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Abstract. The study of half-linear differential equations has be-
come an important area of research due to the fact that such equa-
tions occur in a variety of real world problems such as in the study
of p-Laplace equations, non-Newtonian fluid theory, and the turbu-
lent flow of a polytrophic gas in a porous medium. On the basis of
these background details, we study oscillatory behavior of a class of
second-order neutral functional dynamic equations on a time scale.
New criteria improve and complement related results reported in
the literature. Some examples are included to illustrate the results
obtained. In particular, an example regarding the second-order
neutral differential equation is also provided to show that these
theorems improve those in the continuous case.

1. Introduction

In this paper, we study oscillation of a class of second-order nonlinear
neutral functional dynamic equations

(1.1)
(
r(t)

(
(x(t) + p(t)x(η(t)))∆

)γ)∆
+ f

(
t, x(g(t))

)
= 0

on an arbitrary time scale T with supT = ∞. We assume t0 ∈ T and
it is convenient to assume t0 > 0, and define the time scale interval of
the form [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. Throughout, we assume
the following assumptions hold.

(A1) γ is a quotient of odd positive integers, r and p are real-valued
positive rd-continuous functions defined on T;

(A2) η : [t0,∞)T → T is rd-continuous, g : [t0,∞)T → T is rd-
continuous, and limt→∞ η(t) = limt→∞ g(t) = ∞;
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(A3) f(t, u) : [t0,∞)T × R → R is a continuous function such that
uf(t, u) > 0 for all u 6= 0 and there exists a positive rd-
continuous function q defined on T such that |f(t, u)| ≥ q(t)|u|γ.

By a solution of equation (1.1) we mean a nontrivial real-valued
function x ∈ C1

rd[Tx,∞)T, Tx ∈ [t0,∞)T which has the properties that
x + px ◦ η and r

(
(x + px ◦ η)∆

)γ
are defined and ∆-differentiable for

t ∈ [Tx,∞)T, and satisfies (1.1) on [Tx,∞)T. The solutions vanishing in
some neighbourhood of infinity will be excluded from our consideration.
A solution x of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise, it is called nonoscillatory.
Equation (1.1) is called oscillatory if all its solutions oscillate.

The theory of time scales is initiated by Hilger [19] in order to unify
continuous and discrete analysis. Several authors have expounded on
various aspects of the theory of dynamic equations on time scales; see
the survey paper by Agarwal et al. [1] and the references cited therein.
The books on the subject of time scales, by Bohner and Peterson [6,7],
summarize and organize much of time scale calculus. There are ap-
plications of dynamic equations on time scales to quantum mechanics,
electrical engineering, neural networks, heat transfer, combinatorics,
etc. A cover story article in New Scientist [30] discusses several pos-
sible applications. Recently, an increasing interest in obtaining suffi-
cient conditions for oscillatory or nonoscillatory behavior of different
classes of dynamic equations has been manifested, we refer the reader
to [2–5,8–14,16–18,20–29,33–36,38–40] and the references cited therein.
Agarwal et al. [4], Candan [9], Chen [10], Erbe et al. [12], Şahiner [24],
Saker [25, 26], Saker et al. [27, 28], Saker and O’Regan [29], Tripa-
thy [34], Wu et al. [36], Yang and Xu [38], and Zhang and Wang [40]
investigated (1.1) and obtained some oscillation results in the canonical
case

(1.2)

∫ ∞

t0

∆t

r1/γ(t)
= ∞,

some of which we present below for the convenience of the reader.

Theorem 1.1 (See [4, Theorem 3.4]). Let (1.2) and (A1)–(A3) hold,
η(t) = t−τ < t, g(t) = t−δ < t, and 0 ≤ p(t) < 1. Assume that γ ≥ 1,
r∆(t) ≥ 0, and there exists a positive rd-continuous ∆-differentiable
function α such that

lim sup
t→∞

∫ t

t0

[
α(s)q(s)(1− p(s− δ))γ − ((α∆(s))+)2r(s− δ)

4γ
(

s−δ
2

)γ−1
α(s)

]
∆s = ∞,

where (α∆(t))+ := max{0, α∆(t)}. Then (1.1) is oscillatory.
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In order to improve Theorem 1.1, Saker [25] established the following
new result.

