CROSSED PRODUCTS OF PRO-C*-ALGEBRAS AND HILBERT PRO-C*-MODULES

MARIA JOIŢA

ABSTRACT. In this paper, we prove a universal property for the crossed product of a pro- C^* -algebra by an inverse limit action of a locally compact group. Also, we prove a universal property of the crossed product of a Hilbert (pro-) C^* -module by an (inverse limit) action of a locally compact group.

1. INTRODUCTION

The crossed product of a C^* -algebra A by an action α of a locally compact group G is a new C*-algebra, denoted by $G \times_{\alpha} A$, which contains, in a some suitable sense, A and G, and it is one of the most important construction in operator algebras. A topological dynamical system (G, θ, X) , (that is, G is a locally compact group, X is a compact Hasdorff space and θ is a continuous action on X), induces an action α of G on the C^{*}-algebra C(X) of all continuous complex-valued functions on X, and $G \times_{\alpha} C(X)$ encodes the topological dynamical system (G, θ, X) . There is a vast literature on crossed products of C^* -algebras (see, e.g. [15]), but the corresponding theory in the context of non-normed topological algebras has still a long way to cover. Crossed products of pro- C^* -algebras by inverse limit actions of locally compact groups were considered first by Phillips [11] and secondly by Joita [3]. The crossed product of a pro-C^{*}-algebra A by an inverse limit action α is defined as the enveloping pro-C^{*}-algebra of the covariance algebra $L^1(G, \alpha, A)$. It is often easiest to exhibit such objects by verifying a particular representation has the required universal property, rather than working directly with definition. For example, Raeburn [14] proved Takai's theorem by exploiting the universal properties of crossed products, and Joita [6] used the universal property of crossed products of C^* -algebras to study of covariant completely positive maps on C^* -algebras. In Section 3, we prove a universal property for the crossed product of a pro- C^* -algebra by an inverse limit action of a locally compact group.

Hilbert C^* -modules appear as imprimitivity bimodules in the study of the Morita equivalence for C^* -algebras. Given two C^* -dynamical systems (G, α, A) and (G, β, B) such that A and B are strongly Morita equivalent and an (α, β) -compatible action η of G on the imprimitivity A - B bimodule X, then the C^* -crossed products $G \times_{\alpha} A$ and $G \times_{\beta} B$ are strongly Morita equivalent. The imprimitivity $G \times_{\alpha} A - G \times_{\beta} B$ bimodule is called the crossed product of X by η , and it is denoted by $G \times_{\eta} X$. In [5], we show that for a dynamical system (G, η, X) on a full Hilbert C^* -module X, the Hilbert C^* -module X can be embedding in the multiplier module of $G \times_{\eta} X$, and G is isomorphic to a group of unitaries in the C^* -algebra of adjointable module morphisms on $G \times_{\eta} X$. In Section 4, we show that the crossed product of

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L05, 46L08.

Key words and phrases. pro- C^* -algebras, Hilbert pro- C^* -modules, crossed product.

MARIA JOIŢA

Hilbert C^* -modules, respectively Hilbert pro- C^* -modules by inverse limit actions, has the universal property with respect to the covariant representations of Hilbert C^* -modules, respectively Hilbert pro- C^* -modules.

2. Preliminaries

A pro- C^* -algebra is a Hausdorff complete complex topological *-algebra A whose topology is determined by its continuous C^* -seminorms in the sense that a net $\{a_i\}_{i\in I}$ converges to 0 in A if and only if the net $\{p(a_i)\}_{i\in I}$ converges to 0 for all continuous C^* -seminorms p on A. Other terms been used for a pro- C^* -algebra are: locally C^* -algebra (A. Inoue), b^* -algebra (C. Apostol) and LMC^* -algebra (G. Lassner, K. Schmüdgen). We refer the reader to [2] for further information about pro- C^* -algebras.

Let A be a pro-C*-algebra. We denote by S(A) the set of all continuous C*seminorms on A. For $p \in S(A)$, the quotient *-algebra $A_p = A/\ker p$, where $\ker p = \{a \in A; p(a) = 0\}$, is a C*-algebra with respect to the C*-norm $\|\cdot\|_p$ induced by p, and the canonical map from A to A_p is denoted by π_p^A . The set S(A)is directed with the order $p \ge q$ if $p(a) \ge q(a)$ for all a in A. Then, for p and q in S(A), with $p \ge q$, there is a canonical surjective C*-morphism $\pi_{pq}^A : A_p \to A_q$ such that $\pi_{pq}^A(\pi_p^A(a)) = \pi_q^A(a)$ for all a in A and $\{A_p; \pi_{pq}^A\}_{p\ge q, p, q\in S(A)}$ is an inverse system of C*-algebras. Moreover, the pro-C*-algebras A and $\lim_{\leftarrow p} A_p$ are isomorphic.

A multiplier on a pro- C^* -algebra A is a pair (l, r) of linear maps from A to A such that l and r are respectively left and right A-module morphisms, and r(a)b = al(b) for all $a, b \in A$. The multiplier algebra M(A) of A is a pro- C^* -algebra with respect to the topology determined by the family of C^* -seminorms $\{p_{M(A)}\}_{p \in S(A)}$ with $p_{M(A)}(l,r) = \sup\{p(l(a)); a \in A, p(a) \leq 1\}$, and it is isomorphic to $\lim_{\leftarrow p} M(A_p)$. The strict topology on M(A) is given by the family of seminorms $\{p_a\}_{(a,p)\in A\times S(A)}$, where $p_a(l,r) = p(l(a)) + p(r(a))$. If $\varphi : A \to B$ is a nondegenerate morphism of pro- C^* -algebras (that is, φ is a continuous *-morphism and $[\varphi(A)B] = B$, where $[\varphi(A)B]$ denotes the closed subspace of B generated by $\{\varphi(a) b; a \in A, b \in B\}$,

then it extends to a unital morphism of pro- C^* -algebras $\overline{\varphi}: M(A) \to M(B)$.

A representation of A on a Hilbert space \mathcal{H} is a pair (φ, \mathcal{H}) , where φ is a continuous *-morphism from A to $L(\mathcal{H})$. We say that (φ, \mathcal{H}) is nondegenerate if $[\varphi(A)\mathcal{H}] = \mathcal{H}$.

