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Abstract

In this paper, we present a modular version of KKM and generalized KKM mappings and
then we establish a characterization of generalized KKM mappings in modular spaces. Also we
prove an analogue to KKM principle in modular spaces. Moreover, as an application, we give
some sufficient conditions which guarantee existence of solutions of minimax problems in which
we get Fan’s minimax inequality in modular spaces.
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1 Introduction

In 1929, Knaster, Kuratowski, and Mazurkiewicz established the well known KKM theorem on the
closed cover of a simplex [11] which has a fundamental importance in modern nonlinear analysis.
Then it is generalized to a subset of any topological vector space in 1996 by Fan [3]. It is proved in
H-spaces by Horvath in 1983 [4, 5]. Next the hyperconvex verion of this theorem is established in
1996 [7]. Recently, Khamsi et al. proved the KKM principle in modular function spaces from which
he obtained an analogue to Ky Fan’s fixed point theorem in theorem in modular function spaces
[9]. Based on the idea of the work of Khamsi [9], we introduce KKM mappings and generalized
KKM mappings and establish some minimax inequalities on modular spaces.
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The theory of modular spaces was initiated by Nakano [14] in 1950 in connection with the theory
of order spaces and redefined and generalized by Musielak and Orlicz [13] in 1959. Besides the idea
of defining a norm and considering particular Banach spaces of functions, another direction is based
on considering an abstractly given funtional defined on a linear space of functions which controls
the growth of members of the space. Even though a metric is not defined, many problems in metric
theory can be reformulated in modular spaces (see, for instance [6] and references therein).

In this work, we first define the generalized KKM mapping on a modular space, and then we
apply the property of the modular space to get a characterization of the generalized KKM mapping
and the KKM theorem. Next, by using our results, we get some minimax inequality theorems.

2 Preliminaries

Definition 2.1. A functional ρ on a real linear space X is said to be a modular on X if it satisfies
the following conditions:

1. ρ(x) = 0 iff x = 0,

2. ρ(x) = ρ(−x),

3. ρ(αx+ βy) ≤ ρ(x) + ρ(y), for all x, y ∈ X and α, β ≥ 0, α+ β = 1.

If we replace (3) by

4. ρ(αx+ βy) ≤ αρ(x) + βρ(y),

for any α, β ∈ R+
0 , α+ β = 1, then ρ will be called a convex modular.

The modular ρ on X defines the corresponding modular space Xρ , which is given by

Xρ = {x ∈ X : ρ(αx) → 0 as α → 0}.

Example 2.2. (a) Let X = R. Then

ρ(x) =

{
1 x ̸= 0
0 x = 0

is a modular on X.

(b) It is clear that every norm is a modular. However, Example 3 in [15] shows the converse is
not true.

(c) Let B be a set. Define

ℓ1(B) = {f : B → C :
∑
s∈B

|f(s)| < ∞}.

It is not difficult to check ρ : ℓ1(B) → [0,∞) defined by
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ρ(f) =

{ ∑
s∈B |f(s)|+ 1 f ̸= 0

0 f = 0,

is a modular.

(d) As a classical example, we mention the Musielak-Orlicz space denoted by Lϕ, for more details
see [12].

Let X and Y be nonempty sets, A ⊆ Y , and F : X → 2Y be a multivalued map with nonempty
values where 2Y denotes the set of all subsets of Y . Then we define

F−(A) =
{
x ∈ X : F (x) ∩A ̸= ∅

}
,

and the convex hull of A is denoted by co(A).

Definition 2.3. Let X be a nonempty set, ρ be a modular on Y , and C ⊆ Yρ.

1. A multivalued mapping G : C → 2Yρ is said KKM if

co({x1, . . . , xn}) ⊆
∪

i=1,...,n

G(xi),

for every finite subset {x1, . . . , xn} of X.

2. A multivalued mapping G : X → 2Yρ is said generalized KKM if for each nonempty finite
subset A = {x1, . . . , xn} of X there exists a nonempty subset {y1, . . . , yn} (yi’s can be equal
here) of Yρ such that for each subset {yi1 , . . . , yij} of {y1, . . . , yn} we have

co({yi1 , . . . , yij}) ⊆
j∪

k=1

G(xik).

