
CROSSED PRODUCTS OF PRO-C�-ALGEBRAS AND HILBERT
PRO-C�-MODULES

MARIA JOIŢA

Abstract. In this paper, we prove a universal property for the crossed prod-
uct of a pro-C�-algebra by an inverse limit action of a locally compact group.
Also, we prove a universal property of the crossed product of a Hilbert (pro-)
C�-module by an (inverse limit) action of a locally compact group.

1. Introduction

The crossed product of a C�-algebra A by an action � of a locally compact group
G is a new C�-algebra, denoted by G��A, which contains, in a some suitable sense,
A and G, and it is one of the most important construction in operator algebras.
A topological dynamical system (G; �;X), (that is, G is a locally compact group,
X is a compact Hasdor¤ space and � is a continuous action on X), induces an
action � of G on the C�-algebra C(X) of all continuous complex-valued functions
on X, and G�� C(X) encodes the topological dynamical system (G; �;X). There
is a vast literature on crossed products of C�-algebras (see, e.g. [15]), but the
corresponding theory in the context of non-normed topological algebras has still a
long way to cover. Crossed products of pro-C�-algebras by inverse limit actions
of locally compact groups were considered �rst by Phillips [11] and secondly by
Joi̧ta [3]. The crossed product of a pro-C�-algebra A by an inverse limit action � is
de�ned as the enveloping pro-C�-algebra of the covariance algebra L1(G;�;A). It
is often easiest to exhibit such objects by verifying a particular representation has
the required universal property, rather than working directly with de�nition. For
example, Raeburn [14] proved Takai�s theorem by exploiting the universal properties
of crossed products, and Joi̧ta [6] used the universal property of crossed products
of C�-algebras to study of covariant completely positive maps on C�-algebras. In
Section 3, we prove a universal property for the crossed product of a pro-C�-algebra
by an inverse limit action of a locally compact group.
Hilbert C�-modules appear as imprimitivity bimodules in the study of the Morita

equivalence for C�-algebras. Given two C�-dynamical systems (G;�;A) and (G; �;B)
such that A and B are strongly Morita equivalent and an (�; �)-compatible action �
of G on the imprimitivity A�B bimodule X, then the C�-crossed products G��A
and G�� B are strongly Morita equivalent. The imprimitivity G�� A � G�� B
bimodule is called the crossed product of X by �, and it is denoted by G�� X. In
[5], we show that for a dynamical system (G; �;X) on a full Hilbert C�-module X,
the Hilbert C�-module X can be embedding in the multiplier module of G �� X,
and G is isomorphic to a group of unitaries in the C�-algebra of adjointable mod-
ule morphisms on G �� X. In Section 4, we show that the crossed product of
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Hilbert C�-modules, respectively Hilbert pro-C�-modules by inverse limit actions,
has the universal property with respect to the covariant representations of Hilbert
C�-modules, respectively Hilbert pro-C�-modules.

2. Preliminaries

A pro-C�-algebra is a Hausdor¤ complete complex topological �-algebra A whose
topology is determined by its continuous C�-seminorms in the sense that a net
faigi2I converges to 0 in A if and only if the net fp(ai)gi2I converges to 0 for
all continuous C�-seminorms p on A. Other terms been used for a pro-C�-algebra
are: locally C�-algebra (A. Inoue), b�-algebra (C. Apostol) and LMC�-algebra (G.
Lassner, K. Schmüdgen). We refer the reader to [2] for further information about
pro-C�-algebras.
Let A be a pro-C�-algebra. We denote by S(A) the set of all continuous C�-

seminorms on A. For p 2 S(A), the quotient �-algebra Ap = A= ker p, where
ker p = fa 2 A; p(a) = 0g, is a C�-algebra with respect to the C�-norm k�kp
induced by p, and the canonical map from A to Ap is denoted by �Ap . The set S(A)
is directed with the order p � q if p (a) � q (a) for all a in A. Then, for p and q
in S(A), with p � q, there is a canonical surjective C�-morphism �Apq : Ap ! Aq
such that �Apq(�

A
p (a)) = �Aq (a) for all a in A and fAp;�Apqgp�q;p;q2S(A) is an inverse

system of C�-algebras. Moreover, the pro-C�-algebras A and lim
 p

Ap are isomorphic.