Hilbert modules are generalizations of Hilbert spaces by allowing the inner product to take values in a (pro-) C^* -algebra rather than the field of complex numbers. They are useful tools in theory of operator algebras, operator K-theory, KK-theory of C^* -algebras, group representation theory, C^* -algebraic theory of quantum groups and theory of operator spaces.

Here we recall some definitions and simple facts about Hilbert pro- C^* -modules and the module maps between them (see [7, 10, 12]).

A Hilbert pro- C^* -module X over a pro- C^* -algebra A (or a Hilbert A-module) is a linear space that is also a right A-module, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle$ that is \mathbb{C} - and A-linear in the second variable and conjugate linear in the first variable such that X is complete with the family of seminorms $\{p_X\}_{p \in S(A)}$, where $p_X(x) = p(\langle x, x \rangle)^{\frac{1}{2}}$. A Hilbert A-module X is full if the pro- C^* -subalgebra of A generated by $\{\langle x, y \rangle; x, y \in X\}$ coincides with A.

3

Given a Hilbert pro- C^* module X over A, for $p \in S(A)$, $X_p = X/\ker p_X$ has a canonical structure of Hilbert C^* -module over A_p and the canonical map from X onto X_p is denoted by σ_p^X . For $p, q \in S(A)$, with $p \ge q$, there is a canonical surjective linear map $\sigma_{pq}^X : X_p \to X_q$ such that $\sigma_{pq}^X \circ \sigma_p^X = \sigma_q^X$. Then $\{X_p; A_p; \sigma_{pq}^X; \pi_{pq}^A\}_{p\ge q, p,q\in S(A)}$ is an inverse system of Hilbert C^* -modules, and X can be identified to $\lim X_p$.

Let X and Y be Hilbert A-modules. A map $T : X \to Y$ is adjointable if there is a map $T^* : Y \to X$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in X$ and for all $y \in Y$. The set L(X) of all adjointable A-module morphisms from X to X is a pro-C*-algebra with respect to the topology determined by the family of C*-seminorms $\{p_{L(X)}\}_{p \in S(A)}$, where $p_{L(X)}(T) = \sup\{p_X(T(x)); p_X(x) \leq 1\}$. The closed linear subspace K(X) of L(X) spanned by $\{\theta_{y,x} : X \to X; x, y \in X\}$, where $\theta_{y,x}(z) = y \langle x, z \rangle$ is a closed two-sided ideal of L(X), and M(K(X)) = L(X).

A morphism of Hilbert pro- C^* -modules is a map $\Phi : X \to Y$ from a Hilbert A-module X to a Hilbert B-module Y with the property that there is a pro- C^* -morphism $\varphi : A \to B$ such that

$$\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$$

for all x and y in X. A map $\Phi : X \to Y$ is an isomorphism of Hilbert pro- C^* -modules if it is invertible, and if Φ and Φ^{-1} are morphisms of Hilbert pro- C^* -modules.

A representation of X on the Hilbert spaces \mathcal{H} and \mathcal{K} is a morphism of Hilbert C^* -modules Φ_X from X to the Hilbert $L(\mathcal{H})$ -module $L(\mathcal{H}, \mathcal{K})$. If X is full, then the representation φ_A associated to Φ_X is unique. A representation $\Phi_X : X \to L(\mathcal{H}, \mathcal{K})$ of X is nondegenerate if $[\Phi_X(X)\mathcal{H}] = \mathcal{K}$ and $[\Phi_X(X)^*\mathcal{K}] = \mathcal{H}$.

The pro- C^* -algebra L(A) of all adjointable module morphisms on A can be identified to the multiplier algebra M(A) of A (see, for example, [10, Theorem 4.2(6)]). Then the vector space of all adjointable module morphisms from A to X, denoted by M(X), has a natural structure of Hilbert M(A)-module (see, for example, [13]), and it is called the multiplier module of X. The strict topology on M(X) is given by the family of seminorms $\{\|\cdot\|_{p,a,x}\}_{(p,a,x)\in S(A)\times A\times X}$, where $\|h\|_{p,a,x} = p_X(h(a)) + p(h^*(x))$. A nondegenerate morphism of Hilbert pro- C^* modules Φ_X from a full Hilbert pro- C^* -module X to M(Y) (that is, $[\Phi_X(X)B] = Y$ and $[\Phi_X(X)^*Y] = B$) extends to a unique morphism $\overline{\Phi_X}$ from M(X) to M(Y), and its underlying pro- C^* -morphism $\overline{\varphi_A}$ is the extension of the underlying pro- C^* morphism φ_A of Φ_X to M(A).

3. The universal property of the crossed products of $PRO-C^*$ -algebras

Let A be a pro-C^{*}-algebra, G a locally compact group and Δ the modular function of G with respect to the left invariant Haar measure ds.

An action α of G on A is an inverse limit action if there is a cofinal subset of G-invariant continuous C^* -seminorms on A (this is, $p(\alpha_t(a)) = p(a)$ for all a in A and for all t in G). Therefore, if α is an inverse limit action of G on A, we can suppose that $\alpha_t = \lim_{t \to p} \alpha_t^p$, where $\alpha^p, p \in S(A)$ are actions of G on $A_p, p \in S(A)$ (see [3]).

A triple (G, α, A) , consisting of a locally compact group G, a pro- C^* -algebra Aand an inverse limit action α of G on A is called a pro- C^* -dynamical system.

The vector space $C_c(G, A)$ of all continuous functions from G to A with compact support is a *-algebra with the convolution as product, given by

$$(f \times h)(s) = \int_{G} f(t)\alpha_t \left(h(t^{-1}s)\right) dt$$

and involution defined by

$$f^{\sharp}(t) = \Delta(t)^{-1} \alpha_t \left(f(t^{-1})^* \right).$$

For any $p \in S(A)$, the map $N_p : C_c(G, A) \to [0, \infty)$ given by

$$N_p(f) = \int\limits_G p(f(t))dt$$

is a submultiplicative *-seminorm on $C_c(G, A)$.