Theorem 1.2 (See [25, Corollary 3.1]). Let (1.2) and (A1)–(A3) hold,
η(t) = t−τ < t, g(t) = t−δ < t, and 0 ≤ p(t) < 1. Assume that γ ≥ 1
and there exists a positive rd-continuous ∆-differentiable function α
such that

lim sup
t→∞

∫ t

t0

[
α(s)q(s)(1− p(s− δ))γ − ((α∆(s))+)γ+1r(s− δ)

(γ + 1)γ+1αγ(s)

]
∆s = ∞,

where (α∆(t))+ := max{0, α∆(t)}. Then (1.1) is oscillatory.

Note that Theorem 1.1 and Theorem 1.2 can only be applied to the
case when η(t) = t− τ < t and g(t) = t− δ < t. Later, Erbe et al. [12]
obtained the following new results. For the sake of simplification, we
use the notation

(δ∆(t))+ := max{0, δ∆(t)} and θ(t, u) :=

∫ g(t)

u
∆s/r1/γ(s)∫ t

u
∆s/r1/γ(s)

.

Theorem 1.3 (See [12, Theorem 2.1]). Let (1.2) and (A1)–(A3) hold,
0 ≤ p(t) < 1, η(t) ≤ t, and g(t) ≥ t. Assume that there exists a positive
real-valued ∆-differentiable function δ such that for all sufficiently large
T ,

(1.3) lim sup
t→∞

∫ t

T

[
δ(s)q(s)

(
1− p(g(s))

)γ

−r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]
∆s = ∞.

Then (1.1) is oscillatory.

Theorem 1.4 (See [12, Theorem 2.1]). Let (1.2) and (A1)–(A3) hold,
0 ≤ p(t) < 1, η(t) ≤ t, and g(t) ≤ t. Assume that there exists a positive
real-valued ∆-differentiable function δ such that for all sufficiently large
T∗ and for g(T ) > T∗,

(1.4) lim sup
t→∞

∫ t

T

[
δ(s)θγ(s, T∗)q(s)

(
1− p(g(s))

)γ

−r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]
∆s = ∞.

Then (1.1) is oscillatory.
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As yet, there are few results for oscillation of (1.1) in the noncanon-
ical case

(1.5)

∫ ∞

t0

∆t

r1/γ(t)
< ∞.

Saker [26] obtained some criteria for (1.1) provided that

(1.6) p∆(t) ≥ 0, g(t) ≤ η(t) ≤ t, η∆(t) ≥ 0,

and

(1.7)

∫ ∞

T

(
1

r(s)

∫ s

T

q(u)(1− p(u))γ

(∫ ∞

u

∆t

r1/γ(t)

)γ

∆u

) 1
γ

∆s = ∞

for some T ∈ [t0,∞)T. Tripathy [35] established several new results for
(1.1) in the case where 0 ≤ p(t) ≤ p0 < ∞, η(t) ≤ t, g(t) ≤ t,

(1.8) 0 < γ ≤ 1 and η ◦ g = g ◦ η.

As a special case when T = R, equation (1.1) reduces to a second-order
neutral differential equation

(1.9)
(
r(t) ((x(t) + p(t)x(η(t)))′)γ)′

+ f
(
t, x(g(t))

)
= 0

and condition (1.5) reduces to

(1.10)

∫ ∞

t0

dt

r1/γ(t)
< ∞.

Most oscillation results given in the literature for the neutral differential
equation (1.9) and its particular cases have been obtained under the
condition

∫∞
t0

r−1/γ(t)dt = ∞ which significantly simplifies the analysis

of the behavior of z(t) = x(t)+p(t)x(η(t)) for a nonoscillatory solution
x of (1.9). We note that the investigation of oscillation of equation
(1.9) in the case (1.10) brings additional difficulties. In fact, if x is an
eventually positive solution of (1.9), then the inequality

x(t) ≥ (1− p(t))z(t)

does not hold when (1.10), η(t) ≤ t, and 0 ≤ p(t) < 1 are satisfied.
Han et al. [15] derived [15, Theorem 2.1 and 2.2] under the assumptions
that η(t) = t − τ , p′(t) ≥ 0, g(t) ≤ t − τ , and (1.10) hold. Xu and
Meng [37] established [37, Theorem 2.3] for oscillation and asymptotic
behavior of (1.9) provided that η(t) = t−τ , p′(t) ≥ 0, limt→∞ p(t) = A,
and (1.10) hold. Sun et al. [31,32] studied (1.9) in the case where

(A4) r, p ∈ C([t0,∞),R), r(t) > 0, and 0 ≤ p(t) ≤ p0 < ∞;
(A5) g ∈ C1([t0,∞),R), g′(t) > 0, and limt→∞ g(t) = ∞;
(A6) η ∈ C1([t0,∞),R), η′(t) ≥ η0 > 0, and η ◦ g = g ◦ η,
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and obtained several new results, one of which we present below for
the convenience of the reader.