The concept of generalized KKM maps is defined by Chang and Zhang in topological vector
spaces [2] motivated by the works of Knaster, Kuratowski and Mazurkiewicz [11]. These notions
also have been studied by Khanh et al. in GFC-spaces [10], and more recently by Khamsi et al.
in metric type spaces [8], and Park in generalized convex spaces [16]. We considered generalized
KKM mappings in modular spaces.

In this work, we will need the following definition.

Definition 2.4. Let ρ be a modular on X.

1. The sequence {xn} ⊂ Xρ is said to be convergent to a point x ∈ Xρ and denoted by xn → x
whenever ρ(xn − x) → 0.

2. The sequence {xn} ⊂ Xρ is called Cauchy if limk,l→∞ ρ(xk − xl) = 0.
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3. Xρ is said to be complete if each Cauchy sequence in Xρ is convergent to a point of Xρ.

4. The closure of a subset E of Xρ is denoted by E and defined by the set of all y ∈ Xρ such
that there is a sequence {yk} of E which is convergent to y. We say that E is closed if E = E.

5. A subset B of Xρ is said to be compact if every family {Fα : α ∈ G;Fα ⊆ Xρ} of closed sets
satisfying B ⊆ ∪α∈ΓF

c
α has a finite subfamily Fα1 , Fα2 , . . . , Fαn such that B ⊆ ∪n

j=1F
c
αj
.

3 The KKM Theory in Modular Spaces

Let us recall that for n ≥ 0, △n denotes the standard n-simplex of Rn+1 with vertices e0, . . . , en,
where ei is the ith unit vector in Rn+1, that is

△n =
{
(α0, α1, . . . , αn) ∈ Rn+1 :

n∑
i=0

αi = 1, ∀i αi ≥ 0
}
.

Let ρ be a modular on X. The mapping f : △n → Xρ is said to be continuous if am → a in
△n, then ρ(f(am)− f(a)) → 0.

Lemma 3.1. [1] Suppose F0, F1, . . . , Fn are closed subset of standard n-simplex △n in Rn+1. If
for any nonempty subset I of {0, 1, . . . , n},

co({ei : i ∈ I}) ⊆
∪
i∈I

Fi,

then
∩n

i=0 Fi ̸= ∅.

Lemma 3.2. The mapping f : △n → Xρ defined as

f(t0, t1, . . . , tn) =
n∑

i=0

tixi,

is continuous for each x0, . . . , xn ∈ Xρ and n ∈ N where ρ is a modular on X.

Proof. Suppose {am} is a sequence in △n such that am → a as m → ∞. We have

ρ(f(am0 , . . . , amn )− f(a0, . . . , an)) = ρ(

n∑
i=0

ami xi −
n∑

i=0

aixi)

= ρ(

n∑
i=0

(1/n)(ami − ai)nxi)

≤
n∑

i=0

ρ (n(ami − ai)xi) → 0,
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as m → ∞ where am = (am0 , . . . , amn ) and a = (a0, . . . , an). As a result,

f(am0 , . . . , amn ) → f(a0, . . . , an)

as m → ∞ and so f is continuous.

A characterization for generalized KKMmappings in modular spaces is obtained in the following
theorem.

Theorem 3.3. Let X be a nonempty set, ρ be a modular on Y , and F : X → 2Yρ be a multivalued
mapping with closed values. Then the family

{F (x) : x ∈ X},

has the finite intersection property if and only if the mapping F is a generalized KKM mapping.

Proof. Let F be a generalized KKM mapping. Take a finite subset {x0, . . . , xn} of X. It follows
that there exist corresponding points y0, . . . , yn of Yρ such that for each subset yi0 , . . . , yik , we have

co({yi0 , . . . , yik}) ⊂
k∪

j=0

F (xij ).

