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1. Introduction

Existence of periodic solutions of higher-order differential equations has been the subject of many

investigations [9,14,15,26,30,31]. By using various methods and techniques, such as fixed point

theory, the Kaplan-Yorke method, critical point theory, coincidence degree theory, bifurcation

theory and dynamical system theory etc., a series of existence results for periodic solutions have

been obtained in the literature. Difference equations, the discrete analogs of differential equations,

occur widely in numerous settings and forms, both in mathematics itself and in its applications

to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology and

other fields. For the general background of difference equations, one can refer to monographs

[1,3,4,21]. Since the last decade, there has been much progress on the qualitative properties of

difference equations, which included results on stability and attractivity [16,21,25,41] and results

on oscillation and other topics [1-4,18-20,23,24,37-40]. Only a few papers discuss the periodic

solutions of higher-order difference equations. Therefore, it is worthwhile to explore this topic.

Let N, Z and R denote the sets of all natural numbers, integers and real numbers respectively.

For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) = {a, a + 1, · · · , b} when a ≤ b. * denotes the

transpose of a vector.
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In this paper, we consider the following 2nth-order difference equation containing both advance

and retardation with p-Laplacian

∆n (rk−nϕp (∆nuk−1)) = (−1)nf(k, uk+1, uk, uk−1), n ∈ Z(1), k ∈ Z, (1.1)

where ∆ is the forward difference operator ∆uk = uk+1−uk, ∆2uk = ∆(∆uk), rk > 0 is real valued

for each k ∈ Z, ϕp(s) is the p-Laplacian operator ϕp(s) = |s|p−2s(1 < p < ∞), f ∈ C(Z×R3,R),

rk and f(k, v1, v2, v3) are T -periodic in k for a given positive integer T .

We may think of (1.1) as a discrete analogue of the following 2nth-order functional differential

equation

dn/dtn [r(t)ϕp (dnu(t)/dtn)] = (−1)nf(t, u(t + 1), u(t), u(t− 1)), t ∈ R. (1.2)

Equations similar in structure to (1.2) arise in the study of the existence of solitary waves of lattice

differential equations, see Smets and Willem [34].

The widely used tools for the existence of periodic solutions of difference equations are the

various fixed point theorems in cones [1,3,4,21]. It is well known that critical point theory is an

effective approach that deals with the problems of differential equations [9,11,26,32,36]. Only since

2003, critical point theory has been employed to establish sufficient conditions on the existence

of periodic solutions of difference equations. By using the critical point theory, Guo and Yu [18-

20] and Shi et al. [33] established sufficient conditions on the existence of periodic solutions of

second-order nonlinear difference equations. Compared to one-order or second-order difference

equations, the study of higher-order equations has received considerably less attention(see, for

example, [1,5,6,12,13,17,21,27,29] and the references contained therein). Ahlbrandt and Peterson

[5] in 1994 studied the 2nth-order difference equation of the form,

n∑

i=0

∆i
(
ri(k − i)∆iu(k − i)

)
= 0 (1.3)

in the context of the discrete calculus of variations, and Peil and Peterson [29] studied the asymp-

totic behavior of solutions of (1.3) with ri(k) ≡ 0 for 1 ≤ i ≤ n−1. In 1998, Anderson [6] considered

(1.3) for k ∈ Z(a), and obtained a formulation of generalized zeros and (n, n)-disconjugacy for

(1.3). Migda [27] in 2004 studied an mth-order linear difference equation.

In 2007, Cai and Yu [10] have obtained some criteria for the existence of periodic solutions of a

2nth-order difference equation

∆n (rk−n∆nuk−n) + f(k, uk) = 0, n ∈ Z(3), k ∈ Z, (1.4)

for the case where f grows superlinearly at both 0 and ∞.

If n = 1 and rk ≡ 1, (1.1) reduces to the following second order p-Laplacian difference equation

∆ (ϕp (∆uk−1)) + f(k, uk+1, uk, uk−1) = 0, k ∈ Z. (1.5)

Chen and Fang [12] in 2007 have obtained a sufficient condition for the existence of periodic and

subharmonic solutions of (1.5).

A great deal of work has also been done in the study of the existence of solutions to discrete

boundary value problems with the p-Laplacian operator. Because of their applications in many

fields, we refer the reader to the monograph by Agarwal et al. and some recent contributions as
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[1,2,7,8,22-24,35,38]. However, to the best of our knowledge, the results on periodic solutions of

higher-order nonlinear difference equations involving p-Laplacian are very scarce in the literature.