Theorem 1.5 (See [31, Theorem 4.1]). Assume (1.10), (A3) with T =
R, (A4)–(A6), and let γ ≥ 1 and g(t) ≤ η(t) ≤ t for all t ≥ t0. Suppose
further that there exists a function δ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0


δ(s)Q(s)

2γ−1
−

(
1 + p0

γ

η0

)
r(g(s))(δ′+(s))γ+1

(γ + 1)γ+1(δ(s)g′(s))γ


 ds = ∞.

If there exists a function τ ∈ C1([t0,∞),R) such that τ(t) ≥ t, τ ′(t) >
0, and

lim sup
t→∞

∫ t

t0


πγ(s)Q(s)

2γ−1
−

γγ+1
(
1 + p0

γ

η0

)
τ ′(s)

(γ + 1)γ+1π(s)r1/γ(τ(s))


 ds = ∞,

where Q(t) := min{q(t), q(η(t))}, δ′+(t) := max{0, δ′(t)}, and π(t) :=∫∞
τ(t)

r−1/γ(s)ds, then (1.9) is oscillatory.

Hence the natural question now is: Can one establish some new os-
cillation results for (1.1) in the case where (1.5) holds and without
conditions (1.6), (1.7), and (1.8)? The purpose of this paper is to de-
rive some new oscillation criteria for (1.1) and reply this question. This
paper is organized as follows: In Section 2, we suggest some oscillation
criteria for (1.1). In Section 3, three examples are provided to show
applications of the results obtained in Section 2. In Section 4, some
remarks are given to summarize the contents of this paper.

2. Oscillation results

In what follows, all functional inequalities are assumed to hold even-
tually, that is, they are satisfied for all t large enough. For the sake
of convenience, we use the notation z(t) := x(t) + p(t)x(η(t)) and
R(t) :=

∫∞
t

∆s
r1/γ(s)

. To prove the main theorems, we will use the formula

(2.1) (xγ)∆(t) = γx∆(t)

∫ 1

0

[
hxσ(t) + (1− h)x(t)

]γ−1
dh,

which is a simple consequence of Keller’s chain rule [6, Theorem 1.90].

Theorem 2.1. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≤ t,
g(t) ≥ σ(t), and γ ≤ 1. Assume that there exists a positive real-valued
∆-differentiable function δ such that (1.3) holds for all sufficiently large
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T . If there exists a positive real-valued ∆-differentiable function m such
that

(2.2)
m(t)

r1/γ(t)R(t)
+ m∆(t) ≤ 0, 1− p(t)

m(η(t))

m(t)
> 0,

and

(2.3)

lim sup
t→∞

∫ t

T

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
1

Rσ(s)r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈
[t0,∞)T. In view of (1.1), we obtain

(2.4) (r(z∆)γ)∆(t) ≤ −q(t)xγ(g(t)) < 0 for t ∈ [t0,∞)T.

Hence r(z∆)γ is eventually strictly decreasing and there exists a t1 ∈
[t0,∞)T such that z∆(t) > 0, or z∆(t) < 0 for t ∈ [t1,∞)T. Assume first
that z∆(t) > 0 for t ∈ [t1,∞)T. From the proof of [12, Theorem 2.1],
we can obtain a contradiction to (1.3). Assume now that z∆(t) < 0 for
t ∈ [t1,∞)T. Define the function ω by

(2.5) ω(t) :=
r(t)(z∆(t))γ

zγ(t)
.

Then ω(t) < 0 for t ∈ [t1,∞)T. By (2.4), we get

z∆(s) ≤ r1/γ(t)

r1/γ(s)
z∆(t) for s ∈ [t,∞)T.