A multiplier on a pro-C�-algebra A is a pair (l; r) of linear maps from A to A such
that l and r are respectively left and right A-module morphisms, and r(a)b = al(b)
for all a; b 2 A. The multiplier algebra M(A) of A is a pro-C�-algebra with respect
to the topology determined by the family of C�-seminorms fpM(A)gp2S(A) with
pM(A)(l; r) = supfp(l(a)); a 2 A; p(a) � 1g, and it is isomorphic to lim

 p
M(Ap).

The strict topology onM(A) is given by the family of seminorms fpag(a;p)2A�S(A),
where pa (l; r) = p (l (a)) + p (r (a)). If ' : A! B is a nondegenerate morphism of
pro-C�-algebras (that is, ' is a continuous �-morphism and [' (A)B] = B, where
[' (A)B] denotes the closed subspace of B generated by f' (a) b; a 2 A; b 2 Bg),
then it extends to a unital morphism of pro-C�-algebras ' :M(A)!M(B).
A representation of A on a Hilbert space H is a pair (';H), where ' is a continu-

ous �-morphism from A to L(H). We say that (';H) is nondegenerate if [' (A)H] =
H.
Hilbert modules are generalizations of Hilbert spaces by allowing the inner prod-

uct to take values in a (pro-) C�-algebra rather than the �eld of complex numbers.
They are useful tools in theory of operator algebras, operator K-theory, KK-theory
of C�-algebras, group representation theory, C�-algebraic theory of quantum groups
and theory of operator spaces.
Here we recall some de�nitions and simple facts about Hilbert pro-C�-modules

and the module maps between them (see [7, 10, 12]).
A Hilbert pro-C�-module X over a pro-C�-algebra A (or a Hilbert A-module)

is a linear space that is also a right A-module, equipped with an A-valued inner
product h�; �i that is C- and A-linear in the second variable and conjugate linear in
the �rst variable such that X is complete with the family of seminorms fpXgp2S(A),
where pX (x) = p (hx; xi)

1
2 . A Hilbert A-module X is full if the pro-C�-subalgebra

of A generated by fhx; yi ;x; y 2 Xg coincides with A.
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Given a Hilbert pro-C�module X over A, for p 2 S(A), Xp = X= ker pX has a
canonical structure of Hilbert C�-module over Ap and the canonical map from X
onto Xp is denoted by �Xp . For p; q 2 S(A), with p � q, there is a canonical sur-
jective linear map �Xpq : Xp ! Xq such that �Xpq ��Xp = �Xq . Then fXp;Ap;�

X
pq;�

A
pq

gp�q; p;q2S(A) is an inverse system of Hilbert C�-modules, and X can be identi�ed
to lim
 p

Xp.

Let X and Y be Hilbert A-modules. A map T : X ! Y is adjointable if
there is a map T � : Y ! X such that hTx; yi = hx; T �yi for all x 2 X and
for all y 2 Y . The set L(X) of all adjointable A-module morphisms from X to
X is a pro-C�-algebra with respect to the topology determined by the family of
C�-seminorms fpL(X)gp2S(A), where pL(X) (T ) = supfpX(T (x)); pX(x) � 1g. The
closed linear subspace K (X) of L(X) spanned by f�y;x : X ! X;x; y 2 Xg, where
�y;x(z) = y hx; zi is a closed two-sided ideal of L(X), and M(K(X)) = L(X):
A morphism of Hilbert pro-C�-modules is a map � : X ! Y from a Hilbert

A-module X to a Hilbert B-module Y with the property that there is a pro-C�-
morphism ' : A! B such that

h� (x) ;� (y)i = ' (hx; yi)

for all x and y in X. A map � : X ! Y is an isomorphism of Hilbert pro-C�-
modules if it is invertible, and if � and ��1 are morphisms of Hilbert pro-C�-
modules.
A representation of X on the Hilbert spaces H and K is a morphism of Hilbert