Furthermore, since (1.1) contains both advance and retardation, there are very few manuscripts

dealing with this subject. Some difficulties lie that the traditional methods [18-20] for difference

equations are not applicable to our case. The intention of this paper is to give some sufficient

conditions for the existence and multiplicity of periodic and subharmonic solutions for a 2nth-

order nonlinear difference equation containing both advance and retardation with p-Laplacian.

The proof is based on the Saddle Point Theorem in combination with variational technique. In

particular, our results generalize and complement the results in the literature [10] and [12]. In

fact, one can see the following Remark 1.4 for details.

Let

r = min
k∈Z(1,T )

{rk}, r̄ = max
k∈Z(1,T )

{rk}.

Now we state the main results of this paper.

Theorem 1.1. Assume that the following hypotheses are satisfied:

(F1) there exists a functional F (k, v1, v2) ∈ C1(Z×R2,R) such that

F (k + T, v1, v2) = F (k, v1, v2),

∂F (k − 1, v2, v3)/∂v2 + ∂F (k, v1, v2)/∂v2 = f(k, v1, v2, v3);

(F2) there exists a constant M0 > 0 for all (k, v1, v2) ∈ Z×R2 such that

|∂F (k, v1, v2)/∂v1| ≤ M0, |∂F (k, v1, v2)/∂v2| ≤ M0;

(F3) F (k, v1, v2) → +∞ uniformly for k ∈ Z as
√

v2
1 + v2

2 → +∞.

Then for any given positive integer m > 0, (1.1) has at least one mT -periodic solution.

Remark 1.1. Assumption (F2) implies that there exists a constant M1 > 0 such that

(F ′
2) |F (k, v1, v2)| ≤ M1 + M0(|v1|+ |v2|), ∀(k, v1, v2) ∈ Z×R2.

Theorem 1.2. Assume that (F1) holds; further

(F4) there exist constants R1 > 0 and α, 1 < α < 2 such that for k ∈ Z and
√

v2
1 + v2

2 ≥ R1,

0 < ∂F (k, v1, v2)/∂v1 · v1 + ∂F (k, v1, v2)/∂v2 · v2 ≤ α/2 · pF (k, v1, v2);

(F5) there exist constants a1 > 0, a2 > 0 and γ, 1 < γ ≤ α such that

F (k, v1, v2) ≥ a1

(√
v2
1 + v2

2

)γ/2·p
− a2, ∀(k, v1, v2) ∈ Z×R2.

Then for any given positive integer m > 0, (1.1) has at least one mT -periodic solution.

Remark 1.2. Assumption (F4) implies that for each k ∈ Z there exist constants a3 > 0 and a4 > 0

such that

(F ′
4) F (k, v1, v2) ≤ a3

(√
v2
1 + v2

2

)α/2·p
+ a4, ∀(k, v1, v2) ∈ Z×R2.

Remark 1.3. The results of Theorem 1.1 and Theorem 1.2 ensure that (1.1) has at least one mT -

periodic solution. However, in some cases, we are interested in the existence of nontrivial periodic

solutions for (1.1).
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In this case, we have

Theorem 1.3. Assume that (F1) holds; further

(F6) F (k, 0) = 0, f(k, v1, v2, v3) = 0 if and only if v2 = 0, for all k ∈ Z;

(F7) there exists a constant α, 1 < α < 2 such that for k ∈ Z,

0 < ∂F (k, v1, v2)/∂v1 · v1 + ∂F (k, v1, v2)/∂v2 · v2 ≤ α/2 · pF (k, v1, v2), ∀(v1, v2) 6= 0;

(F8) there exist constants a5 > 0 and γ, 1 < γ ≤ α such that

F (k, v1, v2) ≥ a5

(√
v2
1 + v2

2

)γ/2·p
, ∀(k, v1, v2) ∈ Z×R2.

Then for any given positive integer m > 0, (1.1) has at least one nontrivial mT -periodic solution.

Theorem 1.4. Assume that (F1)− (F3) and (F6) hold; further

(F9) there exist constants a6 > 0 and θ, 0 < θ < 2 such that

F (k, v1, v2) ≥ a6

(√
v2
1 + v2

2

)θ/2·p
, ∀(k, v1, v2) ∈ Z×R2.

Then for any given positive integer m > 0, (1.1) has at least one nontrivial mT -periodic solution.

If p = 2, f(k, uk+1, uk, uk−1) = (−1)n+1f(k, uk), (1.1) reduces to (1.4). Then, we have the

following results.