Integrating this from t to l, we have

z(l) ≤ z(t) + r1/γ(t)z∆(t)

∫ l

t

∆s

r1/γ(s)
for l ∈ [t,∞)T.

Letting l →∞ in the latter inequality yields

z(t) + r1/γ(t)z∆(t)R(t) ≥ 0 for t ∈ [t1,∞)T.

Thus, we obtain

(2.6) R(t)r1/γ(t)
z∆(t)

z(t)
≥ −1.
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By virtue of (2.5) and (2.6), we have

(2.7) −1 ≤ Rγ(t)ω(t) ≤ 0.

On the other hand, it follows from (2.6) that

z∆(t)

z(t)
≥ − 1

r1/γ(t)R(t)
.

Then, we have

( z

m

)∆

(t) =
z∆(t)m(t)− z(t)m∆(t)

m(t)mσ(t)

≥ − z(t)

m(t)mσ(t)

[
m(t)

r1/γ(t)R(t)
+ m∆(t)

]
≥ 0,

and thus z/m is nondecreasing. Hence we obtain

x(t) = z(t)− p(t)x(η(t)) ≥ z(t)− p(t)z(η(t))

≥ z(t)− p(t)
m(η(t))

m(t)
z(t) =

(
1− p(t)

m(η(t))

m(t)

)
z(t)

and
z(g(t))

z(σ(t))
≥ m(g(t))

m(σ(t))
since g(t) ≥ σ(t).

Differentiating (2.5) and using (2.4), we obtain

ω∆(t) ≤ − q(t)

(
1− p(g(t))

m(η(g(t)))

m(g(t))

)γ (
m(g(t))

m(σ(t))

)γ

− r(t)(z∆(t))γ(zγ)∆(t)

zγ(t)zγ(σ(t))
.(2.8)

In view of (2.1), we see that

(zγ)∆(t) ≤ γzγ−1(t)z∆(t) since γ ≤ 1.

Thus, (2.8) yields

ω∆(t) ≤ − q(t)

(
1− p(g(t))

m(η(g(t)))

m(g(t))

)γ (
m(g(t))

m(σ(t))

)γ

− γ
r(t)(z∆(t))γ+1

z(t)zγ(σ(t))
.(2.9)

On the other hand, we have by z∆(t) < 0 that z(t) ≥ zσ(t) and

−γ
r(t)(z∆(t))γ+1

z(t)zγ(σ(t))
≤ −γ

(
1

r(t)

)1/γ

ω(γ+1)/γ(t).
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Hence by (2.9), we get

ω∆(t) + q(t)

(
1− p(g(t))

m(η(g(t)))

m(g(t))

)γ (
m(g(t))

m(σ(t))

)γ

+ γr−1/γ(t)ω(γ+1)/γ(t) ≤ 0 for t ∈ [t1,∞)T.(2.10)

Multiplying (2.10) by Rγσ(t) implies that

Rγσ(t)ω∆(t) + q(t)

(
1− p(g(t))

m(η(g(t)))

m(g(t))

)γ (
m(g(t))

m(σ(t))

)γ

Rγσ(t)

+ γRγσ(t)r−1/γ(t)ω(γ+1)/γ(t) ≤ 0 for t ∈ [t1,∞)T.

Integrating this from t1 to t, we get
∫ t

t1

q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)∆s

+

∫ t

t1

Rγσ(s)ω∆(s)∆s + γ

∫ t

t1

Rγσ(s)r−1/γ(s)ω(γ+1)/γ(s)∆s ≤ 0.(2.11)

Integrating by parts, we have
∫ t

t1

Rγσ(s)ω∆(s)∆s = Rγ(t)ω(t) − Rγ(t1)ω(t1)

−
∫ t

t1

(Rγ(s))∆ω(s)∆s.(2.12)

From (2.1), we obtain

(2.13) (Rγ)∆(t) = γR∆(t)

∫ 1

0

[
hRσ(t) + (1− h)R(t)

]γ−1
dh.

Noting that R∆(t) = −(1/r(t))1/γ < 0, we get by (2.13) and γ ≤ 1 that

(2.14) −
∫ t

t1

(Rγ)∆(s)ω(s)∆s ≥ γ

∫ t

t1

(
1

r(s)

)1/γ

(Rσ(s))γ−1ω(s)∆s.

