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Abstract

A geodetic set S ⊆ V (G) of a graph G = (V,E) is a restrained geodetic set if the
subgraph G[V \ S] has no isolated vertex. The minimum cardinality of a restrained
geodetic set is the restrained geodetic number. In this paper, we initiate the study of
the restrained geodetic number.
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1 Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G).
The order |V | and size |E| of G are denoted n = n(G) and m = m(G), respectively. For
every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the
closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = deg(v) = |N(v)|. The minimum and maximum degrees of a graph G are denoted
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δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a set S ⊆ V is the set
N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set N [S] = N(S) ∪ S. The
complement G of G is the simple graph whose vertex set is V and whose edges are the pairs
of nonadjacent vertices of G. We write Kn for the complete graph of order n, Cn for a cycle
of order n and Pn for a path of length n− 1. For terminology and notation on graph theory
not given here the reader is referred to [?].

Let d(u, v) denote the minimum length of a path from vertex u to vertex v. An x-y path
of length d(x, y) is called an x-y geodesic. A vertex v is said to lie on an x-y geodesic P if
v is an internal vertex of P . The closed interval I[x, y] consists of x, y and all vertices lying
in some x-y geodesic of G, while for S ⊆ V (G), I[S] = ∪x,y∈SI[x, y].

A set S of vertices is a geodetic set if I[S] = V (G). The minimum cardinality of a
geodetic set is the geodetic number of G, and is denoted g(G). A geodetic set of cardinality
g(G) is called a g(G)-set. The geodetic number was introduced in [?] and has been studied
by several authors (see for example [?, ?, ?, ?, ?]).

A set of vertices S in a graph G is a restrained geodetic set (RGS) if S is a geodetic set and
the subgraph G[V \ S] induced by V \ S has no isolated vertex. The minimum cardinality
of a restrained geodetic set, denoted gr(G), is called the restrained geodetic number of G.
A gr(G)-set is a restrained geodetic set of cardinality gr(G). As the assumption δ(G) ≥ 1
is necessary, we always assume that when we discuss gr(G), all graphs involved satisfy
δ(G) ≥ 1. Since each restrained geodetic set is a geodetic set, and since the complement of
each restrained geodetic set has cardinality different from 1, we have

2 ≤ g(G) ≤ gr(G) ≤ n, (1)

gr(G) 6= n− 1. (2)

A vertex of G is simplicial if the subgraph induced by its neighbors is a complete graph.
Note that every end-vertex is simplicial. We make use of the following results in this paper.

Proposition A. ([?]) If G is a connected nontrivial graph, then every simplicial vertex
belongs to every geodetic set.

Observation 1. Let G be a connected graph of order n ≥ 3. Then gr(G) = 2 if and only
if g(G) = 2 and diam(G) ≥ 3 or G = K2 ∨H, where δ(H) ≥ 1.

Proof. First assume g(G) = 2. If diam(G) ≥ 3, then obviously every g(G)-set is a restrained
geodetic set and hence gr(G) = 2. If G = K2 ∨H and δ(H) ≥ 1, then clearly V (K2) is a
restrained geodetic set of size 2 and it follows from (??) that gr(G) = 2.

Now assume gr(G) = 2. Then g(G) = 2 by (??). If diam(G) ≥ 3, then we are done.
Suppose diam(G) = 2 and let {u, v} be a gr(G)-set and H = G[V (G) \ {u, v}]. Clearly,
d(u, v) = 2 and δ(H) ≥ 1. Since every vertex x ∈ V (G) \ {u, v} lies on a u-v geodetic path,
we must have ux, vx ∈ E(G) for each x ∈ V (G)\{u, v}. Thus G = K2∨H. This completes
the proof.

It is well known that [?]:

(a) g(Km) = m, m ≥ 2,

(b) for r ≥ 2, g(C2r) = 2 and g(C2r+1) = 3,

(c) if m ≥ n ≥ 2, then g(Km,n) = min{4, n},
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(d) g(Qk) = 2 for k ≥ 2, where Qk is the k-dimensional cube, and

(e) g(Wn+1) = bn+1
2 c for n ≥ 4, where Wn+1 = Cn ∨K1.

Observation 2. (i) For any tree T different from star, gr(T ) = |L(T )|, where L(T ) is
the set of all leaves of T . Moreover, gr(K1,r) = r + 1.

(ii) For m ≥ 2, gr(Km) = m.

(iii) For n ≥ 3, gr(C2n) = 2 and gr(C2n+1) = 3, and gr(Cm) = m for m ∈ {3, 4, 5}.

(iv) Let m ≥ n ≥ 2 be integers. Then gr(K2,m) = m+ 2 and gr(Km,n) = 4 if n ≥ 3.

(v) For k ≥ 3, gr(Qk) = 2.