Theorem 1.5. Assume that the following hypotheses are satisfied:

(F10) there exists a functional F (k, v) ∈ C1(Z×R,R), F (k + T, v) = F (k, v) such that

∂F (k, v)/∂v = f(k, v);

(F11) F (k, 0) = 0, for all k ∈ Z;

(F12) there exists a constant α, 1 < α < 2 such that for k ∈ Z,

αF (k, v) ≤ vf(k, v) < 0, ∀|v| 6= 0;

(F13) there exist constants a7 > 0 and γ, 1 < γ ≤ α such that

F (k, v) ≤ −a7|v|γ , ∀(k, v) ∈ Z×R.

Then for any given positive integer m > 0, (1.4) has at least one nontrivial mT -periodic solution.

Theorem 1.6. Assume that (F10) holds; further

(F14) there exists a constant M0 > 0 for all (k, v) ∈ Z×R such that |f(k, v)| ≤ M0;

(F15) F (k, v) → −∞ uniformly for k ∈ Z as v → +∞;

(F16) F (k, 0) = 0, f(k, v) = 0 if and only if v = 0, for all k ∈ Z;

(F17) there exist constants a8 > 0 and θ, 0 < θ < 2 such that

F (k, v) ≤ −a8|v|θ, ∀(k, v) ∈ Z×R.

Then for any given positive integer m > 0, (1.4) has at least one nontrivial mT -periodic solution.
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Remark 1.4. When β > 2, Cai and Yu [10] in Theorem 1.1 have obtained some criteria for the

existence of periodic solutions of (1.4) and Chen and Fang [12] in Theorem 3.1 have obtained

some criteria for the existence of periodic solutions of (1.5). When β < 2, we can still find the

periodic solutions of (1.4) and (1.5). Hence, Theorems 1.3-1.6 generalize and complement the

existing ones.

The rest of the paper is organized as follows. Firstly, in Section 2, we shall establish the

variational framework associated with (1.1) and transfer the problem of the existence of periodic

solutions of (1.1) into that of the existence of critical points of the corresponding functional. Some

related fundamental results will also be recalled. Then, in Section 3, we shall complete the proof

of the results by using the critical point method. Finally, in Section 4, we shall give two examples

to illustrate the main results.

About the basic knowledge for variational methods, please refer the reader to [26,28,32].

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding variational frame-

work for (1.1) and give some lemmas which will be of fundamental importance in proving our

main results. We start by some basic notations.

Let S be the set of sequences u = (· · · , u−k, · · · , u−1, u0, u1, · · · , uk, · · · ) = {uk}+∞
k=−∞, that is

S = {{uk}|uk ∈ R, k ∈ Z}.

For any u, v ∈ S, a, b ∈ R, au + bv is defined by

au + bv = {auk + bvk}+∞
k=−∞.

Then S is a vector space.

For any given positive integers m and T , EmT is defined as a subspace of S by

EmT = {u ∈ S|uk+mT = uk, ∀k ∈ Z}.

Clearly, EmT is isomorphic to RmT . EmT can be equipped with the inner product

〈u, v〉 =
mT∑

j=1

ujvj , ∀u, v ∈ EmT , (2.1)

by which the norm ‖ · ‖ can be induced by

‖u‖ =




mT∑

j=1

u2
j




1/2

, ∀u ∈ EmT . (2.2)

It is obvious that EmT with the inner product (2.1) is a finite dimensional Hilbert space and

linearly homeomorphic to RmT .

On the other hand, we define the norm ‖ · ‖s on EmT as follows:

‖u‖s =




mT∑

j=1

|uj |s



1/s

, (2.3)
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for all u ∈ EmT and s > 1.

Since ‖u‖s and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥ c1 > 0, and

c1‖u‖2 ≤ ‖u‖s ≤ c2‖u‖2, ∀u ∈ EmT . (2.4)

Clearly, ‖u‖ = ‖u‖2. For all u ∈ EmT , define the functional J on EmT as follows:

J(u) = −1/p
mT∑

k=1

rk−1 |∆nuk−1|p +
mT∑

k=1

F (k, uk+1, uk)

:= −H(u) +
mT∑

k=1

F (k, uk+1, uk), (2.5)

where

H(u) = 1/p

mT∑

k=1

rk−1 |∆nuk−1|p , ∂F (k − 1, v2, v3)/∂v2 + ∂F (k, v1, v2)/∂v2 = f(k, v1, v2, v3).

Clearly, J ∈ C1(EmT ,R) and for any u = {uk}k∈Z ∈ EmT , by using u0 = umT , u1 = umT+1, we

can compute the partial derivative as

∂J

∂uk
= −(−1)n∆n (rk−nϕp (∆nuk−1)) + f(k, uk+1, uk, uk−1).

Thus, u is a critical point of J on EmT if and only if

∆n (rk−nϕp (∆nuk−1)) = f(k, uk+1, uk, uk−1), ∀k ∈ Z(1,mT ).