By virtue of (2.11), (2.12), and (2.14), we see that
∫ t

t1

q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)∆s

+Rγ(t)ω(t)−Rγ(t1)ω(t1) + γ

∫ t

t1

(
1

r(s)

)1/γ

(Rσ(s))γ−1ω(s)∆s

+γ

∫ t

t1

Rγσ(s)r−1/γ(s)ω(γ+1)/γ(s)∆s ≤ 0.(2.15)
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Set p := (γ + 1)/γ, q := γ + 1,

A := −(γ + 1)γ/(γ+1)

(
Rγσ(t)

r1/γ(t)

)γ/(γ+1)

ω(t),

and

B :=
γ

γ + 1
(γ + 1)1/(γ+1)

(
1

r1/γ(t)

)1/(γ+1)
1

(Rσ(t))1/(γ+1)
.

Using the inequality

(2.16)
Ap

p
+

Bq

q
≥ AB,

1

p
+

1

q
= 1,

we have

γRγσ(t)r−1/γ(t)ω(γ+1)/γ(t) +

(
γ

γ+1

)γ+1

Rσ(t)r1/γ(t)

≥ −γ

(
1

r(t)

)1/γ

(Rσ(t))γ−1ω(t).(2.17)

Thus, we get by (2.15) and (2.17) that
∫ t

t1

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
1

Rσ(s)r1/γ(s)

]
∆s ≤ Rγ(t1)ω(t1)−Rγ(t)ω(t).

Therefore by (2.7), we get a contradiction to (2.3). The proof is com-
plete. ¤

Regarding the case where g(t) ≤ t, similar as in the proof of Theorem
2.1, we obtain the following result.

Theorem 2.2. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≤ t,
g(t) ≤ t, and γ ≤ 1. Assume that there exists a positive real-valued ∆-
differentiable function δ such that (1.4) holds for all sufficiently large T∗
and for g(T ) > T∗. If there exists a positive real-valued ∆-differentiable
function m such that (2.2) holds and

(2.18) lim sup
t→∞

∫ t

T

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
1

Rσ(s)r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.
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Theorem 2.3. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≤ t,
g(t) ≥ σ(t), and γ ≥ 1. Assume that there exists a positive real-valued
∆-differentiable function δ such that (1.3) holds for all sufficiently large
T . If there exists a positive real-valued ∆-differentiable function m such
that (2.2) holds and

(2.19)

lim sup
t→∞

∫ t

T

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
Rγ2−1(s)

(Rσ(s))γ2r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈
[t0,∞)T. We obtain (2.4) by (1.1). Therefore, r(z∆)γ is eventually
strictly decreasing and there exists a t1 ∈ [t0,∞)T such that z∆(t) >
0, or z∆(t) < 0 for t ∈ [t1,∞)T. Assume first that z∆(t) > 0 for
t ∈ [t1,∞)T. From the proof of [12, Theorem 2.1], we can obtain a
contradiction to (1.3). Consider now the case where z∆(t) < 0 for
t ∈ [t1,∞)T. Defining ω as in (2.5), we have (2.7). Differentiating (2.5)
and using (2.4), we obtain (2.8). In view of (2.1), we have

(zγ)∆(t) ≤ γzγ−1(σ(t))z∆(t) since γ ≥ 1.

Thus, we get

ω∆(t) ≤ − q(t)

(
1− p(g(t))

m(η(g(t)))

m(g(t))

)γ (
m(g(t))

m(σ(t))

)γ

− γ
r(t)(z∆(t))γ+1

zγ(t)z(σ(t))
.(2.20)

On the other hand, we have by z∆(t) < 0 that z(t) ≥ zσ(t) and

−γ
r(t)(z∆(t))γ+1

zγ(t)z(σ(t))
≤ −γ

(
1

r(t)

)1/γ

ω(γ+1)/γ(t).