Let $L^1(G, \alpha, A)$ be the Hausdorff completion of $C_c(G, A)$ with respect to the topology defined by the family of submultiplicative *-seminorms $\{N_p\}_{p\in S(A)}$. Then, $L^1(G, \alpha, A)$, called the covariant algebra associated with the pro- C^* -dynamical system (G, A, α) , is a locally *m*-convex *-algebra with bounded approximate unit. Its enveloping pro- C^* -algebra is called the crossed product of A by α , and it is denoted by $G \times_{\alpha} A$. Moreover, $G \times_{\alpha} A = \lim_{\leftarrow p} G \times_{\alpha^p} A_p$ (see [3]).

Let (G, α, A) be a pro- C^* -dynamical system. A covariant morphism from A to a pro- C^* -algebra B is a pair (φ, u) consisting of a morphism of pro- C^* -algebras φ from A to M(B) and a strictly continuous group morphism u from G to $\mathcal{U}(M(B))$, the group of unitaries in M(B), such that

$$\varphi(\alpha_t(a)) = u_t \varphi(a) u_{t^{-1}}$$

for all $t \in G$ and for all $a \in A$. The covariant morphism (φ, u) is nondegenerate if $[\varphi(A) B] = B$. A (nondegenerate) covariant representation of (G, α, A) on a Hilbert space \mathcal{H} is a triple $(\varphi, u, \mathcal{H})$ consisting of a (nondegenerate) representation (φ, \mathcal{H}) of A and a unitary representation u of G on \mathcal{H} such that $\varphi(\alpha_t(a)) = u_t \varphi(a) u_{t^{-1}}$ for all $t \in G$ and for all $a \in A$.

Given a C^* -dynamical system (G, α, A) , it is well known that the C^* -algebra A can be identified with a C^* -subalgebra in the multiplier algebra $M(G \times_{\alpha} A)$ of the crossed product of A by α , and G is isomorphic to a group of unitaries in $M(G \times_{\alpha} A)$.

In the following proposition we show that this result is also true for crossed products of pro- C^* -algebras.

Proposition 3.1. Let (G, α, A) be a pro- C^* -dynamical system. Then there is a nondegenerate covariant morphism (i_A, i_G) from A to $G \times_{\alpha} A$ such that:

- (1) for any nondegenerate covariant representation $(\varphi, u, \mathcal{H})$ of (G, α, A) , there is a nondegenerate representation (Φ, \mathcal{H}) of $G \times_{\alpha} A$ such that $\overline{\Phi} \circ i_A = \varphi$ and $\overline{\Phi} \circ i_G = u$;
- (2) $G \times_{\alpha} A = \overline{span\{i_A(a)i_G(f); a \in A, f \in C_c(G)\}}.$

Moreover, i_A and i_G are injective,

$$(i_A(a)(f))(s) = af(s)$$

5

and

$$(i_G(t)(f))(s) = \alpha_t \left(f\left(t^{-1}s\right) \right)$$

for all $a \in A$, $t \in G$ and $f \in C_c(G, A)$.

Proof. Let $p \in S(A)$. By [15, Proposition 2.34], there is a nondegenerate covariant morphism (i_{A_p}, i_G^p) from A_p to $G \times_{\alpha^p} A_p$ which verifies (1) and (2). Moreover, i_{A_p} and i_G^p are injective, $(i_{A_p}(\pi_p^A(a))(f))(s) = \pi_p^A(a) f(s)$ and $(i_G^p(t)(f))(s) = \alpha_p^p(f(t^{-1}s))$ for all $a \in A$, $t \in G$ and $f \in C_c(G, A_p)$. Since we have

$$\begin{pmatrix} \left(\pi_{pq}^{M(G\times_{\alpha}A)}\circ i_{A_{p}}\right)\left(\pi_{p}^{A}\left(a\right)\right)\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)(s) \\ = & \left(\pi_{pq}^{M(G\times_{\alpha}A)}\left(i_{A_{p}}\left(\pi_{p}^{A}\left(a\right)\right)\right)\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)(s) \\ = & \pi_{pq}^{G\times_{\alpha}A}\left(\left(i_{A_{p}}\left(\pi_{p}^{A}\left(a\right)\right)\right)\left(\pi_{p}^{A}\left(b\right)\otimes f\right)\right)(s) \\ = & \pi_{pq}^{A}\left(\pi_{p}^{A}\left(a\right)\pi_{p}^{A}\left(b\right)f\left(s\right)\right) = \pi_{q}^{A}\left(a\right)\pi_{q}^{A}\left(b\right)f\left(s\right) \\ = & i_{A_{q}}\left(\pi_{q}^{A}\left(a\right)\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)(s)$$

for all $a, b \in A$, $f \in C_c(G)$, $s \in G$ and for all $p, q \in S(A)$ with $p \ge q$, taking into account that $A_q \otimes_{\text{alg}} C_c(G)$ is dense in $G \times_{\alpha^q} A_q$, we deduce that $(i_{A_p})_{p \in S(A)}$ is an inverse system of injective C^* -morphisms. Then $i_A = \lim_{\leftarrow p} i_{A_p}$ is an injective pro- C^* -morphism.

Let $t \in G$. Since we have

$$\begin{pmatrix} \pi_{pq}^{M(G\times_{\alpha}A)}\left(i_{G}^{p}\left(t\right)\right)\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)(s) \\ = \left(\pi_{pq}^{G\times_{\alpha}A}\left(i_{G}^{p}\left(t\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)\right)\right)(s) \\ = \pi_{pq}^{A}\left(i_{G}^{p}\left(t\right)\left(\pi_{p}^{A}\left(b\right)\otimes f\right)(s)\right) \\ = \pi_{pq}^{A}\left(\alpha_{t}^{p}\left(\pi_{p}^{A}\left(b\right)\right)f\left(t^{-1}s\right)\right) \\ = \alpha_{t}^{q}\left(\pi_{pq}^{A}\left(\pi_{p}^{A}\left(b\right)\right)\right)f\left(t^{-1}s\right) = \alpha_{t}^{q}\left(\pi_{q}^{A}\left(b\right)\right)f\left(t^{-1}s\right) \\ = i_{G}^{q}\left(t\right)\left(\pi_{q}^{A}\left(b\right)\otimes f\right)(s)$$

for all $b \in A$, $f \in C_c(G)$, $s \in G$ and for all $p, q \in S(A)$ with $p \ge q$, taking into account that $A_q \otimes_{\text{alg}} C_c(G)$ is dense in $G \times_{\alpha^q} A_q$, we deduce that $(i_G^p(t))_{p \in S(A)}$ is an inverse system of unitaries in $M(G \times_{\alpha} A)$. Let $i_G(t) = \lim_{\leftarrow p} i_G^p(t)$. Clearly, the map $t \to i_G(t)$ is an injective strictly continuous morphism of groups from G to $\mathcal{U}(M(G \times_{\alpha} A))$.