C�-modules �X from X to the Hilbert L(H)-module L(H;K). If X is full, then the
representation 'A associated to �X is unique. A representation �X : X ! L(H;K)
of X is nondegenerate if [�X(X)H] = K and [�X(X)�K] = H.
The pro-C�-algebra L(A) of all adjointable module morphisms on A can be

identi�ed to the multiplier algebra M(A) of A (see, for example, [10, Theorem
4.2(6)]). Then the vector space of all adjointable module morphisms from A to
X, denoted by M(X), has a natural structure of Hilbert M(A)-module (see, for
example, [13]), and it is called the multiplier module of X. The strict topology
on M(X) is given by the family of seminorms fk�kp;a;xg(p;a;x)2S(A)�A�X , where
khkp;a;x = pX(h (a)) + p (h� (x)). A nondegenerate morphism of Hilbert pro-C�-
modules �X from a full Hilbert pro-C�-moduleX toM(Y ) (that is, [�X (X)B] = Y
and

�
�X (X)

�
Y
�
= B) extends to a unique morphism �X from M(X) to M(Y ),

and its underlying pro-C�-morphism 'A is the extension of the underlying pro-C
�-

morphism 'A of �X to M(A).

3. The universal property of the crossed products of
pro-C�-algebras

Let A be a pro-C�-algebra, G a locally compact group and � the modular
function of G with respect to the left invariant Haar measure ds.
An action � of G on A is an inverse limit action if there is a co�nal subset of

G-invariant continuous C�-seminorms on A (this is, p(�t(a)) = p(a) for all a in A
and for all t in G). Therefore, if � is an inverse limit action of G on A, we can
suppose that �t = lim p

�pt , where �
p; p 2 S(A) are actions of G on Ap; p 2 S(A) (see

[3]).
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A triple (G;�;A), consisting of a locally compact group G, a pro-C�-algebra A
and an inverse limit action � of G on A is called a pro-C�-dynamical system.
The vector space Cc(G;A) of all continuous functions from G to A with compact

support is a �-algebra with the convolution as product, given by

(f � h) (s) =
Z
G

f(t)�t
�
h(t�1s)

�
dt

and involution de�ned by

f ](t) = �(t)�1�t
�
f(t�1)�

�
:

For any p 2 S(A), the map Np : Cc(G;A) ! [0;1) given by

Np(f) =

Z
G

p(f(t))dt

is a submultiplicative �-seminorm on Cc(G;A).
Let L1(G;�;A) be the Hausdor¤ completion of Cc(G;A) with respect to the

topology de�ned by the family of submultiplicative �-seminorms fNpgp2S(A). Then,
L1(G;�;A), called the covariant algebra associated with the pro-C�-dynamical sys-
tem (G;A; �), is a locally m-convex �-algebra with bounded approximate unit. Its
enveloping pro-C�-algebra is called the crossed product of A by �, and it is denoted
by G�� A. Moreover, G�� A = lim p G��p Ap (see [3]).
Let (G;�;A) be a pro-C�-dynamical system. A covariant morphism from A to

a pro-C�-algebra B is a pair ('; u) consisting of a morphism of pro-C�-algebras '
from A to M(B) and a strictly continuous group morphism u from G to U(M(B)),
the group of unitaries in M(B), such that

'(�t(a)) = ut'(a)ut�1

for all t 2 G and for all a 2 A. The covariant morphism ('; u) is nondegenerate if
[' (A)B] = B. A (nondegenerate) covariant representation of (G;�;A) on a Hilbert
space H is a triple ('; u;H) consisting of a (nondegenerate) representation (';H)
of A and a unitary representation u of G on H such that '(�t(a)) = ut'(a)ut�1
for all t 2 G and for all a 2 A.
Given a C�-dynamical system (G;�;A), it is well known that the C�-algebra

A can be identi�ed with a C�-subalgebra in the multiplier algebra M (G�� A)
of the crossed product of A by �, and G is isomorphic to a group of unitaries in
M (G�� A).
In the following proposition we show that this result is also true for crossed

products of pro-C�-algebras.