Due to the periodicity of u = {uk}k∈Z ∈ EmT and f(k, v1, v2, v3) in the first variable k, we reduce

the existence of periodic solutions of (1.1) to the existence of critical points of J on EmT . That

is, the functional J is just the variational framework of (1.1).

Let

P =




2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2




be a mT ×mT matrix. By matrix theory, we see that the eigenvalues of P are

λj = 2 (1− cos 2j/(mT )π) , j = 0, 1, 2, · · · ,mT − 1. (2.6)

Thus, λ0 = 0, λ1 > 0, λ2 > 0, · · · , λmT−1 > 0. Therefore,




λmin = min{λ1, λ2, · · · , λmT−1} = 2 (1− cos 2/(mT )π) ,

λmax = max{λ1, λ2, · · · , λmT−1} =
{

4, when mT is even,
2 (1 + cos 1/(mT )π) , when mT is odd.

(2.7)

Let

W = kerP = {u ∈ EmT |Pu = 0 ∈ RmT }.
Then

W = {u ∈ EmT |u = {c}, c ∈ R}.
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Let V be the direct orthogonal complement of EmT to W , i.e., EmT = V ⊕W . For convenience,

we identify u ∈ EmT with u = (u1, u2, · · · , umT )∗.

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-differentiable

functional defined on E. J is said to satisfy the Palais-Smale condition (P.S. condition for short)

if any sequence
{
u(i)

} ⊂ E for which
{
J

(
u(i)

)}
is bounded and J ′

(
u(i)

) → 0(i →∞) possesses a

convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 2.1. (Saddle Point Theorem [26,32]). Let E be a real Banach space, E = E1⊕E2, where

E1 6= {0} and is finite dimensional. Suppose that J ∈ C1(E,R) satisfies the P.S. condition and

(J1) there exist constants σ, ρ > 0 such that J |∂Bρ∩E1 ≤ σ;

(J2) there exists e ∈ Bρ ∩ E1 and a constant ω ≥ σ such that Je+E2 ≥ ω.

Then J possesses a critical value c ≥ ω, where

c = inf
h∈Γ

max
u∈Bρ∩E1

J(h(u)), Γ = {h ∈ C(B̄ρ ∩ E1, E) | h|∂Bρ∩E1 = id}

and id denotes the identity operator.

Lemma 2.2. Assume that (F1)− (F3) is satisfied. Then J satisfies the P.S. condition.

Proof. Let
{
u(i)

} ⊂ EmT be such that
{
J

(
u(i)

)}
is bounded and J ′

(
u(i)

) → 0 as i → ∞. Then

there exists a positive constant M2 such that
∣∣J (

u(i)
)∣∣ ≤ M2.

Let u(i) = v(i) + w(i) ∈ V + W . For i large enough, since

−‖u‖2 ≤
〈
J ′

(
u(i)

)
, u

〉
= −

〈
H ′

(
u(i)

)
, u

〉
+

mT∑

k=1

f
(
k, u

(i)
k+1, u

(i)
k , u

(i)
k−1

)
uk,

combining with (F2) and (F3), we have

〈
H ′

(
u(i)

)
, v(i)

〉
≤

mT∑

k=1

f
(
k, u

(i)
k+1, u

(i)
k , u

(i)
k−1

)
v

(i)
k +

∥∥∥v(i)
∥∥∥

2

≤ 2M0

mT∑

k=1

∣∣∣v(i)
k

∣∣∣ +
∥∥∥v(i)

∥∥∥
2

≤
(
2M0

√
mT + 1

) ∥∥∥v(i)
∥∥∥

2
.

On the other hand, we know that

〈
H ′

(
u(i)

)
, v(i)

〉
=

mT∑

k=1

rk−1

(
∆nv

(i)
k−1,∆

nv
(i)
k−1

)p/2
=

mT∑

k=1

rk

(
∆nv

(i)
k ,∆nv

(i)
k

)p/2
= pH

(
v(i)

)
.