It is easy to verify that (i_A, i_G) is a nondegenerate covariant morphism from A to $G \times_{\alpha} A$.

Let $(\varphi, u, \mathcal{H})$ be a nondegenerate covariant representation of (G, α, A) . Then there is a nondegenerate covariant representation $(\varphi_p, u, \mathcal{H})$ of (G, α^p, A_p) such that $\varphi = \varphi_p \circ \pi_p^A$, and by [15, Proposition 2.34 (1)], there is a nondegenerate representation (Φ_p, \mathcal{H}) of $G \times_{\alpha^p} A_p$ such that $\overline{\Phi_p} \circ i_{A_p} = \varphi_p$ and $\overline{\Phi_p} \circ i_G^p = u$. Let $\Phi = \Phi_p \circ \pi_p^{G \times_{\alpha} A}$. Clearly, (Φ, \mathcal{H}) is a nondegenerate representation of $G \times_{\alpha} A$. Moreover,

$$\overline{\Phi} \circ i_A = \overline{\Phi_p \circ \pi_p^{G \times_{\alpha} A}} \circ i_A = \overline{\Phi_p} \circ \overline{\pi_p^{G \times_{\alpha} A}} \circ i_A = \overline{\Phi_p} \circ i_{A_p} \circ \pi_p^A = \varphi_p \circ \pi_p^A = \varphi$$

and

$$\overline{\Phi} \circ i_G = \overline{\Phi_p} \ \circ \overline{\pi_p^{G \times_{\alpha} A}} \circ i_G = \overline{\Phi_p} \ \circ i_G^p = u.$$

Therefore, the statement (1) is verified.

By [9, Lemma III 3.2], we have

$$\overline{\operatorname{span}\{i_A(a)i_G(f); a \in A, f \in C_c(G)\}}$$

$$= \lim_{\leftarrow p} \overline{\pi_p^{G \times_{\alpha} A}} \left(\overline{\operatorname{span}\{i_A(a)i_G(f); a \in A, f \in C_c(G)\}} \right)$$

$$= \lim_{\leftarrow p} \overline{\operatorname{span}\{i_{A_p}(\pi_p^A(a))i_G^p(f); a \in A, f \in C_c(G)\}}$$
[15, Proposition 2.34 (1)]
$$= \lim_{\leftarrow p} G \times_{\alpha^p} A_p = G \times_{\alpha} A$$

and so, the statement (2) is verified too.

Corollary 3.2. Let (G, α, A) be a pro-C^{*}-dynamical system. If G is discrete, then A can be identified with a pro-C^{*}-subalgebra of $G \times_{\alpha} A$, and if, moreover, A is unital, then G can be identified with a group of unitaries in $G \times_{\alpha} A$.

Proof. If G is discrete, then A_p can be identified with a C^{*}-subalgebra of $G \times_{\alpha^p} A_p$ for each $p \in S(A)$. Thus, we have

$$i_{A}(A) = \lim_{\leftarrow p} \overline{\pi_{p}^{M(G \times_{\alpha} A)}} (i_{A}(A))$$

$$[9, \text{ Lemma III 3.2}]$$

$$= \lim_{\leftarrow p} \overline{i_{A_{p}}(\pi_{p}^{A}(A))} = \lim_{\leftarrow p} \overline{i_{A_{p}}(A_{p})}$$

$$\subseteq \lim_{\leftarrow p} G \times_{\alpha_{p}} A_{p} = G \times_{\alpha} A.$$

If A is unital, then the C^{*}-algebras $A_p, p \in S(A)$ are unital, and since G is discrete, the C^{*}-algebras $G \times_{\alpha^p} A_p, p \in S(A)$ are unital. Therefore, $M(G \times_{\alpha} A) = G \times_{\alpha} A$.

In the following theorem we show that the crossed product of a pro- C^* -algebra by an inverse limit action of a locally compact group is a universal object for covariant representations of pro- C^* -dynamical systems.

Theorem 3.3. Let (G, α, A) be a pro- C^* -dynamical system and B a pro- C^* -algebra with the property that there is a nondegenerate covariant morphism (j_A, j_G) from A to B which satisfies the following:

(1) for any nondegenerate covariant representation $(\varphi, u, \mathcal{H})$ of (G, α, A) , there is a nondegenerate representation (Φ, \mathcal{H}) of B such that $\overline{\Phi} \circ j_A = \varphi$ and $\overline{\Phi} \circ j_G = u$,

(2)
$$B = \overline{span\{j_A(a) j_G(f); a \in A, f \in C_c(G)\}}, \text{ where } j_G(f) = \int_G f(t) j_G(t) dt.$$

Then there is a pro-C^{*}-isomorphism $j: B \to G \times_{\alpha} A$ such that

$$\overline{j} \circ j_A = i_A \text{ and } \overline{j} \circ j_G = i_G.$$

Proof. Let $q \in S(B)$. Then there is $p_q \in S(A)$ such that $q_{M(B)}(j_A(a)) \leq p_q(a)$ for all $a \in A$, and so there is a C^* -morphism $j_{A_{p_q}} : A_{p_q} \to M(B_q)$ such that $j_{A_{p_q}} \circ \pi_{p_q}^A = \overline{\pi_q^B} \circ j_A$.