Let C = co({y0, y1, . . . , yn}) and define Fi = F (xi) ∩ C for every i = 0, . . . , n. Define ϕ : △n → C
by ϕ(a) =

∑n
i=0 aiyi where a = (a0, a1, . . . , an). By Lemma 3.2, ϕ is continuous which follows

ϕ−1(Fi) is closed in △n for each i = 0, . . . , n.
On the other hand, we have

ϕ(co{ei0 , ei1 , . . . , eik}) ⊆ co{yi0 , yi1 , . . . , yik} ⊆
k∪

j=0

F (xij ),

for each subset {ei0 , . . . , eik} of {e0, . . . , en}. It implies

co({ei0 , ei1 , . . . , eik}) ⊆
k∪

j=0

ϕ−1(F (xij )),

for each subset {ei0 , . . . , eik} of {e0, . . . , en}. Therefore, by Lemma 3.1

n∩
i=0

ϕ−1(Fi) ̸= ∅.

It implies there exists a ∈ △n such that

a ∈
n∩

i=0

ϕ−1(F (xi) ∩ C).
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Then ϕ(a) ∈
∩n

i=0 F (xi) ∩ C. Finally, we have

ϕ(a) ∈
n∩

i=0

F (xi).

We show that if the family {F (x) : x ∈ X} has the finite intersection property, then F is a
generalized KKM mapping. Suppose {x0, . . . , xn} is a subset of X. Since ∩n

i=0F (xi) ̸= ∅, choose
y∗ ∈ ∩n

i=0F (xi). Set yi = y∗ for i = 0, . . . , n. Then for any 0 ≤ k ≤ n and any subset {yi0 , . . . , yik},
it follows that

co({yij : j = 0, . . . , k}) = co({y∗}) = {y∗} ⊆
k∪

i=0

F (xi),

which shows F is a generalized KKM mapping.

Corollary 3.4. Let ρ be a modular on Y , X be a nonempty set of Yρ, and G : X → 2Yρ be a closed
valued map. If G is KKM, then the family {G(x) : x ∈ X} has the finite intersection property.

Theorem 3.5. Let ρ be a modular on Y , X be a nonempty set, and G : X → 2Yρ be a map
with closed values. Moreover, suppose there exists x0 ∈ X such that G(x0) is compact. Then∩
x∈X

G(x) ̸= ∅ if and only if the mapping G is a generalized KKM mapping.

Proof. Consider
∩

x∈X
G(x) ̸= ∅. So the family {G(x) : x ∈ X} has the finite intersection property.

By closedness of G(x) for each x ∈ X and Theorem 3.3, G is generalized KKM.
Now suppose G is a generalized KKM mapping and on the contrary

∩
x∈X

G(x) = ∅. As a result,∪
x∈X

G(x0) \G(x) = G(x0). Compactness of G(x0) implies there exist x0, . . . , xn such that

n∪
i=0

G(x0) \G(xi) = G(x0).

It follows that
∩n

i=0G(xi) = ∅ which is a contradiction by Theorem 3.3.

Let X be a nonempty set and ρ be a modular on Y . A mapping G : X → 2Yρ is said to be
generalized transfer closed-valued if

∩
x∈X

G(x) ̸= ∅ implies
∩

x∈X
G(x) ̸= ∅.

Remark 3.6. Let ρ be a modular on X and Y be a compact subset of Xρ. By using Theorems
3.5 and 3.3, it is not difficult to check that for every family C of closed sets in Y having the finite
intersection property, the intersection

∩
C∈C

C is nonempty.

6



Theorem 3.7. Let X be a nonempty set, ρ be a modular on Y , and G : X → 2Yρ be generalized
transfer closed valued. Moreover, suppose there exists a finite subset X0 of X such that

∩
x∈X0

G(x) is

nonempty and compact. Then
∩

x∈X
G(x) is nonempty if and only if the mapping G is a generalized

KKM mapping.

Proof. Using Theorem 3.3, we know G is a generalized KKM mapping if and only if∩
x∈A

G(x) ̸= ∅, (1)

for every finite subset A of X. On the other hand, we know∩
x∈X

G(x) =
∩
x∈X

G(x) ∩
∩

x∈X0

G(x)

=
∩
x∈X

G(x) ∩
∩

x∈X0

G(x)

 . (2)

Applying (2) and using Remark 3.6, we obtain (1) holds if and only if∩
x∈X

G(x) ̸= ∅. (3)

Since G is a generalized transfer closed valued multifunction, we deduce the inclusion (3) holds if
and only if ∩

x∈X
G(x) ̸= ∅ and the theorem is proved.