Proposition 3.1. Let (G;�;A) be a pro-C�-dynamical system. Then there is a
nondegenerate covariant morphism (iA; iG) from A to G�� A such that:

(1) for any nondegenerate covariant representation ('; u;H) of (G;�;A), there
is a nondegenerate representation (�;H) of G �� A such that � � iA = '
and � � iG = u;

(2) G�� A = spanfiA(a)iG(f); a 2 A; f 2 Cc(G)g.
Moreover, iA and iG are injective,

(iA (a) (f)) (s) = af (s)
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and
(iG (t) (f)) (s) = �t

�
f
�
t�1s

��
for all a 2 A, t 2 G and f 2 Cc (G;A).

Proof. Let p 2 S(A). By [15, Proposition 2.34], there is a nondegenerate covariant
morphism

�
iAp ; i

p
G

�
from Ap to G ��p Ap which veri�es (1) and (2). Moreover,

iAp
and ipG are injective,

�
iAp

�
�Ap (a)

�
(f)
�
(s) = �Ap (a) f (s) and (i

p
G (t) (f)) (s) =

�pt
�
f
�
t�1s

��
for all a 2 A, t 2 G and f 2 Cc (G;Ap). Since we have��

�M(G��A)
pq � iAp

� �
�Ap (a)

�� �
�Aq (b)
 f

�
(s)

=
�
�M(G��A)
pq

�
iAp

�
�Ap (a)

��� �
�Aq (b)
 f

�
(s)

= �G��Apq

��
iAp

�
�Ap (a)

�� �
�Ap (b)
 f

��
(s)

= �Apq
�
�Ap (a)�

A
p (b) f (s)

�
= �Aq (a)�

A
q (b) f (s)

= iAq

�
�Aq (a)

� �
�Aq (b)
 f

�
(s)

for all a; b 2 A; f 2 Cc(G); s 2 G and for all p; q 2 S(A) with p � q, taking into
account that Aq 
alg Cc(G) is dense in G ��q Aq, we deduce that

�
iAp

�
p2S(A) is

an inverse system of injective C�-morphisms. Then iA = lim
 p

iAp
is an injective

pro-C�-morphism.
Let t 2 G. Since we have�

�M(G��A)
pq (ipG (t))

� �
�Aq (b)
 f

�
(s)

=
�
�G��Apq

�
ipG (t)

�
�Aq (b)
 f

���
(s)

= �Apq
�
ipG (t)

�
�Ap (b)
 f

�
(s)
�

= �Apq
�
�pt
�
�Ap (b)

�
f
�
t�1s

��
= �qt

�
�Apq

�
�Ap (b)

��
f
�
t�1s

�
= �qt

�
�Aq (b)

�
f
�
t�1s

�
= iqG (t)

�
�Aq (b)
 f

�
(s)

for all b 2 A; f 2 Cc(G); s 2 G and for all p; q 2 S(A) with p � q, taking into
account that Aq 
alg Cc(G) is dense in G��q Aq, we deduce that (ipG (t))p2S(A) is
an inverse system of unitaries in M(G �� A). Let iG(t) = lim

 p
ipG(t). Clearly, the

map t ! iG(t) is an injective strictly continuous morphism of groups from G to
U (M(G�� A)).
It is easy to verify that (iA;iG) is a nondegenerate covariant morphism from A

to G�� A.
Let ('; u;H) be a nondegenerate covariant representation of (G;�;A). Then

there is a nondegenerate covariant representation
�
'p; u;H

�
of (G;�p; Ap) such

that ' = 'p � �Ap , and by [15, Proposition 2.34 (1)], there is a nondegenerate
representation (�p;H) of G��p Ap such that �p � iAp = 'p and �p � i

p
G = u. Let

� = �p � �G��Ap . Clearly, (�;H) is a nondegenerate representation of G �� A.
Moreover,

� � iA = �p � �G��Ap � iA = �p � �G��Ap � iA = �p � iAp
� �Ap = 'p � �Ap = '

and
� � iG = �p � �G��Ap � iG = �p � ipG = u:
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Therefore, the statement (1) is veri�ed.
By [9, Lemma III 3.2], we have

spanfiA(a)iG(f); a 2 A; f 2 Cc(G)g

= lim
 p

�G��Ap

�
spanfiA(a)iG(f); a 2 A; f 2 Cc(G)g

�
= lim

 p
spanfiAp

(�Ap (a))i
p
G(f); a 2 A; f 2 Cc(G)g

[15, Proposition 2.34 (1)]