Let $(\theta_q, \mathcal{H}_{\theta})$ be a faithful nondegenerate representation of B_q . Then $\left(\overline{\theta_q} \circ j_{A_{p_q}}, \mathcal{H}_{\theta}\right)$ is a nondegenerate representation of A_{p_q} . For $t \in G$, $u_t^q = \overline{\theta_q} \left(\overline{\pi_q^B}(j_G(t))\right)$ is

 $\mathbf{6}$

a unitary operator in $L(\mathcal{H}_{\theta})$ and $t \to u_t^q$ is a unitary representation of G on \mathcal{H}_{θ} . Moreover, $\left(\overline{\theta_q} \circ j_{A_{p_q}}, u^q, \mathcal{H}_{\theta}\right)$ is a nondegenerate covariant representation of $\left(G, \alpha^{p_q}, A_{p_q}\right)$. Then, there is a nondegenerate representation $\left(\Theta_q, \mathcal{H}_{\theta}\right)$ of $G \times_{\alpha^{p_q}} A_{p_q}$ such that

$$\overline{\Theta_q} \circ i_{A_{p_q}} = \overline{\theta_q} \circ j_{A_{p_q}} \text{ and } \overline{\Theta_q} \circ i_G^q = u^q.$$

We have

$$\begin{aligned} \Theta_q \left(i_{A_{p_q}} \left(\pi_{p_q}^A \left(a \right) \right) i_G^q \left(f \right) \right) &= \overline{\Theta_q} \left(i_{A_{p_q}} \left(\pi_{p_q}^A \left(a \right) \right) \right) \overline{\Theta_q} \left(i_G^q \left(f \right) \right) \\ &= \left(\overline{\theta_q} \circ j_{A_{p_q}} \right) \left(\pi_{p_q}^A \left(a \right) \right) \overline{\theta_q} \left(\overline{\pi_q^B} \left(j_G(f) \right) \right) \\ &= \theta_q \left(j_{A_{p_q}} \left(\pi_{p_q}^A \left(a \right) \right) \overline{\pi_q^B} \left(j_G(f) \right) \right) \end{aligned}$$

for all $a \in A$ and $f \in C_c(G)$, and so Θ_q and θ_q have the same range. Let $\Phi_q = \theta_q^{-1} \circ \Theta_q \circ \pi_{p_q}^{G \times_{\alpha} A}$. Clearly, Φ_q is a continuous *-morphism from $G \times_{\alpha} A$ to B_q , $\overline{\Phi_q} \circ i_A = \overline{\pi_q^B} \circ j_A$ and $\overline{\Phi_q} \circ i_G = \overline{\pi_q^B} \circ j_G$. Since we have

$$\begin{aligned} \left(\pi_{q_{1}q_{2}}^{B} \circ \Phi_{q_{1}}\right)\left(i_{A}\left(a\right)i_{G}\left(f\right)\right) &= \left(\pi_{q_{1}q_{2}}^{B} \circ \theta_{q_{1}}^{-1} \circ \Theta_{q_{1}} \circ \pi_{p_{q_{1}}}^{G \times \alpha A}\right)\left(i_{A}\left(a\right)i_{G}\left(f\right)\right) \\ &= \left(\pi_{q_{1}q_{2}}^{B} \circ \theta_{q_{1}}^{-1} \circ \Theta_{q_{1}}\right)\left(i_{A_{p_{1}}}\left(\pi_{p_{1}}^{A}\left(a\right)\right)i_{G}^{p_{1}}\left(f\right)\right) \\ &= \left(\pi_{q_{1}q_{2}}^{B} \circ \theta_{q_{1}}^{-1}\right)\left(\theta_{q_{1}}\left(j_{A_{p_{q_{1}}}}\left(\pi_{p_{q_{1}}}^{A}\left(a\right)\right)\overline{\pi_{q_{1}}}\left(j_{G}(f)\right)\right)\right) \\ &= \pi_{q_{1}q_{2}}^{B}\left(j_{A_{pq_{1}}}\left(\pi_{p_{q_{1}}}^{A}\left(a\right)\right)\overline{\pi_{q_{1}}}\left(j_{G}(f)\right)\right) \\ &= \pi_{q_{1}q_{2}}^{B}\left(\pi_{q_{1}}^{B}\left(j_{A}\left(a\right)j_{G}(f)\right)\right) = \pi_{q_{2}}^{B}\left(j_{A}\left(a\right)j_{G}\left(f\right)\right) \\ &= \Phi_{q_{2}}\left(i_{A}\left(a\right)i_{G}\left(f\right)\right) \end{aligned}$$

for all $a \in A$ and $f \in C_c(G)$ and for all $q_1, q_2 \in S(B)$ with $q_1 \ge q_2$, we deduce that there is a pro- C^* -morphism $\Phi : G \times_{\alpha} A \to B$ such that $\pi_q^B \circ \Phi = \Phi_q$. Moreover, since

$$\pi_{q}^{B}\left(\overline{\Phi}\left(i_{A}\left(a\right)\right)\right) = \overline{\Phi_{q}}\left(i_{A}\left(a\right)\right) = \pi_{q}^{B}\left(j_{A}\left(a\right)\right)$$

for all $a \in A$ and for all $q \in S(B), \overline{\Phi} \circ i_A = j_A$, and since

$$\overline{\pi_{q}^{B}}\left(\overline{\Phi}\left(i_{G}\left(f\right)\right)\right) = \overline{\Phi_{q}}\left(i_{G}\left(f\right)\right) = \overline{\pi_{q}^{B}}\left(j_{G}\left(f\right)\right)$$

for all $f \in C_c(G)$ and for all $q \in S(B), \overline{\Phi} \circ i_G = j_G$.

In the same manner, we obtain a pro- C^* -morphism $\Psi: B \to G \times_{\alpha} A$ such that $\overline{\Psi} \circ j_A = i_A$ and $\overline{\Psi} \circ j_G = i_G$. Clearly,

$$(\Psi \circ \Phi) (i_A (a) i_G (f)) = i_A (a) i_G (f) \text{ and } (\Phi \circ \Psi) (j_A (a) j_G (f)) = j_A (a) j_G (f)$$

for all $a \in A$ and $f \in C_c(G)$, and so $\Psi : B \to G \times_{\alpha} A$ is a pro- C^* -isomorphism. We put $j = \Psi$ and the theorem is proved.

