Z∞(G)), then

(G/CG(E))A(p−1) ≤ Op(G/CG(E))

(G/CG(E) is a p-group, respectively).

Proof. See the proof of Lemma 2.2 in [21].

Lemma 2.10. Suppose that G is p-soluble and Op′(G) = 1. Then F ∗(G) = Op(G).

Proof. It is clear that F (G) = Op(G) ≤ F ∗(G). Suppose that Op(G) 6= F ∗(G) and let H/Op(G) be

a chief factor of G below F ∗(G). Then, since G is p-soluble, H/Op(G) is a non-abelian p′-group and

Op(G) ≤ Z∞(H) by [10, Chapter X, Theorems 13.6 and 13.7]. Hence H/CH(Op(G)) is a p-group by

Lemma 2.9. On the other hand, by the Schur-Zassenhaus theorem, Op(G) has a complement E in H.

Then E ≤ CH(Op(G)), which implies that E is normal in H. Thus E is a characteristic subgroup of

E, so E ≤ Op′(G) = 1, a contradiction.
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Lemma 2.11 (See Lemma 2.15 in [7]). Let E be a normal non-identity quasinilpotent subgroup of

G. If Φ(G) ∩E = 1, then E is the direct product of some minimal normal subgroups of G.

Let F be a class of groups. A chief factor H/K of G is called F-central in G provided (H/K)⋊

(G/CG(H/K)) ∈ F.

Lemma 2.12 (See Theorem B in [21]). Let F be any formation and E a normal subgroup of G. If

each chief factor of G below F ∗(E) is F-central in G, then each chief factor of G below E is F-central

in G as well.

Lemma 2.13 (See Lemma 3.3 in [7]). Let F be a solubly saturated formation containing all supersolble

groups and E a normal subgroups of G with G/E ∈ F. If every chief factor of G below E is cyclic,

then G ∈ F.

Recall that G is called a Schmidt group provided G is not nilpotent but every proper subgroup

of G is nilpotent. We shall need in our proofs the following facts on Schmidt groups.

Lemma 2.14 (See Theorem 25.4 in [16]). Let G be a Schmidt group Then

(a) G = P ⋊ Q, where P is a Sylow p-subgroup of G of exponent p or exponent 4 (if P is a

non-abelian 2-group), Q is a Sylow q-subgroup of G for some primes p 6= q.

(b) P/Φ(P ) is a chief factor of G and CG(P/Φ(P )) 6= G.

Lemma 2.15. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that (p −

1, |G|) = 1. If either P is cyclic or G is p-supersoluble, then E is p-nilpotent and E/Op′(E) ≤

Z∞(G/Op′(E)).

Proof. Let H/K be any chief factor of G such that Op′(E) ≤ K < H ≤ E. Then |H/K| = p,

so G/CG(H/K) divides p − 1. But by hypothesis, (p − 1, |G|) = 1. Hence CG(H/K) = G. Thus

E/Op′(E) ≤ Z∞(G/Op′(E)).

Lemma 2.16. Let P be a normal p-subgroup of G. If P/Φ(P ) ≤ ZU(G/Φ(P )), then P ≤ ZU(G).

Proof. Let C = CG(P ), H/K any chief factor of G below P . Then Op(G/CG(H/K)) = 1 by

[23, Appendix C, Corollary 6.4]. Suppose that P/Φ(P ) ≤ ZU(G/Φ(P )). Then by Lemma 2.9,

(G/CG(P/Φ(P )))A(p−1) is a p-group. Hence (G/C)A(p−1) is a p-group by [5, Chapter 5, Theorem 1.4

]. Thus G/CG(H/K) ∈ A(p − 1) and so |H/K| = p by [23, Chapter 1, Theorem 1.4]. This implies

that P ≤ ZU(G).

Lemma 2.17 (See Corollary 1.11 in [7]). Let N be a normal soluble subgroup of G. Then F ∗(G/Φ(N)) =

F ∗(G)/Φ(N).
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Lemma 2.18 (See Theorem A* in [8]). Let H be a Hall π-subgroup of G. Let G = HT for some

subgroup T of G, and q a prime. If H permutes with every Sylow p-subgroup of T for all primes

p 6= q, then T contains a complement of H in G and any two complements of H in G are conjugate.