(vi) For n ≥ 4, gr(Wn+1) = bn+1
2 c.

(vii) gr(K1 ∨ (Km1 ∪Km2 ∪ · · · ∪Kmr)) = 1 +m1 + · · ·+mr where r ≥ 1 and mi ≥ 1 for
1 ≤ i ≤ r.

Proof. (i) It is well known [?] that L(T ) is the unique g(T )-set which is also a restrained
geodetic set of G. It follows from (??) that gr(T ) = |L(T )|.

(ii) It is an immediate consequence of (??) and (a).
(iii) It is easy to see that gr(Cm) = m for m ∈ {3, 4, 5}. Let n ≥ 3. Then {x1, xn+1} is a

RGS of C2n and {x1, xn+1, xn+2} is a RGS of C2n+1. Thus gr(C2n) ≥ 2 and gr(C2n+1) ≥ 3.
Now the result follows from (b).

(iv) Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be the partite sets of Km,n. If
n ≥ 3, then clearly {x1, x2, y1, y2} is a RGS of Km,n and so gr(Km,n) ≤ 4. If n ≥ 4, then it
follows from (??) and (c) that gr(Km,n) = 4. Let n = 3 and suppose to the contrary that
gr(Km,3) < 4. It follows from (c) that gr(Km,3) = 3. Assume S be a gr(Km,3)-set. Since X
is not a RGS of Km,3, we must have X − S 6= ∅. We may assume without loss of generality
that x3 ∈ X \S. This implies that |S ∩Y | ≥ 2. A similar argument shows that |S ∩X| ≥ 2,
implying that |S| ≥ 4, a contradiction. Thus gr(Km,3) = 4.

The proof of gr(Km,2) = m+ 2 is straightforward and we leave it to the reader.
(v) It is easy to see that {(0, . . . , 0), (1, . . . , 1)} is a gr(Qk)-set for k ≥ 3. Hence, gr(Qk) =

2.
(vi) Let Cn = (x1, x2, . . . , xn) and Wn+1 = Cn ∨K1. Then obviously {xi | i is odd} is a

RGS of Wn+1 and so gr(Wn+1) ≥ bn+1
2 c. Now the result follows from (e).

(vii) Let V (K1) = {x}, V (Km1) = {x11, . . . , x1m1
}, . . . , V (Kmr) = {xr1, . . . , xrmr

}. Then
for each pair y, z of vertices, I[y, z] = {y, z} or I[y, z] = {x, y, z}. Thus V (G) is the unique
RGS of G and hence gr(G) = |V (G)|.

2 Graphs with large restrained geodetic numbers

If G is a connected graph of order n ≥ 2, then gr(G) ≤ n by (??). In this section, we
characterize the graphs achieving this bound.

Lemma 3. If G is a connected graph of order n with diam(G) ≥ 3, then gr(G) ≤ n −
diam(G) + 1.

Proof. Let d = diam(G) and let P = x0x1 . . . xd be a diametral path in G. Then obviously
V (G) \ {x1, . . . , xd−1} is a restrained geodetic set of G, hence gr(G) ≤ n−diam(G) + 1.
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The next corollary is an immediate consequence of Lemma ??.

Corollary 4. If G is a connected graph of order n ≥ 2 with gr(G) = n, then diam(G) ≤ 2.

Lemma 5. Let G be a connected graph of order n with diam(G) ≤ 2. If K4 − e is an
induced subgraph of G, then gr(G) ≤ n− 2.

Proof. Let K4 − e be an induced subgraph of G with V (K4 − e) = {v1, v2, v3, v4} and
E(K4 − e) = {v1v2, v2v3, v3v4, v1v4, v1v3}. Then d(v2, v4) = 2 and vi for i = 1, 3 lies on the
v2-v4 geodetic path v2viv4. Thus V (G) \ {v1, v3} is a restrained geodetic set of G, hence
gr(G) ≤ n− 2.

Lemma 6. Let G be a connected graph of order n with diam(G) ≤ 2 and gr(G) = n. If G
has a cut vertex v, then all components of G− v are complete graphs.

Proof. Let G1, . . . , Gk be the components of G−v. Since diam(G) ≤ 2, each vertex of G−v
must be adjacent to v. Assume to the contrary that G1 is not a complete graph. Then
there are three vertices v1, v2, v3 in G such that v1v2, v1v3 ∈ E(G) and v2v3 6∈ E(G). Then
the set {v, v1, v2, v3} induces the subgraph K4 − e in G, which leads to a contradiction by
Lemma ??.