4. The universal property of the crossed products of Hilbert $PRO-C^*$ -modules

An action of a locally compact group G on a full Hilbert pro- C^* -module X over a pro- C^* -algebra A is a group morphism $t \mapsto \eta_t$ from G to $\operatorname{Aut}(X)$, the group of all isomorphisms of Hilbert pro- C^* -modules from X to X, such that the map $t \mapsto \eta_t(x)$ from G to X is continuous for each $x \in X$. An action η of G on Xis an inverse limit action if we can write X as an inverse limit $\lim_{t \to \lambda} X_{\lambda}$ of Hilbert

MARIA JOIŢA

 C^* -modules in such a way that there are actions η^{λ} of G on X_{λ} , $\lambda \in \Lambda$ such that $\eta_t = \lim_{\leftarrow \lambda} \eta_t^{\lambda}$ for all t in G. The triple (G, η, X) consisting of a locally compact group G, a full Hilbert pro- C^* -module X and an inverse limit action η of G on X is called a dynamical system on a Hilbert pro- C^* -module X. Clearly, any pro- C^* -dynamical system (G, α, A) can be regarded as a dynamical system on Hilbert pro- C^* -module in the sense of the above definition.

An inverse limit action $t \mapsto \eta_t$ of G on X induces a unique inverse limit action $t \mapsto \alpha_t^{\eta}$ of G on A such that

$$\alpha_{t}^{\eta}\left(\left\langle x,y\right\rangle \right)=\left\langle \eta_{t}\left(x\right),\eta_{t}\left(x\right)\right\rangle$$

for all $x, y \in X$ and for all $t \in G$ (see [3, 4, 8]).

Let (G, η, X) be a dynamical system on a Hilbert pro- C^* -module X. The linear space $C_c(G, X)$ of all continuous functions from G to X with compact support has the pre-Hilbert $G \times_{\alpha^{\eta}} A$ -module structure with the action of $G \times_{\alpha^{\eta}} A$ on $C_c(G, X)$ given by

$$(\widehat{x}f)(s) = \int_{G} \widehat{x}(t) \alpha_{t}^{\eta} \left(f\left(t^{-1}s\right) \right) dt$$

for all $\hat{x} \in C_c(G, X)$ and $f \in C_c(G, A)$, and the inner product given by

$$\left\langle \widehat{x},\widehat{y}\right\rangle (s)=\int\limits_{G}\left\langle \eta_{t^{-1}}\left(\widehat{x}(t)\right),\eta_{t^{-1}}\left(\widehat{y}\left(ts\right)\right)\right\rangle dt.$$

The crossed product of X by η , denoted by $G \times_{\eta} X$, is the Hilbert $G \times_{\alpha^{\eta}} A$ module obtained by the completion of the pre-Hilbert $G \times_{\alpha^{\eta}} A$ -module $C_c(G, X)$ (see [3, 4, 8]).

Let (G, η, X) be a dynamical system on a Hilbert pro- C^* -module X. A covariant morphism from X to a Hilbert pro- C^* -module Y over B is a triple (v, Φ_X, u) consisting of a morphism Φ_X from X to M(Y), a strictly continuous group morphism u from G to $\mathcal{U}(M(B))$ and a strictly continuous group morphism v from G to $\mathcal{U}(M(K(Y)))$ such that

$$v_t \Phi_X(x) u_{t^{-1}} = \Phi_X(\eta_t(x))$$

for all $x \in X$ and for all $t \in G$. The covariant morphism (v, Φ_X, u) is nondegenerate if Φ_X is nondegenerate. If (v, Φ_X, u) is a (nondegenerate) covariant morphism from X to Y, then $(\varphi_{A,u})$, where φ_A is the underlying pro-C^{*}-morphism of Φ_X , is a (nondegenerate) covariant morphism from A to B.

A (nondegenerate) covariant representation of (G, η, X) on the Hilbert spaces \mathcal{H} and \mathcal{K} is a quintuple $(v, \Phi_X, u, \mathcal{H}, \mathcal{K})$ consisting of a (nondegenerate) representation $(\Phi_X, \mathcal{H}, \mathcal{K})$ of X and two unitary representations v and u of G on the Hilbert spaces \mathcal{K} respectively \mathcal{H} such that $v_t \Phi_X(x) u_{t^{-1}} = \Phi_X(\eta_t(x))$ for all $x \in X$ and for all $t \in G$.

As in the case of crossed products of pro- C^* -algebras, we show that the crossed product of a Hilbert pro- C^* -module is a universal object for covariant representations of dynamical systems on a Hilbert pro- C^* -module.

Proposition 4.1. Let (G, η, X) be a dynamical system on a Hilbert C^{*}-module X. Then there is a nondegenerate covariant morphism (i_G^X, i_X, i_G) from X to $G \times_{\eta} X$ such that

(1) for any nondegenerate covariant representation $(v, \Phi_X, u, \mathcal{H}, \mathcal{K})$ of (G, η, X) , there is a nondegenerate representation $(\Phi_{G \times_{\eta} X}, \mathcal{H}, \mathcal{K})$ of $G \times_{\eta} X$ such that $\overline{\Phi_{G \times_{\eta} X}} \circ i_X = \Phi_X$ and $\overline{\varphi_{G \times_{\eta} \eta} A} \circ i_G = u$;

9

(2) $G \times_{\eta} X = \overline{span\{i_X(x) i_G(f); x \in X, f \in C_c(G)\}}.$

Moreover, the maps i_G^X , i_X and i_G are injective,

 $i_X(x)(f)(s) = xf(s) \text{ and } i_G(t)(f) = \alpha_t^{\eta}(f(t^{-1}s))$

for all $f \in C_c(G, A)$ and $s, t \in G$ and

$$i_{G}^{X}\left(t\right)\left(x\otimes f\right)\left(s\right) = \eta_{t}\left(x\right)f\left(t^{-1}s\right)$$

for all $x \in X$, for all $f \in C_c(G)$ and for all $s, t \in G$.

Proof. By [5, Theorem 3.5], there is (i_G^X, i_X, i_G) a covariant morphism from X to $G \times_{\eta} X$ such that i_G^X, i_X and i_G are injective. The assertion (1) follows from the proof of Proposition 3.8 [5].