Since

r/p · cp
1λ

p/2
min

∥∥∥x(i)
∥∥∥

p

2
≤ r/p · cp

1

[(
x(i)

)∗
P

(
x(i)

)]p/2
≤ H

(
v(i)

)
,

H
(
v(i)

)
≤ r̄/p · cp

2

[(
x(i)

)∗
P

(
x(i)

)]p/2
≤ r̄/p · cp

2λ
p/2
max

∥∥∥x(i)
∥∥∥

p

2
,

and

λ
(n−1)p/2
min

∥∥∥v(i)
∥∥∥

p

2
≤

∥∥∥x(i)
∥∥∥

p

2
=

mT∑

k=1

(
∆n−2v

(i)
k+1 −∆n−2v

(i)
k

)p
≤ λp/2

max

mT∑

k=1

(
∆n−2v

(i)
k

)p
≤ λ(n−1)p/2

max

∥∥∥v(i)
∥∥∥

p

2
,
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where x(i) =
(
∆n−1v

(i)
1 ,∆n−1v

(i)
2 , · · · ,∆n−1v

(i)
mT

)∗
, we get

r/p · cp
1λ

np/2
min

∥∥∥v(i)
∥∥∥

p

2
≤ H

(
v(i)

)
≤ r̄/p · cp

2λ
np/2
max

∥∥∥v(i)
∥∥∥

p

2
. (2.3)

Thus, we have

rcp
1λ

np/2
min

∥∥∥v(i)
∥∥∥

p

2
≤

(
2M0

√
mT + 1

) ∥∥∥v(i)
∥∥∥

2
.

The above inequality implies that
{
v(i)

}
is bounded.

Next, we shall prove that
{
w(i)

}
is bounded. Since

M2 ≥ J
(
u(i)

)
= −H

(
u(i)

)
+

mT∑

k=1

F
(
k, u

(i)
k+1, u

(i)
k

)

= −H
(
v(i)

)
+

mT∑

k=1

[
F

(
k, u

(i)
k+1, u

(i)
k

)
− F

(
k, w

(i)
k+1, w

(i)
k

)]
+

mT∑

k=1

F
(
k, w

(i)
k+1, w

(i)
k

)
,

combining with (2.8), we get

mT∑

k=1

F
(
k, w

(i)
k+1, w

(i)
k

)

≤ M2 + H
(
v(i)

)
+

mT∑

k=1

∣∣∣F
(
k, u

(i)
k+1, u

(i)
k

)
− F

(
k, w

(i)
k+1, w

(i)
k

)∣∣∣

≤ M2 + r̄/p · cp
2λ

np/2
max

∥∥∥v(i)
∥∥∥

p

2

+
mT∑

k=1

∣∣∣∂F
(
k, w

(i)
k+1 + θv

(i)
k+1, w

(i)
k + θv

(i)
k

)
/∂v1 · v(i)

k+1 + ∂F
(
k, w

(i)
k+1 + θv

(i)
k+1, w

(i)
k + θv

(i)
k

)
/∂v2 · v(i)

k

∣∣∣

≤ M2 + r̄/pcp
2λ

np/2
max

∥∥∥v(i)
∥∥∥

p

2
+ 2M0

√
mT

∥∥∥v(i)
∥∥∥

2
.

where θ ∈ (0, 1). It is not difficult to see that
{

mT∑
k=1

F
(
k, w

(i)
k+1, w

(i)
k

)}
is bounded.

By (F3),
{
w(i)

}
is bounded. Otherwise, assume that

∥∥w(i)
∥∥

2
→ +∞ as i → ∞. Since there

exist z(i) ∈ R, i ∈ N, such that w(i) =
(
z(i), z(i), · · · , z(i)

)∗ ∈ EmT , then
∥∥w(i)

∥∥
2

=
(

mT∑
k=1

∣∣∣w(i)
k

∣∣∣
2
)1/2

=
(

mT∑
k=1

∣∣z(i)
∣∣2

)1/2

=
√

mT
∣∣z(i)

∣∣ → +∞

as i → ∞. Since F
(
k, w

(i)
k+1, w

(i)
k

)
= F

(
k, z(i), z(i)

)
, then F

(
k, w

(i)
k+1, w

(i)
k

)
→ +∞ as i → ∞.

This contradicts the fact that
{

mT∑
k=1

F
(
k, w

(i)
k+1, w

(i)
k

)}
is bounded. Thus the P.S. condition is

verified. ¤

Lemma 2.3. Assume that (F1), (F4) and (F5) are satisfied. Then J satisfies the P.S. condition.

Proof. Let
{
u(i)

} ⊂ EmT be such that
{
J

(
u(i)

)}
is bounded and J ′

(
u(i)

) → 0 as i → ∞. Then

there exists a positive constant M3 such that
∣∣J (

u(i)
)∣∣ ≤ M3.

For i large enough, we have ∣∣∣
〈
J ′

(
u(i)

)
, u(i)

〉∣∣∣ ≤
∥∥∥u(i)

∥∥∥
2
.