Lemma 2.19. Let A and B be subgroups of G. If AxB = BAx for all x ∈ G, then ABx = BxA for

all x ∈ G.

Proof. Indeed, from Ax−1

B = BAx−1

we get ABx = (Ax−1

B)x = (BAx−1

)x = BxA.

A group G is said to be π-closed (p-closed) provided G has a normal Hall π-subgroup (a normal

Sylow p-subgroup, respectively).

Lemma 2.20 (See Corollary 1.7 in [7]). Let N and R be normal subgroups of G. If N ≤ Φ(G) ∩R

and R/N is π-closed, then R is π-closed

3 Proofs of Theorems A, B and C

Proof of Theorem C. Suppose that this theorem is false and let G be a counterexample with

|G|+ |E| minimal. Suppose that there is a non-identity p-soluble normal subgroup N of G such that

N ≤ E. If P ≤ N , then G/N is a p′-group and so the p-solubility of N implies the p-solubility of

E. On the other hand, if P � N , then the hypothesis holds for G/N by Lemma 2.3 (1). Hence

E/N is p-soluble by the choice of (G,E) since |G/N | < |G|. Therefore E is p-soluble. But this

contradicts the choice of (G,E). Hence every non-identity normal subgroup N of G contained in E

is not p-soluble.

By hypothesis there is a subgroup B of G such that G = NG(P )B and P permutes with all Sylow

subgroups of B. We shall show that E = PG = G = PB. Indeed, by Lemma 2.5, PG = P (PG ∩B)

and P permutes with all Sylow subgroups of PG∩B. Hence P is S-propermutable in PG. If PG 6= G,

then PG is p-soluble by the choice of (G,E) since PG ≤ E. Therefore G has a non-identity p-soluble

normal subgroup, a contradiction. Thus E = PG = G = PB.

Let Q be any Sylow q-subgroup of B such that q 6= p. Then p divides |QG| and P0 = P ∩QG is a

Sylow p-subgroup of QG. We show that the hypothesis holds for (QG, P0). Indeed, let R be a Sylow

r-subgroup of QG ∩B, where r 6= p. Then for some Sylow r-subgroup Br of B we have

R = Br ∩ (QG ∩B) = Br ∩QG.

By Lemma 2.8 we also know that

PBr ∩QG = (P ∩QG)(Br ∩QG) = P0R = RP0.

Therefore P0 is S-propermutable in QG. But since G has no non-identity p-soluble normal subgroups,

the choice of (G,E) implies that QG = G. Note that by Burnside’s paqb-theorem we have PQ 6= G.
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On the other hand, by Lemma 2.4, PQx = QxP for all x ∈ G and so by Lemma 2.6, PG 6= G. This

contradiction completes the proof of the result.

Proof of Theorem A. (I) Suppose that this assertion is false and let G be a counterexample

with |G|+|E| minimal. Let V ∈ Mφ(P ). By hypothesis there is a subgroup B of G that G = NG(V )B

and V permutes with all Sylow q-subgroups of B.

(1) V G = V (V G ∩ B) and V permutes with every Sylow q-subgroup of V G ∩ B for all primes q

dividing |V G ∩B| (This directly follows from Lemma 2.5).

(2) Op′(N) = 1 for every normal subgroup N of G contained in E.

Suppose that for some normal subgroup N of G contained in E we have Op′(N) 6= 1. Since

Op′(N) is a characteristic subgroup of N , it is normal in G. On the other hand, by Lemma 2.3 (1),

the hypothesis holds for (G/Op′(N), E/Op′ (N)). Hence E/Op′(N) is p-supersoluble by the choice of

(G,E). Thus E is p-supersoluble, a contradiction.

(3) If L is a minimal normal subgroup of G, then L � Φ(P ).

Indeed, in the case, where L ≤ Φ(P ), we have L ≤ Φ(E) and the hypothesis holds for (G/L,E/L)

by Lemma 2.3 (1). Hence E/L is p-supersoluble by the choice of (G,E). Therefore E is p-supersoluble

by Lemma 2.7 (1), which contradicts to our assumption on E.

(4) If D is a normal p-soluble subgroup of G contained in E, then D is supersoluble and p-closed.