(2) Let $(\Phi_{G \times_{\eta} X}, \mathcal{H}, \mathcal{K})$ be a faithful nondegenerate representation of $G \times_{\eta} X$ (see [1, Theorem 3.11]). Then there is a nondegenerate covariant representation $(v, \Phi_X, u, \mathcal{H}, \mathcal{K})$ of (G, η, X) such that $\Phi_{G \times_{\eta} X} = \Phi_X \times u$, where

$$\left(\Phi_X \times u\right)(f) = \int_G \Phi_X(f(t)) u_t dt$$

for all $f \in C_c(G, X)$, and $\varphi_{G \times_{\alpha \eta} A} = \varphi_A \times u$. Moreover,

$$\overline{\Phi_X \times u} \circ i_X = \Phi_X$$
 and $\overline{\varphi_A \times u} \circ i_G = u$,

(see the proof of Proposition 3.8 [5]). Thus, we have

$$(\Phi_X \times u) (i_X (x) i_G (f)) = \overline{\Phi_X \times u} (i_X (x)) \overline{\varphi_A \times u} (i_G (f)) = \Phi_X (x) u (f) = (\Phi_X \times u) (x \otimes f),$$

whence, it follows that $i_X(x)i_G(f) = x \otimes f$ for all $f \in C_c(G)$ and for all $x \in X$. Since $X \otimes_{\text{alg}} C_c(G)$ is dense in $G \times_{\eta} X$,

$$\overline{\operatorname{span}\{i_X(x)\,i_G(f)\,;f\in C_c(G),x\in X\}}=G\times_\eta X.$$

Theorem 4.2. Let (G, η, X) be a dynamical system on a Hilbert C^* -module X and Y a full Hilbert C^* -module over B with the property that there is a nondegenerate covariant morphism (j_G^X, j_X, j_G) from X to Y which satisfies the following:

- (1) for any nondegenerate covariant representation $(v, \Phi_X, u, \mathcal{H}, \mathcal{K})$ of (G, η, X) , there is a nondegenerate representation $(\Phi_Y, \mathcal{H}, \mathcal{K})$ of Y such that $\overline{\Phi_Y} \circ j_X = \Phi_X$ and $\overline{\varphi_B} \circ j_G = u$;
- (2) $Y = \overline{span\{j_X(x) j_G(f); x \in X, f \in C_c(G)\}}.$

Then there is an isomorphism of Hilbert C^* -modules $J: Y \to G \times_{\eta} X$ such that

$$\overline{J} \circ j_X = i_X \text{ and } \overline{j} \circ j_G = i_G,$$

where j is the underlying C^* -morphism of J.

Proof. Let $(\Phi_{G \times_{\eta} X}, \mathcal{H}, \mathcal{K})$ be a faithful nondegenerate representation of $G \times_{\eta} X$ (see [1, Theorem 3.11]). Then $\overline{\Phi_{G \times_{\eta} X}} \circ i_X$ is a morphism of Hilbert C^* -modules and its underlying C^* -morphism is $\overline{\varphi_{G \times_{\alpha} \eta}} \circ i_A$. Since

$$(\overline{\varphi_{G\times_{\alpha}\eta A}} \circ i_G) (t) (\overline{\varphi_{G\times_{\alpha}\eta A}} \circ i_A) (a) (\overline{\varphi_{G\times_{\alpha}\eta A}} \circ i_G) (t^{-1})$$

$$= \overline{\varphi_{G\times_{\alpha}\eta A}} (i_G (t) i_A (a) i_G (t^{-1}))$$

$$= (\overline{\varphi_{G\times_{\alpha}\eta A}} \circ i_A) (\alpha_t^{\eta} (a))$$

MARIA JOIŢA

for all $a \in A$ and for all $t \in G$, there is a strictly continuous morphism v from G to $\mathcal{U}(L(\mathcal{K}))$ such that $\left(v, \overline{\varphi_{G\times_{\eta}X}} \circ i_X, \overline{\varphi_{G\times_{\eta}A}} \circ i_G, \mathcal{H}, \mathcal{K}\right)$ is a nondegenerate covariant representation of (G, η, X) (see [5, Lemma 3.4]). Then there is a nondegenerate representation $(\Phi_Y, \mathcal{H}, \mathcal{K})$ of Y such that $\overline{\Phi_Y} \circ j_X = \overline{\Phi_{G\times_{\eta}X}} \circ i_X$ and $\overline{\varphi_B} \circ j_G = \overline{\varphi_{G\times_{\eta}\eta}A} \circ i_G$. Since we have

$$\Phi_Y \left(j_X \left(x \right) j_G \left(f \right) \right) = \Phi_{G \times_n X} \left(i_X \left(x \right) i_G (f) \right)$$

for all $x \in X$ and for all $f \in C_c(G)$, it follows from the assertion (2) and Proposition 4.1 (2) that $[\Phi_Y(Y)] = [\Phi_{G \times_\eta X} (G \times_\eta X)]$. Let $J = (\Phi_{G \times_\eta X})^{-1} \circ \Phi_Y$. Then J is a morphism of Hilbert C^* -modules from Y to $G \times_\eta X$ and its underlying C^* -morphism is $j = (\varphi_{G \times_\alpha \eta A})^{-1} \circ \varphi_B$. Moreover, $\overline{J} \circ j_X = i_X$ and $\overline{j} \circ j_G = i_G$. In the same manner, we obtain a morphism of Hilbert C^* -modules $\Psi : G \times_\eta X \to$

In the same manner, we obtain a morphism of Hilbert C^* -modules $\Psi : G \times_{\eta} X \to Y$ such that $\overline{\Psi} \circ i_X = j_X, \ \overline{\psi} \circ i_G = j_G$. Then,

$$(J \circ \Psi)(i_X(x)i_G(f)) = i_X(x)i_G(f) \text{ and } (\Psi \circ J)(j_X(x)j_G(f)) = j_X(x)j_G(f)$$

for all $x \in X$ and for all $f \in C_c(G)$, and so J is an isomorphism of Hilbert C^* -modules.