= lim
 p

G��p Ap = G�� A

and so, the statement (2) is veri�ed too. �
Corollary 3.2. Let (G;�;A) be a pro-C�-dynamical system. If G is discrete, then
A can be identi�ed with a pro-C�-subalgebra of G �� A, and if, moreover, A is
unital, then G can be identi�ed with a group of unitaries in G�� A.
Proof. If G is discrete, then Ap can be identi�ed with a C�-subalgebra of G��p Ap
for each p 2 S(A). Thus, we have

iA (A) = lim
 p

�
M(G��A)
p (iA (A))

[9, Lemma III 3.2]

= lim
 p

iAp

�
�Ap (A)

�
= lim
 p

iAp
(Ap)

� lim
 p

G��p Ap = G�� A:

If A is unital, then the C�-algebras Ap; p 2 S(A) are unital, and since G is
discrete, the C�-algebras G��p Ap; p 2 S(A) are unital. Therefore, M(G�� A) =
G�� A. �
In the following theorem we show that the crossed product of a pro-C�-algebra by

an inverse limit action of a locally compact group is a universal object for covariant
representations of pro-C�-dynamical systems.

Theorem 3.3. Let (G;�;A) be a pro-C�-dynamical system and B a pro-C�-algebra
with the property that there is a nondegenerate covariant morphism (jA; jG) from
A to B which satis�es the following:

(1) for any nondegenerate covariant representation ('; u;H) of (G;�;A), there
is a nondegenerate representation (�;H) of B such that � � jA = ' and
� � jG = u,

(2) B = spanfjA (a) jG (f) ; a 2 A; f 2 Cc(G)g, where jG(f) =
R
G

f (t) jG(t)dt:

Then there is a pro-C�-isomorphism j : B ! G�� A such that

j � jA = iA and j � jG = iG:

Proof. Let q 2 S(B). Then there is pq 2 S(A) such that qM(B) (jA(a)) � pq (a)
for all a 2 A, and so there is a C�-morphism jApq

: Apq ! M (Bq) such that

jApq
� �Apq = �Bq � jA.

Let (�q;H�) be a faithful nondegenerate representation ofBq. Then
�
�q � jApq

;H�

�
is a nondegenerate representation of Apq . For t 2 G, uqt = �q

�
�Bq (jG(t))

�
is
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a unitary operator in L(H�) and t ! uqt is a unitary representation of G on

H�. Moreover,
�
�q � jApq

; uq;H�

�
is a nondegenerate covariant representation of�

G;�pq ; Apq
�
. Then, there is a nondegenerate representation (�q;H�) of G��pqApq

such that
�q � iApq

= �q � jApq
and �q � iqG = uq:

We have

�q

�
iApq

�
�Apq (a)

�
iqG (f)

�
= �q

�
iApq

�
�Apq (a)

��
�q (i

q
G (f))

=
�
�q � jApq

��
�Apq (a)

�
�q

�
�Bq (jG(f))

�
= �q

�
jApq

�
�Apq (a)

�
�Bq (jG(f))

�
for all a 2 A and f 2 Cc (G), and so �q and �q have the same range. Let �q =
��1q � �q � �G��Apq . Clearly, �q is a continuous �-morphism from G �� A to Bq;

�q � iA = �Bq � jA and �q � iG = �Bq � jG. Since we have�
�Bq1q2 � �q1

�
(iA (a) iG (f)) =

�
�Bq1q2 � �

�1
q1 ��q1 � �

G��A
pq1

�
(iA (a) iG (f))

=
�
�Bq1q2 � �

�1
q1 ��q1

� �
iAp1

�
�Ap1 (a)

�
ip1G (f)

�
=

�
�Bq1q2 � �

�1
q1

� �
�q1

�
jApq1

�
�Apq1 (a)

�
�Bq1 (jG(f))