By (2), Op′(D) = 1. Therefore Op = Op(D) 6= 1. Let N be a minimal normal subgroup of G

contained in Op. In view of (3) we have N � Φ(P ). Hence for some subgroup W ∈ Mφ(P ) we

have P = NW . Let S = N ∩W . Then S is normal in P . On the other hand, by Lemma 2.3 (4),

|G : NG(S)| is a power of p. Hence |E : NE(S)| = |E : NG(S) ∩ E| = |ENG(S) : NG(S)| is a power

of p. Thus S is normal in E. By Proposition 4.13 (c) in [4, Chapter A], N = N1 × . . . ×Nt, where

N1, . . . , Nt are minimal normal subgroups of E, and from the proof of this proposition we know also

that |Ni| = |Nj | for all i, j. Therefore there is a minimal normal subgroup L of E such that N = SL

and S ∩ L = 1. Hence P = L ⋊W , which implies by Gaschütz’s theorem [9, Chapter I, Satz 17.4]

that L has a complement M in E. Thus N � Φ(E) and N1, . . . , Nt are groups of order p. It is

clear that Φ(E) ∩ Op is normal in G. Therefore Φ(E) ∩ Op = 1. Hence Op = L1 × . . . × Lt, where

L1, . . . , Lt are minimal normal subgroups of E by Lemma 2.11. If for some i we have Li � Φ(P ),

then, as above, one can show that |Li| = p. Therefore there are normal subgroups F and M of E

such that Op = FM , every chief factor of E below M is cyclic and F ≤ Φ(P ) ≤ Φ(E). Now consider

D/F . It is clear Op(D/F ) = Op/F = MF/F . On the other hand, by Lemma 2.20, Op′(D/F ) = 1

since Op′(D) = 1. Therefore by Lemma 2.10, F ∗(D/F ) = Op/F , where every chief factor of D/F

below F ∗(D/F ) is cyclic. Hence D/F is supersoluble, so D is supersoluble by Lemma 2.7 (1). But

Op′(D) = 1, so Op is a Sylow p-subgroup of D by Lemma 2.7 (2).

(5) E is p-soluble.

Assume that E is not p-soluble.
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(a) If Op(E) 6= 1, then P is not cyclic.

Suppose that P is cyclic. Let L be a minimal normal subgroup of G contained in Op(E) ≤ P .

Suppose that CE(L) = E, so L ≤ Z(E). Let N = NE(P ). If P ≤ Z(N), then E is p-nilpotent

by Burnside’s theorem [9, Chapter IV, Satz 2.6], which contradicts the choice of (G,E). Hence

N 6= CE(P ). Let x ∈ N\CE(P ) with (|x|, |P |) = 1 and K = P ⋊ 〈x〉. By [9, Chapter III, Satz 13.4],

P = [K,P ] × (P ∩ Z(K)). Since L ≤ P ∩ Z(K) and P is cyclic, it follows that P = P ∩ Z(K) and

so x ∈ CK(P ). This contradiction shows that CE(L) 6= E.

Since P is cyclic, |L| = p. Hence G/CG(L) is a cyclic group of order dividing p− 1. If |P/L| > p,

then the hypothesis holds for (G/L,E/L) by Lemma 2.3 (1). Hence E/L is p-supersoluble by the

choice of (G,E) and so E is p-soluble, a contradiction. Thus |P/L| = p and hence V = L is normal in

G. Therefore the hypothesis holds for (G,CE(L)), so CE(L) is p-supersoluble since CE(L) 6= E. But

then E is p-soluble since E/CE(L) = E/E ∩ CG(L) ≃ ECG(L)/CG(L) is cyclic. This contradiction

shows that we have (a).

(b) If P � V G, then V is normal in G.

Indeed, since P � V G ≤ E, V is a Sylow p-subgroup of V G. On the other hand, by (1) we have

V G = V (V G ∩B) and V is S-propermutable in V G. Therefore V G is p-soluble by Theorem C. Thus

V is normal in V G by (4). Since V is a Sylow p-subgroup of V G, V is characteristic in V G. Hence

V = V G is normal in G.

(c) P is not cyclic.

Suppose that P is cyclic. Then Mφ(P ) = {V }, and by (1), (a) and (b) we have P ≤ V G =

V (V G∩B) and V permutes with every Sylow q-subgroup of V G∩B for all primes q dividing |V G∩B|.