So

M3 + 1/p
∥∥∥u(i)

∥∥∥
2
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≥ J
(
u(i)

)
− 1/p

〈
J ′

(
u(i)

)
, u(i)

〉

=
mT∑

k=1

[
F

(
k, u

(i)
k+1, u

(i)
k

)
− 1/p

(
∂F

(
k − 1, u

(i)
k , u

(i)
k−1

)
/∂v2 · u(i)

k + ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

)]

=
mT∑

k=1

[
F

(
k, u

(i)
k+1, u

(i)
k

)
− 1/p

(
∂F

(
k, u

(i)
k+1, u

(i)
k

)
/∂v1 · u(i)

k+1 + ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

)]
.

Take

I1 =

{
k ∈ Z(1,mT )|

√(
u

(i)
k+1

)2
+

(
u

(i)
k

)2
≥ R1

}
, I2 =

{
k ∈ Z(1,mT )|

√(
u

(i)
k+1

)2
+

(
u

(i)
k

)2
< R1

}
.

By (F4), we have

M3 + 1/p
∥∥∥u(i)

∥∥∥
2

≥
mT∑

k=1

F
(
k, u

(i)
k+1, u

(i)
k

)
− 1/p

∑

k∈I1

[
∂F

(
k, u

(i)
k+1, u

(i)
k

)
/∂v1 · u(i)

k+1 + ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

]

−1/p
∑

k∈I2

[
∂F

(
k, u

(i)
k+1, u

(i)
k

)
/∂v1 · u(i)

k+1 + ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

]

≥
mT∑

k=1

F
(
k, u

(i)
k+1, u

(i)
k

)
− α/2

∑

k∈I1

F
(
k, u

(i)
k+1, u

(i)
k

)

−1/p
∑

k∈I2

[
∂F

(
k, u

(i)
k+1, u

(i)
k

)
/∂v1 · u(i)

k+1 + ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

]

= (1− α/2)
mT∑

k=1

F
(
k, u

(i)
k+1, u

(i)
k

)

+1/p
∑

k∈I2

[
α/2 · pF

(
k, u

(i)
k+1, u

(i)
k

)
− ∂F

(
k, u

(i)
k+1, u

(i)
k

)
/∂v1 · u(i)

k+1 − ∂F
(
k, u

(i)
k+1, u

(i)
k

)
/∂v2 · u(i)

k

]
.

The continuity of α/2 · pF (k, v1, v2)− ∂F (k, v1, v2)/∂v1 · v1 − ∂F (k, v1, v2)/∂v2 · v2 with respect

to the second and third variables implies that there exists a constant M4 > 0 such that

α/2 · pF (k, v1, v2)− ∂F (k, v1, v2)/∂v1 · v1 − ∂F (k, v1, v2)/∂v2 · v2 ≥ −M6,

for k ∈ Z(1,mT ) and
√

v2
1 + v2

2 ≤ R1. Therefore,

M3 + 1/p
∥∥∥u(i)

∥∥∥
2
≥ (1− α/2)

mT∑

k=1

F
(
k, u

(i)
k+1, u

(i)
k

)
− 1/p ·mTM4.

By (F5), we get

M3 + 1/p
∥∥∥u(i)

∥∥∥
2
≥ (1− α/2) a1

mT∑

k=1

[√(
u

(i)
k+1

)2
+

(
u

(i)
k

)2
]γ/2·p

− (1− α/2) a2mT − 1/p ·mTM4

≥ (1− α/2) a1

mT∑

k=1

∣∣∣u(i)
k

∣∣∣
γ/2·p

−M5,

where M5 = (1− α/2) a2mT + 1/p ·mTM4.
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Combining with (2.4), we have

M3 + 1/p
∥∥∥u(i)

∥∥∥
2
≥ (1− α/2) a1c

γ/2·p
1

∥∥∥u(i)
∥∥∥

γ/2·p

2
−M5.

Thus,

(1− α/2) a1c
γ/2·p
1

∥∥∥u(i)
∥∥∥

γ/2·p

2
− 1/p

∥∥∥u(i)
∥∥∥

2
≤ M3 + M5.

This implies that
{∥∥u(i)

∥∥
2

}
is bounded on the finite dimensional space EmT . As a consequence,

it has a convergent subsequence. ¤

3. Proof of the main results

In this Section, we shall prove our main results by using the critical point method.

Proof of Theorem 1.1. By Lemma 2.2, we know that J satisfies the P.S. condition. In order to

prove Theorem 1.1 by using the Saddle Theorem, we shall prove the conditions (J1) and (J2).

From (2.8) and (F ′
2), for any v ∈ V ,

J(v) = −H(v) +
mT∑

k=1

F (k, vk+1, vk)

≤ −r/p · cp
1λ

np/2
min ‖v‖p

2 + mTM1 + M0

mT∑

k=1

(|vk+1|+ |vk|)

≤ −r/p · cp
1λ

np/2
min ‖v‖p

2 + mTM1 + 2M0

√
mT‖v‖2 → −∞ as ‖v‖2 → +∞.