Hence by (2.20), we get (2.10). Then we obtain that (2.11) and (2.12)
hold. By virtue of (2.1), we have (2.13). From (2.13), γ ≥ 1, and
R∆(t) = −(1/r(t))1/γ < 0, we see that

(2.21) −
∫ t

t1

(Rγ)∆(s)ω(s)∆s ≥ γ

∫ t

t1

(
1

r(s)

)1/γ

Rγ−1(s)ω(s)∆s.
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It follows from (2.11), (2.12), and (2.21) that
∫ t

t1

q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)∆s

+Rγ(t)ω(t)−Rγ(t1)ω(t1) + γ

∫ t

t1

(
1

r(s)

)1/γ

Rγ−1(s)ω(s)∆s

+γ

∫ t

t1

Rγσ(s)r−1/γ(s)ω(γ+1)/γ(s)∆s ≤ 0.(2.22)

Set p := (γ + 1)/γ, q := γ + 1,

A := −(γ + 1)γ/(γ+1)

(
Rγσ(t)

r1/γ(t)

)γ/(γ+1)

ω(t),

and

B :=
γ

γ + 1
(γ + 1)1/(γ+1)

(
1

r1/γ(t)

)1/(γ+1)
Rγ−1(t)

(Rσ(t))γ2/(γ+1)
.

Using inequality (2.16), we have

γRγσ(t)r−1/γ(t)ω(γ+1)/γ(t) +

(
γ

γ + 1

)γ+1
Rγ2−1(t)

(Rσ(t))γ2r1/γ(t)

(2.23) ≥ −γ

(
1

r(t)

)1/γ

Rγ−1(t)ω(t).

Thus, we obtain by (2.22) and (2.23) that

∫ t

t1

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ (
m(g(s))

m(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
Rγ2−1(s)

(Rσ(s))γ2r1/γ(s)

]
∆s ≤ Rγ(t1)ω(t1)−Rγ(t)ω(t).

Hence by (2.7), we obtain a contradiction to (2.19). This completes
the proof. ¤

Similar as in the proof of Theorem 2.3, we establish the following
result for the case where g(t) ≤ t.

Theorem 2.4. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≤ t,
g(t) ≤ t, and γ ≥ 1. Assume that there exists a positive real-valued ∆-
differentiable function δ such that (1.4) holds for all sufficiently large T∗
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and for g(T ) > T∗. If there exists a positive real-valued ∆-differentiable
function m such that (2.2) holds and

(2.24) lim sup
t→∞

∫ t

T

[
q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
Rγ2−1(s)

(Rσ(s))γ2r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Theorem 2.5. Let (1.2) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥
t, and g(t) ≥ t. Assume that there exists a positive real-valued ∆-
differentiable function m such that for all sufficiently large t1 ∈ [t0,∞)T,

(2.25)
m(t)

r1/γ(t)
∫ t

t1

∆s
r1/γ(s)

−m∆(t) ≤ 0 and 1− p(t)
m(η(t))

m(t)
> 0.

If there exists a positive real-valued ∆-differentiable function δ such
that for all sufficiently large T ,

(2.26) lim sup
t→∞

∫ t

T

[
δ(s)q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ

−r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈
[t0,∞)T. It follows from (1.2) that there exists a t1 ∈ [t0,∞)T such that
z∆(t) > 0 for t ∈ [t1,∞)T. From (1.1), we see that

z(t) = z(t1) +

∫ t

t1

(r(z∆)γ)1/γ(s)

r1/γ(s)
∆s ≥ r1/γ(t)z∆(t)

∫ t

t1

∆s

r1/γ(s)
.

Since
( z

m

)∆

(t) =
z∆(t)m(t)− z(t)m∆(t)

m(t)mσ(t)

≤ z(t)

m(t)mσ(t)

[
m(t)

r1/γ(t)
∫ t

t1

∆s
r1/γ(s)

−m∆(t)

]
≤ 0,

we find that z/m is nonincreasing. Hence we have

x(t) = z(t)−p(t)x(η(t)) ≥ z(t)−p(t)z(η(t)) ≥
(

1− p(t)
m(η(t))

m(t)

)
z(t).
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Define the function u by

u(t) := δ(t)
r(t)(z∆(t))γ

zγ(t)
.

Then u(t) > 0. The rest of the proof is similar to that of [12, Theorem
2.1], and so is omitted. ¤
Theorem 2.6. Let (1.2) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥
t, and g(t) ≤ t. Assume that there exists a positive real-valued ∆-
differentiable function m such that (2.25) holds for all sufficiently large
t1 ∈ [t0,∞)T. If there exists a positive real-valued ∆-differentiable func-
tion δ such that for all sufficiently large T∗ and for g(T ) > T∗,

(2.27) lim sup
t→∞

∫ t

T

[
δ(s)θγ(s, T∗)q(s)

(
1− p(g(s))

m(η(g(s)))

m(g(s))

)γ

−r(s)((δ∆(s))+)γ+1

(γ + 1)γ+1δγ(s)

]
∆s = ∞,

where θ is as in Section 1, then (1.1) is oscillatory.