Hence the hypothesis holds for (V G, V G). Assume that V G 6= G. Then V G is p-supersoluble by the

choice of (G,E). Hence by (4), P is normal in G, which contradicts (a). Therefore V G = G, which

implies that G = V B by (1). Hence P = P ∩V B = V (P ∩B), so P ≤ B since P is cyclic. Therefore

B = G, so V is S-permutable in G. Hence V ≤ PE ≤ Op(E), which contradicts (a). Hence P is not

cyclic.

(d) P permutes with every Sylow q-subgroup Q of PG for all primes q 6= p dividing |PG|.

Let D = PG. In view (c), there is a subgroup W ∈ Mφ(P ) such that V 6= W . Then P = VW .

Hence in view of Lemma 2.2 we have only to show that V and W permute with Q. In view of (b) we

may suppose that P ≤ V G and P ≤ WG. Then D = PG ≤ V G and so by (1), D = V (D ∩B) and V

permutes with every Sylow q-subgroup Q1 of D∩B. It is also clear that Q1 is a Sylow q-subgroup of

D. Therefore for some x ∈ D we have Q1 = Qx. Hence V permutes with Q by Lemma 2.4. Similarly,

it may be proved that W permutes with Q.

Final contradiction for (5). By (d) and Lemma 2.18, PG has a Hall p′-subgroup. Hence by (d),

P is S-propermutable in PG. Therefore by Theorem C, PG is p-soluble. Hence by (4), P is normal

in G. Therefore E is p-soluble. This contradiction completes the proof of (5).
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By (5), E is p-soluble. Hence E is supersoluble by (4). This contradiction completes the proof

of (I).

(II) Suppose that this assertion is false and let G be a counterexample with |G| + |E| minimal.

Let Z = ZU(G). First we show that Op′(E) = 1. Indeed, suppose that Op′(E) 6= 1. It is clear that

Op′(E) is normal in G. Moreover, the hypothesis holds for (G/Op′(E), E/Op′(E)) by Lemma 2.3 (1).

Therefore every chief factor of G/Op′(E) below E/Op′(E) is cyclic by the choice of (G,E). Hence

every chief factor of G between E and Op′(E) is cyclic, a contradiction. Thus Op′(E) = 1.

By (I), E is p-supersoluble. Hence by Lemma 2.7 (2), E is supersoluble and P = F (E). Hence

the hypothesis is true for (G,P ). If P 6= E, then every chief factor of G below P is cyclic by the

choice of (G,E). Hence every chief factor of G below E is cyclic by Lemma 2.12, contrary to the

choice of (G,E). Hence P = E.

Let N be any minimal normal subgroup of G contained in P . Then the hypothesis holds for

(G/N,P/N), so every chief factor of G/N below P/N is cyclic by the choice of (G,E). Thus

|N | > p. Moreover, N � Φ(P ), otherwise every chief factor of G below P is cyclic by Lemma 2.16.

Thus Φ(P ) = 1 and so P is elementary abelian p-group. Let W be a maximal subgroup of N such

that W is normal in a Sylow p-subgroup Gp of G. Let V = WS, where S is a complement of N

in P . Then W = V ∩ N and V is S-propermutable in G by hypothesis. Hence by Lemma 2.3 (4),

G = GpNG(W ). Therefore W is normal in G, so W = 1. This contradiction completes the proof of

Assertion (II).

Theorem is proved.

Proof of Theorem B. First we assume that X = E. Suppose that in this case the theorem

is false and consider a counterexample (G,E) for which |G|+ |E| is minimal. Let p be the smallest

prime dividing |E| and P a Sylow p-subgroup of E. Then E is p-nilpotent by Lemma 2.15 and

Theorems A. Let V be the normal Hall p′-subgroup of E. Since V charE ⊳ G, V is normal in G.

Moreover, the hypothesis holds for (G,V ) and for (G/V,E/V ) by Lemma 2.3 (1). Hence in the case

when V 6= 1 we have V ≤ ZU(G) and E/V ≤ ZU(G/V ) by the choice of (G,E). This induces that

E ≤ ZU(G), a contradiction. Therefore E = P and consequently E ≤ ZU(G) by Theorem A.

Finally, if X = F ∗(E), then as above we have F ∗(E) ≤ ZU(G). Therefore E ≤ ZU(G) by Lemma

2.12.

4 Some applications of Theorem A and Corollary 1.4

In the literature one can find many special cases of Theorem A and Corollary 1.4. Here we discuss

only some of them.