Theorem 7. Let G be a connected graph of order n ≥ 2. Then gr(G) = n if and only if
one of the following holds:

(i) G = Kn;

(ii) G = K2,n−2, n ≥ 3;

(iii) G = K1 ∨ (Km1 ∪ Km2 ∪ · · · ∪ Kmr), where r ≥ 1, mi ≥ 1 for 1 ≤ i ≤ r and
1 +m1 + · · ·+mr = n;

(iv) G is the graph obtained from K2,n−3, n ≥ 4, by subdividing an edge once.

Proof. Sufficiency: Obvious.
Necessity: Let gr(G) = n. By Corollary ??, diam(G) ≤ 2 and hence the girth of G is at
most 5. If diam(G) = 1, then G = Kn and we are done. Let diam(G) = 2. If G is a tree,
then it follows from Observation ??(i) that G is a star (hence satisfies (iii)) and we are
done. So let G have a cycle. We consider three cases.

Case 1 The girth of G is 5.
Let C = (v1, v2, v3, v4, v5) be a cycle of order 5 in G. If n = 5, then G = C5 and satisfies
(iv). Let n ≥ 6. Clearly, each vertex in V (G) \ V (C) has at most one neighbor in V (C).
Since G is connected, there is a vertex such as x1 that is adjacent to some vertex in V (C).
Assume without loss of generality that v1x1 ∈ E(G). Since diam(G) = 2, x1 must have a
common neighbor with v3 and v4. Suppose x2 ∈ N(x1) ∩ N(v3) and x3 ∈ N(x1) ∩ N(v4).
Note that v1 lies on the v2-v5 geodetic path v2v1v5 and x1 lies on the x2-x3 geodetic path
x2x1x3. Hence, V (G) \ {x1, v1} is a restrained geodetic set of G, a contradiction.

Case 2 The girth of G is 4.
We claim that there are not two adjacent vertices each of degree at least 3. Assume to the
contrary that u and v are two adjacent vertices each of degree at least 3 and let u1, u2 ∈
N(u) \ {v} and v1, v2 ∈ N(v) \ {u}. Since G is triangle-free, d(u1, u2) = 2 and d(v1, v2) = 2.
Then u lies on the u1-u2 geodetic path u1uu2 and v lies on the v1-v2 geodetic path v1vv2,
which implies that V (G) \ {u, v} is a restrained geodetic set of G, a contradiction.
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Let now C = (v1, v2, v3, v4) be a cycle of order 4 in G. If n = 4, then G = K2,2 and
satisfies (ii). Let n ≥ 5. Since G is connected, there is a vertex, say x1, adjacent to some
vertex in V (C). Assume without loss of generality that v1x1 ∈ E(G). Since d(x1, v3) ≤ 2,
x1 must be adjacent to v3 or has a common neighbor with v3, say y1. Since G has no
two adjacent vertices each of degree at least 3, if x1v3 ∈ E(G), then deg(v2) = deg(v4) =
deg(x1) = 2 and if y1 ∈ N(x1) ∩ N(v3), then deg(v2) = deg(v4) = deg(x1) = deg(y1) = 2.
Hence, either G = K2,n−2 and satisfies (ii), or G is obtained from K2,p, 3 ≤ p ≤ n − 2,
with partite sets {v1, v3} and V (G) \ {v1, v3}, by subdividing n − p − 2 edges incident to
(without loss of generality) v3. If y1 and y2 are subdivision vertices, then V (G) \ {y1, v3}
is a restrained geodetic set of G, a contradiction. Hence, only one edge of G is subdivided
and G satisfies (iv).

Case 3 The girth of G is 3.
Let H be the largest clique of G and let V (H) = {v1, . . . , vr}. Clearly, r ≥ 3. Since G is
not a complete graph, V (G) \ V (H) 6= ∅. First let there exist a vertex x ∈ V (G) \ V (H)
such that |N(x)∩V (H)| ≥ 2. Assume without loss of generality that v1, v2 ∈ N(x)∩V (H).
By the choice of H, V (H) 6⊆ N(x). Let v3 6∈ N(x). Then obviously V (G) \ {v1, v2} is a
restrained geodetic set of G. This contradicts the fact that gr(G) = n by assumption.

Thus each vertex in V (G) \ V (H) has at most one neighbor in V (H). If there exist two
vertices x, y ∈ V (G)\V (H) with distinct neighbors vi, vj ∈ V (H), then clearly V (G)\{vi, vj}
is a restrained geodetic set of G, a contradiction. If there is a vertex z ∈ V (G) \ V (H) at
distance two from V (H), then we must have N(z) ∩ N(v1) 6= ∅ and N(z) ∩ N(v2) 6= ∅
because diam(G) = 2 and this leads to a contradiction as above. Therefore all vertices in
V (G) \ V (H) are adjacent to one vertex of V (H), say v1. Then v1 is a cut vertex of G.
Let G1, . . . , Gk be the components of G− v1. Suppose Gr is not a complete graph for some
1 ≤ r ≤ k. Then Gr has a path z1z2z3 and V (G) \ {v1, z2} is a restrained geodetic set of G,
a contradiction. Thus G = K1 ∨ (K|V (G1)| ∪K|V (G2)| ∪ · · · ∪K|V (Gk)|) and the result follows.
This completes the proof.