Proof. The proof is similar to those of Theorem 2.5 and [12, Theorem
2.1], and hence is omitted. ¤
Theorem 2.7. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥ t,
g(t) ≥ σ(t), and γ ≤ 1. Assume that there exists a positive real-valued
∆-differentiable function m such that (2.25) holds for all sufficiently
large t1 ∈ [t0,∞)T. Suppose further that there exists a positive real-
valued ∆-differentiable function δ such that (2.26) holds for all suffi-
ciently large T . If there exists a positive real-valued ∆-differentiable
function h such that

(2.28)
h(t)

r1/γ(t)R(t)
+ h∆(t) ≤ 0

and

(2.29) lim sup
t→∞

∫ t

T

[
q(s) (1− p(g(s)))γ

(
h(g(s))

h(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
1

Rσ(s)r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of
generality we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for
t ∈ [t0,∞)T. In view of (1.1), we obtain (2.4). Therefore, r(z∆)γ is
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eventually strictly decreasing and there exists a t1 ∈ [t0,∞)T such that
z∆(t) > 0, or z∆(t) < 0 for t ∈ [t1,∞)T. Assume first that z∆(t) > 0 for
t ∈ [t1,∞)T. From the proof of Theorem 2.5, we can obtain a contra-
diction to (2.26). Assume now that z∆(t) < 0 for t ∈ [t1,∞)T. Define
ω as in (2.5). Note that

x(t) = z(t)− p(t)x(η(t)) ≥ z(t)− p(t)z(η(t)) ≥ (
1− p(t)

)
z(t).

Using the similar proof with that of Theorem 2.1 completes the proof.
¤

Theorem 2.8. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥ t,
g(t) ≤ t, and γ ≤ 1. Assume that there exists a positive real-valued ∆-
differentiable function m such that (2.25) holds for all sufficiently large
t1 ∈ [t0,∞)T. Suppose further that there exists a positive real-valued ∆-
differentiable function δ such that (2.27) holds for all sufficiently large
T∗ and for g(T ) > T∗. If

(2.30) lim sup
t→∞

∫ t

T

[q(s) (1− p(g(s)))γ Rγσ(s)

−
(

γ

γ + 1

)γ+1
1

Rσ(s)r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. The proof is similar to those of Theorem 2.1 and Theorem 2.7,
and so is omitted. ¤
Theorem 2.9. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥ t,
g(t) ≥ σ(t), and γ ≥ 1. Assume that there exists a positive real-valued
∆-differentiable function m such that (2.25) holds for all sufficiently
large t1 ∈ [t0,∞)T. Suppose further that there exists a positive real-
valued ∆-differentiable function δ such that (2.26) holds for all suffi-
ciently large T . If there exists a positive real-valued ∆-differentiable
function h such that (2.28) holds and

(2.31) lim sup
t→∞

∫ t

T

[
q(s) (1− p(g(s)))γ

(
h(g(s))

h(σ(s))

)γ

Rγσ(s)

−
(

γ

γ + 1

)γ+1
Rγ2−1(s)

(Rσ(s))γ2r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. The proof is similar to those of Theorem 2.3 and Theorem 2.7,
and hence is omitted. ¤
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Theorem 2.10. Let (1.5) and (A1)–(A3) hold, 0 ≤ p(t) < 1, η(t) ≥ t,
g(t) ≤ t, and γ ≥ 1. Assume that there exists a positive real-valued ∆-
differentiable function m such that (2.25) holds for all sufficiently large
t1 ∈ [t0,∞)T. Suppose further that there exists a positive real-valued ∆-
differentiable function δ such that (2.27) holds for all sufficiently large
T∗ and for g(T ) > T∗. If

(2.32) lim sup
t→∞

∫ t

T

[q(s) (1− p(g(s)))γ Rγσ(s)

−
(

γ

γ + 1

)γ+1
Rγ2−1(s)

(Rσ(s))γ2r1/γ(s)

]
∆s = ∞,

then (1.1) is oscillatory.