Corollary 3.8. Let ρ be a modular on Y , X be a nonempty subset of Yρ, and the set-valued map
G : X → 2Y be generalized transfer closed valued and KKM. If there exists a nonempty finite subset
X0 of X such that

∩
x∈X0

G(x) is nonempty and compact, then

∩
x∈X

G(x) ̸= ∅.

4 The Minimax Inequality

In this section as an application of Theorems 3.3, and 3.7, some minimax inequalities in modular
spaces are proved. The main result of this section is the following.

Theorem 4.1. Let ρ be a modular on X and Y be a nonempty subset of Xρ. Suppose Z is a
nonempty set and ϕ : Z×Y → R∪{+∞,−∞} is a mapping. Suppose that the following properties
hold.
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1. there exists a subset Z0 of Z such that
∩

z∈Z0

{y ∈ Y : ϕ(z, y) ≤ 0} is nonempty and compact.

2. the mapping z ↣ {y ∈ Y : ϕ(z, y) ≤ 0} is generalized transfer closed valued on Z.

3. the mapping z ↣ {y ∈ Y : ϕ(z, y) ≤ 0} is a generalized KKM map on Z.

Then there exists y∗ ∈ Y such that ϕ(z, y∗) ≤ 0 for each z ∈ Z, min
y∈Y

sup
z∈Z

ϕ(z, y) ≤ 0.

Proof. Define G : Z → 2Y by G(z) = {y ∈ Y : ϕ(z, y) ≤ 0}. It is not difficult to check G is a
generalized transfer closed valued mapping and G is a generalized KKM mapping on Z. On the
other hand, we know that ∩

z∈Z0

G(z),

is nonempty and compact for some subset Z0 of Z. Therefore, the assumptions stated in Theorem
3.7 are satisfied, which in turn implies

∩
z∈Z

G(z) ̸= ∅. Now choose y∗ ∈
∩
z∈Z

G(z). By the definition

of G we finally deduce ϕ(z, y∗) ≤ 0 for all z ∈ Z as we wanted.

Theorem 4.2. Let ρ be a modular on X and Y be a nonempty subset of Xρ, and Z ⊆ Y . Suppose
ϕ : Z × Y → R ∪ {+∞,−∞} is a mapping and the following properties hold.

1. there exists a subset Z0 of Z such that
∩

z∈Z0

{y ∈ Y : ϕ(z, y) ≤ 0} is nonempty and compact.

2. the mapping z ↣ {y ∈ Y : ϕ(z, y) ≤ 0} is generalized transfer closed valued on Z,

3. for each nonempty finite subset A of X and each y ∈ co(A), min
x∈A

ϕ(x, y) ≤ 0.

Then there exists y∗ ∈ Y such that ϕ(x, y∗) ≤ 0 for each x ∈ X; min
y∈Y

sup
x∈X

ϕ(x, y) ≤ 0.

Proof. Define the setvalued map G on Z at z ∈ Z as G(z) = {y ∈ Y : ϕ(z, y) ≤ 0}. According
to Theorem 4.1, it is enough to prove that G is generalized KKM. Suppose not, so there exists a
nonempty finite subset A of X such that

co(A) ̸⊆
∪
x∈A

G(x),

which in turn implies there exists y ∈ co(A) such that

y ̸∈
∪
x∈A

G(x).

It means that ϕ(x, y) > 0 for each x ∈ A. As a result min
x∈A

ϕ(x, y) > 0 which is a contradiction, and

the thorem is proved.
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Theorem 4.3. Let ρ be a modular on Z, Y be a nonempty subset of Zρ, and X ⊆ Y . Suppose
ϕ : X × Y → R ∪ {+∞,−∞} is a mapping and the following properties hold.

1. for each y ∈ Y and for each α ∈ R, the set {x ∈ X : ϕ(x, y) ≥ α} (resp., {x ∈ X : ϕ(x, y) ≥
α}) is convex.