From Theorem A and Lemma 2.15 we get

Corollary 4.1 (See Theorem 1.1 in [18]). Let P be a Sylow subgroup of G, where p is the smallest
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prime dividing |G|. If every number V of some fixed Mφ(P ) is SS-quasinormal in G, then G is

p-nilpotent.

Corollary 4.2. Let P be a Sylow subgroup of G. If NG(P ) is p-nilpotent and every number V of

some fixed Mφ(P ) is S-propermutable in G, then G is p-nilpotent.

Proof. If |P | = p, then G is p-nilpotent by Burnside’s theorem [9, IV, 2.6]. Otherwise, G is p-

supersoluble by Theorem A. The hypothesis holds for G/Op′(G) by Lemma 2.3(1), so in the case,

where Op′(G) 6= 1, G/Op′(G) is p-nilpotent by induction. Hence G is p-nilpotent. Therefore we may

assume that Op′(G) = 1. But then, by Lemma 2.7(2), P is normal in G. Hence G is p-nilpotent by

hypothesis.

From Corollary 4.2 we get

Corollary 4.3 (See Theorem 1.2 in [18]). Let P be a Sylow subgroup of G. If NG(P ) is p-nilpotent

and every number V of some fixed Mφ(P ) is SS-quasinormal in G, then G is p-nilpotent.

Corollary 4.4. Let P be a Sylow subgroup of G. If G is p-soluble and every number V of some fixed

Md(P ) is S-propermutable in G, then G is p-supersoluble.

Proof. In the case, when |P | = p, this directly follows from the p-solubility of G. If |P | > p, this

corollary follows from Theorem A.

The next fact follows from Corollary 4.4.

Corollary 4.5 (See Theorem 1.3 in [18]). Let P be a Sylow subgroup of G. If G is p-soluble and

every number V of some fixed Mφ(P ) is SS-quasinormal in G, then G is p-supersoluble.

Corollary 4.6. If, for every prime p dividing |G| and P ∈ Sylp(G), every number V of some fixed

Mφ(P ) is S-propermutable in G, then G is supersoluble.

Proof. Let p be the smallest prime dividing |G|. Then G is p-nilpotent by Corollary 4.1, so G is

soluble by Fait-Thompson’s theorem. Hence G is supersoluble by Corollary 4.4.

From Corollary 4.6 we get

Corollary 4.7 (See Theorem 1.4 in [18]). If, for every prime p dividing |G| and P ∈ Sylp(G), every

number V of some fixed Mφ(P ) is SS-quasinormal in G, then G is supersoluble.

The formation F is said to be saturated if G ∈ F whenever G/Φ(G) ∈ F. It is clear that every

saturated formation is soluble saturated. Hence from Corollary 1.4 we get
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Corollary 4.8. Let F be a saturated formation containing all supersoluble groups and X ≤ E normal

subgroups of G such that G/E ∈ F. Suppose that every maximal subgroup of any non-cyclic Sylow

subgroup of X is S-propermutable in G. If either X = E or X = F ∗(E), then G ∈ F.

The following results are special cases of Corollary 4.8.

Corollary 4.9 (See Theorem 1.5 in [18]). Let F be a saturated formation containing all supersoluble

groups and E a normal subgroup of G such that G/E ∈ F. Suppose that for every maximal subgroup

of every non-cyclic Sylow subgroup of E is SS-quasinormal in G. Then G ∈ F.

Corollary 4.10 (See Theorem 3.2 in [19]). Let E a normal subgroup of G such that G/E is supersol-

uble. Suppose that for every maximal subgroup of every Sylow subgroup of F ∗(E) is SS-quasinormal

in G. Then G is supersoluble.

Corollary 4.11 (See Theorem 3.3 in [19]). Let F be a saturated formation containing all supersoluble

groups and E a normal subgroup of G such that G/E ∈ F. Suppose that for every maximal subgroup

of every Sylow subgroup of F ∗(E) is SS-quasinormal in G. Then G ∈ F.

Corollary 4.12 (See Theorem 3.2 in [14]). Let F be a saturated formation containing all supersoluble

groups and E a normal subgroup of G such that G/E ∈ F. If all maximal subgroups of F ∗(E) are

S-permutable in G, then G ∈ F.
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