Therefore, it is easy to see that the condition (J1) is satisfied.

In the following, we shall verify the condition (J2). For any w ∈ W , w = (w1, w2, · · · , wmT )∗,

there exists z ∈ R such that wk = z, for all k ∈ Z(1,mT ). By (F3), we know that there

exists a constant R0 > 0 such that F (k, z, z) > 0 for k ∈ Z and |z| > R0/
√

2. Let M6 =

min
k∈Z,|z|≤R0/

√
2
F (k, z, z), M7 = min{0,M6}. Then

F (k, z, z) ≥ M7, ∀(k, z, z) ∈ Z×R2.

So we have

J(w) =
mT∑

k=1

F (k, wk+1, wk) =
mT∑

k=1

F (k, z, z) ≥ mTM7, ∀w ∈ W.

The conditions of (J1) and (J2) are satisfied. ¤
Proof of Theorem 1.2. By Lemma 2.3, J satisfies the P.S. condition. To apply the Saddle Point

Theorem, it suffices to prove that J satisfies the conditions (J1) and (J2).

For any w ∈ W , since H(w) = 0, we have

J(w) =
mT∑

k=1

F (k, wk+1, wk).

By (F5),

J(w) ≥ a1

mT∑

k=1

(√
w2

k+1 + w2
k

)γ/2·p
− a2mT ≥ −a2mT.
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Combining with (F ′
4), (2,4) and (2.8), for any v ∈ V , we get, like before,

J(v) ≤ −r/p · cp
1λ

np/2
min ‖v‖p

2 + a3

mT∑

k=1

(√
v2
k+1 + v2

k

)α/2·p
+ a4mT

≤ −r/p · cp
1λ

np/2
min ‖v‖p

2 + a3c
α/2·p
2

[
mT∑

k=1

(
v2
k+1 + v2

k

)
]α/4·p

+ a4mT

≤ −r/p · cp
1λ

np/2
min ‖v‖p

2 + 2α/4·pa3c
α/2·p
2 ‖v‖α/2·p

2 + a4mT.

Let µ = −a2mT , since 1 < α < 2, there exists a constant ρ > 0 large enough such that

J(v) ≤ µ− 1 < µ, ∀v ∈ V, ‖v‖2 = ρ.

Thus, by Lemma 2.1, (1.1) has at least one mT -periodic solution. ¤
Proof of Theorem 1.3. Similarly to the proof of Lemma 2.3, we can prove that J satisfies the

P.S. condition. We shall prove this theorem by the Saddle Point Theorem. Firstly, we verify the

condition (J1).

In fact, (F4) clearly implies (F ′
4). For any v ∈ V , by (F ′

4) and (2.4), we have again J(v) → −∞
as ‖v‖2 → +∞.

Next, we show that J satisfies the condition (J2). For any given v0 ∈ V and w ∈ W . Let

u = v0 + w. So

J(u) = −H(u) +
mT∑

k=1

F (k, uk+1, uk)

= −H(v0) +
mT∑

k=1

F (k, (v0)k+1 + wk+1, (v0)k + wk)

≥ −r̄/p · cp
2λ

np/2
max ‖v0‖p

2 + a5

mT∑

k=1

[√
((v0)k+1 + wk+1)2 + ((v0)k + wk)2

]γ/2·p

≥ −r̄/p · cp
2λ

np/2
max ‖v0‖p

2 + a5

mT∑

k=1

|(v0)k + wk|γ/2·p

≥ −r̄/p · cp
2λ

np/2
max ‖v0‖p

2 + a5c
γ/2·p
1

[
mT∑

k=1

|(v0)k + wk|2
]γ/4·p

= −r̄/p · cp
2λ

np/2
max ‖v0‖p

2 + a5c
γ/2·p
1

[‖v0‖2
2 + ‖w‖2

2

]γ/4·p

≥ −r̄/p · cp
2λ

np/2
max ‖v0‖p

2 + a5c
γ/2·p
1 ‖v0‖γ/2·p

2 + a5c
γ/2·p
1 ‖w‖γ/2·p

2 .

Since 1 < γ < 2, there exists a constant δ > 0 small enough such that

J(v0 + w) ≥ δγ/2·p
(
a5c

γ/2·p
1 − r̄/p · cp

2λ
np/2
max δp−γ/2·p

)
> 0,

for v0 ∈ V, ‖v0‖2 = δ and for any w ∈ W .