Proof. The proof is similar to those of Theorem 2.3 and Theorem 2.7,
and so is omitted. ¤

3. Examples

Example 3.1. For t ∈ [1,∞)T, consider a neutral dynamic equation

(3.1)

(
tσ(t)

(
x(t) + p0

η(t)

t
x(η(t))

)∆
)∆

+ g(t)x(g(t)) = 0,

where η(t) ≤ t, g(t) ≥ σ(t), and p0 ∈ (0, 1) is a constant. Let δ(t) = 1
and m(t) = t−1. Using Theorem 2.1 and [7, Theorem 5.68], we obtain
that (3.1) is oscillatory.

Example 3.2. For t ∈ [1,∞)T, consider a neutral dynamic equation

(3.2)

(
tσ(t)

(
x(t) + p0

t

η(t)
x(η(t))

)∆
)∆

+ g(t)x(g(t)) = 0,

where η(t) ≥ t, g(t) ≥ σ(t), and p0 ∈ (0, 1) is a constant. Let δ(t) = 1,
m(t) = t, and h(t) = t−1. Using Theorem 2.7 and [7, Theorem 5.68],
we get that (3.2) is oscillatory.

Example 3.3. For t ≥ 1, consider a neutral differential equation

(3.3)

(
t3

(
x(t) +

1

8
x

(
t

2

))′)′
+ q0tx

(
t

3

)
= 0.

Set r(t) = t3, η(t) = t/2, q(t) = q0t, g(t) = t/3, m(t) = t−2/2, and
δ(t) = 1. It is not difficult to verify that (3.3) is oscillatory if q0 > 2
when using Theorem 2.2. However, Theorem 1.5 implies that (3.3) is
oscillatory when q0 > 5/2.
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4. Discussions

Remark 4.1. Results of [26, 35] cannot be applied to equations (3.1),
(3.2), and (3.3) due to assumptions (1.6), (1.7), and g(t) ≥ σ(t).

Remark 4.2. In this paper, we suggest some new oscillation results
for a second-order nonlinear neutral dynamic equation (1.1). From
Theorem 2.1, Theorem 2.2, Theorem 2.3, and Theorem 2.4, one can
derive various classes of oscillation criteria in the case when η(t) ≤ t,
e.g., by letting

m(t) = R(t).

Based on Theorem 2.5, Theorem 2.6, Theorem 2.7, Theorem 2.8, The-
orem 2.9, and Theorem 2.10, one can obtain various oscillation criteria
in the case where η(t) ≥ t, e.g., by letting

m(t) =

∫ t

t1

∆s

r1/γ(s)
and h(t) = R(t).

Remark 4.3. Grace et al. [13, 14] and Hassan [18] studied equations

(rx∆)∆(t) + q(t)x(t) = 0 and (rx∆)∆(t) + q(t)xσ(t) = 0

in the case

(4.1)

∫ ∞

t0

1

r(t)

∫ t

t0

q(s)

∫ ∞

s

∆u

r(u)
∆s∆t = ∞.

It is well known that second-order differential equation

(t2x′(t))′ + q0x(t) = 0

is oscillatory if q0 > 1/4. By Theorem 2.1, we also obtain this con-
clusion. But results of [13, 14, 18, 26, 35] cannot give this conclusion
due to conditions (1.7), (4.1), and [35, Theorem 3.2, Theorem 3.3, and
Theorem 3.4].

Remark 4.4. To the best of our knowledge, there are two classes of ideas
in the study of oscillatory properties of (1.1) under the assumption (1.5)
holds; see [26, 35]. Saker [26] obtained some criteria under conditions
(1.6) and (1.7). Tripathy [35] established several related results in the
case

0 < γ ≤ 1, 0 ≤ p(t) ≤ p0 < ∞, η(t) ≤ t, g(t) ≤ t,

and

η∆ ≥ η0 > 0, η([t0,∞)T) = [η(t0),∞)T, η ◦ g = g ◦ η.
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Saker et al. [27] showed that the latter assumptions may be restrictive
in some applications. To achieve new results, we are forced to require
that

1− p(t)m(η(t))/m(t) > 0.

Combining the methods given in this paper and those reported in [21],
one can easily derive some new oscillation theorems for (1.1) in the case
where p(t) > 1. The details are left to the reader.
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[7] Martin Bohner and Allan Peterson. Advances in Dynamic Equations on Time
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