��
= �Bq1q2

�
jApq1

�
�Apq1 (a)

�
�Bq1 (jG(f))

�
= �Bq1q2

�
�Bq1 (jA (a) jG(f))

�
= �Bq2 (jA (a) jG (f))

= �q2 (iA (a) iG (f))

for all a 2 A and f 2 Cc (G) and for all q1; q2 2 S(B) with q1 � q2, we deduce that
there is a pro-C�-morphism � : G �� A ! B such that �Bq � � = �q. Moreover,
since

�Bq
�
� (iA (a))

�
= �q (iA (a)) = �Bq (jA (a))

for all a 2 A and for all q 2 S(B);� � iA = jA, and since

�Bq
�
� (iG (f))

�
= �q (iG (f)) = �Bq (jG (f))

for all f 2 Cc (G) and for all q 2 S(B);� � iG = jG.
In the same manner, we obtain a pro-C�-morphism 	 : B ! G�� A such that

	 � jA = iA and 	 � jG = iG. Clearly,

(	 � �) (iA (a) iG (f)) = iA (a) iG (f) and (� �	) (jA (a) jG (f)) = jA (a) jG (f)

for all a 2 A and f 2 Cc (G), and so 	 : B ! G �� A is a pro-C�-isomorphism.
We put j = 	 and the theorem is proved. �

4. The universal property of the crossed products of Hilbert
pro-C�-modules

An action of a locally compact group G on a full Hilbert pro-C�-module X over
a pro-C�-algebra A is a group morphism t 7! �t from G to Aut(X), the group
of all isomorphisms of Hilbert pro-C�-modules from X to X, such that the map
t 7! �t (x) from G to X is continuous for each x 2 X. An action � of G on X
is an inverse limit action if we can write X as an inverse limit lim

 �
X� of Hilbert
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C�-modules in such a way that there are actions �� of G on X�; � 2 � such that
�t = lim �

��t for all t in G. The triple (G; �;X) consisting of a locally compact group

G, a full Hilbert pro-C�-module X and an inverse limit action � of G on X is called
a dynamical system on a Hilbert pro-C�-module X. Clearly, any pro-C�-dynamical
system (G;�;A) can be regarded as a dynamical system on Hilbert pro-C�-module
in the sense of the above de�nition.
An inverse limit action t 7! �t of G on X induces a unique inverse limit action

t 7! ��t of G on A such that

��t (hx; yi) = h�t (x) ; �t (x)i
for all x; y 2 X and for all t 2 G (see [3, 4, 8]).
Let (G; �;X) be a dynamical system on a Hilbert pro-C�-module X. The linear

space Cc(G;X) of all continuous functions from G to X with compact support has
the pre-Hilbert G��� A-module structure with the action of G��� A on Cc(G;X)
given by

(bxf) (s) = R
G

bx (t)��t �f �t�1s�� dt
for all bx 2 Cc(G;X) and f 2 Cc(G;A), and the inner product given by

hbx; byi (s) = R
G

h�t�1 (bx(t)) ; �t�1 (by (ts))i dt:
The crossed product of X by �, denoted by G �� X, is the Hilbert G ��� A-
module obtained by the completion of the pre-Hilbert G ��� A-module Cc(G;X)
(see [3, 4, 8]).
Let (G; �;X) be a dynamical system on a Hilbert pro-C�-module X. A covari-

ant morphism from X to a Hilbert pro-C�-module Y over B is a triple (v;�X ; u)
consisting of a morphism �X from X to M(Y ), a strictly continuous group mor-
phism u from G to U (M(B)) and a strictly continuous group morphism v from G
to U (M(K(Y ))) such that

vt�X (x)ut�1 = �X (�t (x))

for all x 2 X and for all t 2 G. The covariant morphism (v;�X ; u) is nondegenerate
if �X is nondegenerate. If (v;�X ; u) is a (nondegenerate) covariant morphism from
X to Y , then

�
'A;u

�
, where 'A is the underlying pro-C

�-morphism of �X , is a
(nondegenerate) covariant morphism from A to B.
A (nondegenerate) covariant representation of (G; �;X) on the Hilbert spaces

H and K is a quintuple (v;�X ; u;H;K) consisting of a (nondegenerate) representa-
tion (�X ;H;K) of X and two unitary representations v and u of G on the Hilbert
spaces K respectively H such that vt�X (x)ut�1 = �X (�t (x)) for all x 2 X and
for all t 2 G.
As in the case of crossed products of pro-C�-algebras, we show that the crossed

product of a Hilbert pro-C�-module is a universal object for covariant representa-
tions of dynamical systems on a Hilbert pro-C�-module.