Take ν = δγ/2·p
(
a5c

γ/2·p
1 − r̄/p · cp

2λ
np/2
max δp−γ/2·p

)
. Then for v0 ∈ V and for any w ∈ W , we get

‖v0‖2 = δ and J(v0 + w) ≥ ν > 0.

By the Saddle Point Theorem, there exists a critical point ū ∈ EmT , which corresponds to a

mT -periodic solution of (1.1).
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In the following, we shall prove that ū is nontrivial, i.e., ū 6∈ W . Otherwise, ū ∈ W . Since

J ′(ū) = 0, then

∆n (rk−nϕp (∆nūk−1)) = (−1)nf(k, ūk+1, ūk, ūk−1).

On the other hand, ū ∈ W implies that there is a point z ∈ R such that ūk = z, for all k ∈
Z(1,mT ). That is, ū1 = ū2 = · · · = ūk = · · · = z. Thus, f(k, ūk+1, ūk, ūk−1) = f(k, z, z, z) = 0,

for all k ∈ Z(1,mT ). From (F6), we know that z = 0. Therefore, by (F6), we have

J(ū) =
mT∑

k=1

F (k, ūk+1, ūk) =
mT∑

k=1

F (k, 0) = 0.

This contradicts J(ū) ≥ ν > 0. The proof of Theorem 1.3 is finished. ¤

Remark 3.1. The techniques of the proof of the Theorem 1.4 are just the same as those carried

out in the proof of Theorem 1.3. We do not repeat them here.

Remark 3.2. Due to Theorems 1.3 and 1.4, the conclusion of Theorems 1.5 and 1.6 is obviously

true.

4. Examples

As an application of the main theorems, finally, we give two examples to illustrate our results.

Example 4.1. For all n ∈ Z(1), k ∈ Z, assume that

∆n (rk−nϕp (∆nuk−1)) = (−1)nαpuk

[
ψ(k)

(
u2

k+1 + u2
k

)α/2·p−1 + ψ(k − 1)
(
u2

k + u2
k−1

)α/2·p−1
]
,

(4.2)

where rk is real valued for each k ∈ Z, ψ is continuously differentiable and ψ(k) > 0, T is a given

positive integer, rk+T = rk > 0, ψ(k + T ) = ψ(k), 1 < p < ∞, 1 < α < 2. We have

f(k, v1, v2, v3) = 2αv2

[
ψ(k)

(
v2
1 + v2

2

)α/2·p−1 + ψ(k − 1)
(
v2
2 + v2

3

)α/2·p−1
]

and

F (k, v1, v2) = ψ(k)
(
v2
1 + v2

2

)α/2·p
.

Then

∂F (k − 1, v2, v3)/∂v2+∂F (k, v1, v2)/∂v2 = αpv2

[
ψ(k)

(
v2
1 + v2

2

)α/2·p−1 + ψ(k − 1)
(
v2
2 + v2

3

)α/2·p−1
]
.

It is easy to verify all the assumptions of Theorem 1.3 are satisfied. Consequently, for any given

positive integer m > 0, (4.1) has at least one nontrivial mT -periodic solution.

Example 4.2. For all n ∈ Z(1), k ∈ Z, assume that

∆n (rk−nϕp (∆nuk−1))

= (−1)nθpuk

[(
6 + sin2 (kπ/T )

) (
u2

k+1 + u2
k

)θ/2·p−1 +
(
6 + sin2 ((k − 1)π/T )

) (
u2

k + u2
k−1

)θ/2·p−1
]
,

(4.3)

where rk is real valued for each k ∈ Z, T is a given positive integer, rk+T = rk > 0, 1 < p < ∞,

0 < θ < 2. We have

f(k, v1, v2, v3) = θpv2

[(
6 + sin2 (kπ/T )

) (
v2
1 + v2

2

)θ/2·p−1 +
(
6 + sin2 ((k − 1)π/T )

) (
v2
2 + v2

3

)θ/2·p−1
]
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and

F (k, v1, v2) =
(
6 + sin2 (kπ/T )

) (
v2
1 + v2

2

)θ/2·p
.

Then

∂F (k − 1, v2, v3)/∂v2 + ∂F (k, v1, v2)/∂v2

= θpv2

[(
6 + sin2 (kπ/T )

) (
v2
1 + v2

2

)θ/2·p−1 +
(
6 + sin2 ((k − 1)π/T )

) (
v2
2 + v2

3

)θ/2·p−1
]
.

It is easy to verify all the assumptions of Theorem 1.4 are satisfied. Consequently, for any given

positive integer m > 0, (4.2) has at least one nontrivial mT -periodic solution.
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