Suppose that (G, η, X) is a dynamical system on a Hilbert pro- C^* -module X. Then $G \times_{\eta} X = \lim_{\leftarrow p} G \times_{\eta^p} X_p$ with $G \times_{\eta^p} X_p = (G \times_{\eta} X)_p$ for all $p \in S(A)$ (see, for example, [4, Lemma 5.3]). It is easy to check that $(i_{X_p})_{p \in S(A)}$ is an inverse limit of injective linear maps. Let $i_X = \lim_{\leftarrow p} i_{X_p}$. Then i_X is an injective morphism of Hilbert pro- C^* -modules and its underlying pro- C^* -morphism is $i_A = \lim_{\leftarrow p} i_{A_p}$. For $t \in G$, $\left(i_{X_p}^G(t)\right)_{p \in S(A)}$ and $(i_G^p(t))_{p \in S(A)}$ are inverse systems of unitaries in $L(G \times_{\eta^p} X_p)$, $p \in S(A)$, respectively $M(G \times_{\alpha^{\eta^p}} A_p), p \in S(A)$, and then $i_X^G(t) = \lim_{\leftarrow p} i_{X_p}^G(t)$ and $i_G(t) = \lim_{\leftarrow p} i_G^p(t)$ are unitaries in $L(G \times_{\eta} X)$, respectively $M(G \times_{\alpha^{\eta}} A)$, and the maps $t \to i_X^G(t)$ and $t \to i_G(t)$ are strictly continuous group morphisms from G to $\mathcal{U}(K(G \times_{\eta} X))$ respectively $\mathcal{U}(M(G \times_{\alpha^{\eta}} A))$. Since we have

$$i_{X}^{G}(t) i_{X}(x) i_{G}(t^{-1}) = \lim_{\leftarrow p} i_{X_{p}}^{G}(t) i_{X_{p}}(\sigma_{p}^{X}(x)) i_{G}^{p}(t^{-1}) = \lim_{\leftarrow p} i_{X_{p}}(\eta_{t}^{p}(\sigma_{p}^{X}(x)))$$
$$= \lim_{\leftarrow p} i_{X_{p}}(\sigma_{p}^{X}(\eta_{t}(x))) = i_{X}(\eta_{t}(x))$$

for all $t \in G$ and for all $x \in X$, we deduce that (i_X^G, i_X, i_G) is an injective covariant morphism from X to $G \times_{\eta} X$, and since i_{X_p} is nondegenerate for all $p \in S(A)$, it is nondegenerate. Moreover,

$$\overline{\operatorname{span}\{i_X(x) i_G(f), x \in X, f \in C_c(G)\}} = \lim_{\leftarrow p} \overline{\sigma_p^{G \times_\eta X}} \left(\overline{\operatorname{span}\{i_X(x) i_G(f), x \in X, f \in C_c(G)\}} \right) \\
= \lim_{\leftarrow p} \overline{\operatorname{span}\{i_{Xp} \left(\sigma_p^X(x)\right) i_G^p(f), x \in X, f \in C_c(G)\}} \\
= \lim_{\leftarrow p} G \times_{\eta^p} X_p = G \times_{\eta} X.$$

Theorem 4.3. Let (G, η, X) be a dynamical system on a Hilbert pro-C^{*}-module X and Y a full Hilbert pro-C^{*}-module over B with the property that there is a

nondegenerate covariant morphism (j_{X,j_X}^G, j_X, j_G) from X to Y which satisfies the following:

- (1) for any nondegenerate covariant representation $(v, \Phi_X, u, \mathcal{H}, \mathcal{K})$ of (G, η, X) , there is a nondegenerate representation $(\Phi_Y, \mathcal{H}, \mathcal{K})$ of Y such that $\overline{\Phi_Y} \circ j_X = \Phi_X$ and $\overline{\varphi_B} \circ j_G = u$;
- (2) $Y = \overline{span\{j_X(x) j_G(f) ; x \in X, f \in C_c(G)\}}.$

Then there is an isomorphism of pro- C^* -modules $J: Y \to G \times_n X$ such that

$$\overline{J} \circ j_X = i_X \text{ and } \overline{j} \circ j_G = i_G,$$

where j is the underlying $pro-C^*$ -morphism of J.

Proof. The proof it is similar to the proof of Theorem 3.3.

References

- Lj. Arambašić, Irreducible representations of Hilbert C^{*}-modules, Math. Proc. R. Ir. Acad., 105A (2005), 1, 11-24.
- [2] M. Fragoulopoulou, Topological algebras with involution, North Holland, Amsterdam, 2005.
- [3] M. Joita, Crossed products of locally C*-algebras, Editura Academiei Române, Bucharest, 2007, 115+Xii pp, ISBN 978-973-27-1600-7.
- M. Joita, Crossed products of pro-C*-algebras and strong Morita equivalence, Mediter. J. Math., 5(2008), 4, pp. 467-492.
- [5] M. Joița, Covariant representations of Hilbert C*-Modules, Expo. Math., 30 (2012) 209-220.
- M. Joita, On Lebesgue type decomposition for covariant completely positive maps on C^{*}algebras, Banach J. Math. Anal., 4(2010), no. 2, 75–85.
- [7] M. Joiţa, Hilbert modules over locally C*-algebras, University of Bucharest Press, 2006.
- [8] M. Kusuda, Duality for crossed products of Hilbert C*-modules, J. Operator Theory, 60(2008),1, 85-112.
- [9] A. Mallios, Topological algebras: Selected Topics, North Holland, Amsterdam, 1986.
- [10] N. C. Phillips, Inverse limits of C*-algebras, J. Operator Theory, 19(1988), 159-195.
- [11] N. C. Phillips, Representable K-theory for σ -C*-algebras, K-Theory, 3(1989), 5, 441-478.
- [12] K. Sharifi, Generic properties of module maps and characterizing inverse limits of C^{*}algebras of compact operators, Bull. Malays. Math. Sci. Soc. (2),36 (2013), no.2, 481-489.
- [13] I. Raeburn, S. J. Thompson, Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1557– 1564.
- [14] I. Raeburn, On crossed products and Takai duality, Proceedings of the Edinburgh Mathematical Society (1988) 31, 321-330
- [15] D. P. Williams, Crossed products of C*-algebras, Mathematical Surveys and Monographs (134) 2007, American Mathematical Society, Providence, RI.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BUCHAREST, STR. ACADEMIEI NR. 14, BUCHAREST, ROMANIA

E-mail address: mjoita@fmi.unibuc.ro

URL: http://sites.google.com/a/g.unibuc.ro/maria-joita/