2. There exists γ ∈ R such that ϕ(x, x) ≤ γ (resp., ϕ(x, x) ≥ γ) for each x ∈ X.

3. there exists a finite subset X0 of X such that
∩

x∈X0

{y ∈ Y : ϕ(x, y) ≤ γ}

(resp.
∩

x∈X0

{y ∈ Y : ϕ(x, y) ≥ γ}),

is nonempty and compact.

4. the map x → {y ∈ Y : ϕ(x, y) ≤ sup
z∈X

ϕ(z, z)} (resp.x → {y ∈ Y : ϕ(x, y) ≥ sup
z∈X

ϕ(z, z)}), is

generalized transfer closed valued.

Then there exists y∗ ∈ Y such that ϕ(x, y∗) ≤ γ (resp., ϕ(x, y∗) ≥ γ) for each x ∈ X and hence
supx∈X ϕ(x, y∗) ≤ sup

z∈X
ϕ(x, x) (resp. infx∈X ϕ(x, y∗) ≥ inf

z∈X
ϕ(x, x)).

Proof. By hypothesis (2), λ = sup
z∈X

ϕ(x, x) exists. Define G : X → 2Y as G(x) = {y ∈ Y : ϕ(x, y) ≤

λ}, we can find that the existence of y∗ ∈ Y such that sup
z∈X

ϕ(x, y∗) ≤ sup
z∈X

ϕ(x, x) requires that

y∗ ∈
∩
x∈X

G(x).

To do this, it is enough to show that ∩
x∈X

G(x).

In order to show this we would like to apply Theorem 3.7. First we prove that G is a KKM map.
Suppose not, as a result, there exist a subset {x1, . . . , xn} of X and x∗ ∈ co({x1, . . . , xn}) such that

x∗ ̸∈
n∪

i=1

G(xi).

It means that ϕ(xi, x
∗) > λ, for each i = 1, . . . , n. Set α = min

i=1,...,n
ϕ(xi, x

∗) and A = {x ∈ X :

ϕ(x, x∗) ≥ α}. Since xi ∈ A for each i = 1, . . . , n, by the hypothesis (1), x∗ ∈ A. It follows that
ϕ(x∗, x∗) ≥ α > λ, which is a contrdiction. It implies that G is a KKM map.
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Next we know that λ ≤ γ from which it follows that∩
x∈X0

G(x) =
∩

x∈X0

{y ∈ Y : ϕ(x, y) ≤ λ} ⊆
∩

x∈X0

{y ∈ Y : ϕ(x, y) ≤ γ},

for some finite subset X0 of X. It implies that∩
x∈X0

G(x)

is compact since
∩

x∈X0

{y ∈ Y : ϕ(x, y) ≤ γ} is nonempty and compact. On the other hand, by

Theorem 3.3, the fact that
∩

x∈X0

G(x) is nonempty follows from G is a KKM map.

The following is a modular version of the Ky Fan’s minimax inequality.

Corollary 4.4. Let ρ be a modular on X and Y be a nonempty subset of Xρ. Suppose ϕ : Y ×Y →
R ∪ {+∞,−∞} is a mapping and the following properties hold.

1. for each y ∈ Y and for each α ∈ R, the set {x ∈ Y : ϕ(x, y) ≥ α} (resp., {x ∈ Y : ϕ(x, y) ≥
α}) is closed and convex.

2. There exists γ ∈ R such that ϕ(x, x) ≤ γ (resp., ϕ(x, x) ≥ γ) for each x ∈ Y .

3. there exists x0 ∈ Y such that {y ∈ Y : ϕ(x0, y) ≤ γ} (resp. {y ∈ Y : ϕ(x0, y) ≥ γ}) is
compact.

Then there exists y∗ ∈ Y such that ϕ(x, y∗) ≤ γ (resp., ϕ(x, y∗) ≥ γ) for each x ∈ Y and hence
supx∈Y ϕ(x, y∗) ≤ supx∈Y ϕ(x, x) (resp. infx∈Y ϕ(x, y∗) ≥ infx∈Y ϕ(x, x))).
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