Proposition 4.1. Let (G; �;X) be a dynamical system on a Hilbert C�-module
X. Then there is a nondegenerate covariant morphism

�
iXG ; iX ; iG

�
from X to

G�� X such that
(1) for any nondegenerate covariant representation (v;�X ; u;H;K) of (G; �;X),

there is a nondegenerate representation
�
�G��X ;H;K

�
of G��X such that

�G��X � iX = �X and 'G���A � iG = u;
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(2) G�� X = spanfiX (x) iG (f) ;x 2 X; f 2 Cc(G)g.
Moreover, the maps iXG ; iX and iG are injective,

iX (x) (f) (s) = xf (s) and iG (t) (f) = ��t
�
f
�
t�1s

��
for all f 2 Cc(G;A) and s; t 2 G and

iXG (t) (x
 f) (s) = �t (x) f
�
t�1s

�
for all x 2 X, for all f 2 Cc(G) and for all s; t 2 G.

Proof. By [5, Theorem 3.5], there is
�
iXG ; iX ; iG

�
a covariant morphism from X to

G �� X such that iXG ; iX and iG are injective. The assertion (1) follows from the
proof of Proposition 3.8 [5].
(2) Let

�
�G��X ;H;K

�
be a faithful nondegenerate representation of G �� X

(see [1, Theorem 3.11]). Then there is a nondegenerate covariant representation
(v;�X ; u;H;K) of (G; �;X) such that �G��X = �X � u, where

(�X � u) (f) =
R
G

�X (f (t))utdt

for all f 2 Cc (G;X), and 'G���A = 'A � u. Moreover,

�X � u � iX = �X and 'A � u � iG = u;

(see the proof of Proposition 3.8 [5]). Thus, we have

(�X � u) (iX (x) iG (f)) = �X � u (iX (x))'A � u (iG (f))
= �X (x)u (f) = (�X � u) (x
 f) ;

whence, it follows that iX (x) iG (f) = x 
 f for all f 2 Cc(G) and for all x 2 X.
Since X 
alg Cc(G) is dense in G�� X,

spanfiX (x) iG (f) ; f 2 Cc(G); x 2 Xg = G�� X.
�

Theorem 4.2. Let (G; �;X) be a dynamical system on a Hilbert C�-module X and
Y a full Hilbert C�-module over B with the property that there is a nondegenerate
covariant morphism

�
jXG ; jX ; jG

�
from X to Y which satis�es the following:

(1) for any nondegenerate covariant representation (v;�X ; u;H;K) of (G; �;X),
there is a nondegenerate representation (�Y ;H;K) of Y such that �Y �jX =
�X and 'B � jG = u;

(2) Y = spanfjX (x) jG (f) ;x 2 X; f 2 Cc(G)g.
Then there is an isomorphism of Hilbert C�-modules J : Y ! G�� X such that

J � jX = iX and j � jG = iG,

where j is the underlying C�-morphism of J .

Proof. Let
�
�G��X ;H;K

�
be a faithful nondegenerate representation of G �� X

(see [1, Theorem 3.11]). Then �G��X � iX is a morphism of Hilbert C�-modules
and its underlying C�-morphism is 'G���A � iA. Since�

'G���A � iG
�
(t)
�
'G���A � iA

�
(a)
�
'G���A � iG

� �
t�1
�

= 'G���A
�
iG (t) iA (a) iG

�
t�1
��

=
�
'G���A � iA

�
(��t (a))
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for all a 2 A and for all t 2 G, there is a strictly continuous morphism v from

G to U(L(K)) such that
�
v; 'G��X � iX ; 'G���A � iG;H;K

�
is a nondegenerate

covariant representation of (G; �;X) (see [5, Lemma 3.4]). Then there is a non-
degenerate representation (�Y ;H;K) of Y such that �Y � jX = �G��X � iX and
'B � jG = 'G���A � iG. Since we have

�Y (jX (x) jG (f)) = �G��X (iX (x) iG(f))

for all x 2 X and for all f 2 Cc(G), it follows from the assertion (2) and Proposition
4.1 (2) that [�Y (Y )] =

�
�G��X (G�� X)

�
. Let J =

�
�G��X

��1 ��Y . Then J is a
morphism of Hilbert C�-modules from Y to G��X and its underlying C�-morphism

is j =
�
'G���A

��1 � 'B . Moreover, J � jX = iX and j � jG = iG.
In the same manner, we obtain a morphism of Hilbert C�-modules 	 : G��X !

Y such that 	 � iX = jX ,  � iG = jG. Then,

(J �	) (iX (x) iG(f)) = iX (x) iG(f) and (	 � J) (jX (x) jG(f)) = jX (x) jG(f)

for all x 2 X and for all f 2 Cc(G), and so J is an isomorphism of Hilbert C�-
modules. �

Suppose that (G; �;X) is a dynamical system on a Hilbert pro-C�-module X.
Then G��X = lim

 p
G��pXp with G��pXp = (G�� X)p for all p 2 S(A) (see, for

example, [4, Lemma 5.3]). It is easy to check that
�
iXp

�
p2S(A) is an inverse limit of

injective linear maps. Let iX = lim p
iXp
. Then iX is an injective morphism of Hilbert

pro-C�-modules and its underlying pro-C�-morphism is iA = lim
 p

iAp
. For t 2 G,�

iGXp
(t)
�
p2S(A)

and (ipG (t))p2S(A) are inverse systems of unitaries in L (G��p Xp) ;

p 2 S(A), respectively M(G ���p Ap); p 2 S(A), and then iGX (t) = lim p i
G
Xp
(t) and

iG (t) = lim
 p

ipG(t) are unitaries in L (G�� X), respectively M(G ��� A), and the

maps t! iGX (t) and t! iG (t) are strictly continuous group morphisms from G to
U(K(G�� X)) respectively U (M(G��� A)). Since we have

iGX (t) iX (x) iG
�
t�1
�
= lim

 p
iGXp

(t) iXp

�
�Xp (x)

�
ipG
�
t�1
�
= lim
 p

iXp

�
�pt
�
�Xp (x)

��
= lim

 p
iXp

�
�Xp (�t (x))

�
= iX (�t (x))

for all t 2 G and for all x 2 X, we deduce that
�
iGX ; iX ; iG

�
is an injective covariant

morphism from X to G��X, and since iXp
is nondegenerate for all p 2 S(A), it is

nondegenerate. Moreover,

spanfiX (x) iG (f) ; x 2 X; f 2 Cc (G)g

= lim
 p

�
G��X
p

�
spanfiX (x) iG (f) ; x 2 X; f 2 Cc (G)g

�
= lim

 p
spanfiXp

�
�Xp (x)

�
ipG (f) ; x 2 X; f 2 Cc (G)g

= lim
 p

G��p Xp = G�� X:

Theorem 4.3. Let (G; �;X) be a dynamical system on a Hilbert pro-C�-module
X and Y a full Hilbert pro-C�-module over B with the property that there is a
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nondegenerate covariant morphism
�
jGX;jX ; jG

�
from X to Y which satis�es the

following:
(1) for any nondegenerate covariant representation (v;�X ; u;H;K) of (G; �;X),

there is a nondegenerate representation (�Y ;H;K) of Y such that �Y �jX =
�X and 'B � jG = u;

(2) Y = spanfjX (x) jG (f) ;x 2 X; f 2 Cc(G)g.
Then there is an isomorphism of pro-C�-modules J : Y ! G�� X such that

J � jX = iX and j � jG = iG;

where j is the underlying pro-C�-morphism of J .

Proof. The proof it is similar to the proof of Theorem 3.3. �
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