Theorem 8. An ordered triple (a, b, c) of positive integers is realizable as the geodetic
number, the restrained geodetic number and the order of some nontrivial connected graph,
respectively, if and only if one of the following holds:

1. (a, b, c) = (3, 5, 5);

2. (a, b, c) ∈ A = ∪i≥2{(i, i, i), (2, i+ 1, i+ 1), (i, i+ 1, i+ 1), (4, i+ 4, i+ 4)};

3. 2 ≤ a ≤ b ≤ c− 2.

Proof. First let (a, b, c) be realizable as the geodetic number, the restrained geodetic number
and the order of some nontrivial connected graph G. Then we must have 2 ≤ a ≤ b ≤ c and
c 6= b+ 1 by (??). If b = c, then it follows from Theorem ?? that (a, b, c) satisfies Condition
1 or Condition 2. If b ≤ c− 2, then (a, b, c) satisfies Condition 3.

Conversely, let the ordered triple (a, b, c) of positive integers satisfies one of the Condi-
tions 1, 2 or 3. We consider five cases.

Case 1. 2 ≤ a ≤ b = c. A graph G of order n has gr(G) = n if and only if G is one of
the graphs stated in Theorem ??. Since g(Kn) = n, (n, n, n) is realizable for n ≥ 2. Since
g(K2,n−2) = 2, (2, n, n) is realizable when n ≥ 3. It is easy to see that g(K1 ∨ (Km1 ∪ · · · ∪
Kmr)) =

∑r
i=1mi if r ≥ 2. Hence, (n − 1, n, n) is also realizable for n ≥ 3. Now consider

the graph K2,n−3 whose partite sets are {x1, x2} and {y1, y2, . . . , yn−3}, where n ≥ 4. Let
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G be the graph obtained from K2,n−3 by subdividing the edge x1y1 with a new vertex z.
(This is item (iv) of Theorem ??.) If n = 5, then G = C5 and (3, 5, 5) is realizable. If n ≥ 6,
then {x1, x2, y1, z} is a minimum geodetic set of G. Thus (4, n, n), n ≥ 6, is realizable.

Case 2. 2 ≤ a = b ≤ c − 2. Let G be the graph obtained by identifying a vertex in Ka

with an end-vertex of Pc−a+1. Assume S is the set of all simplicial vertices in G. Clearly,
S is a restrained geodetic set of G. Now the result follows by Proposition ??.

Case 3. 2 = a < b ≤ c − 2. Let G = K2 ∨ (Kb−2 ∪Kc−b). Clearly, V (K2) is the unique
g(G)-set and V (Kb−2) ∪ V (K2) is the unique gr(G)-set and the result follows.

Case 4. 3 ≤ a < b ≤ c − 3. Let H1 = K2,b−a+1 be the complete bipartite graph with
bipartite sets X = {x1, x2} and Y = {y1, . . . , yb−a+1}, and let H2 = Ka−1. Let z ∈ V (H2)
and let G be the graph obtained from H1 ∪H2 by adding a path u1, . . . , uk, k ≥ 1, and the
edges x1u1, x2u1, ukz. Note that S = V (H2) \ {z} is the set of all simplicial vertices of G.
Clearly, S ∪X is the unique g(G)-set and S ∪ Y is the unique gr(G)-set. Thus g(G) = a,
gr(G) = b, and |V (G)| = b+ 2 + k, k ≥ 1.

Case 5. 3 ≤ a < b = c− 2.

t q q q t t t t
t

t
z1z2z3zb−a+1

x2

x1

y1

Kn

Fig. 1: The graph Ga,b.

Let H1 = Ka with vertex set {x1, . . . , xa} and let H2 = K1,b−a+1 with V (H2) = {y1} ∪
{z1, . . . , zb−a+1}, where y1 is its central vertex. Let Ga,b be the graph obtained from H1∪H2

by adding the edges x1y1 and x2zi for 1 ≤ i ≤ b − a + 1 (see Figure 1). Clearly, S =
V (H1)\{x1, x2} is the set of all simplicial vertices of Ga,b. It is easy to see that S∪{x2, y1}
is the unique g(Ga,b)-set and V (Ga,b) \ {x1, x2} is the unique gr(Ga,b)-set.

Theorem 9. Let n, d and k be integers such that 3 ≤ d < n, 2 ≤ k < n, and n−d−k+1 ≥ 0.
Then there exists a graph G of order n, diameter d and gr(G) = k.

Proof. Let G be the graph obtained from a path Pd = u0u1 . . . ud of length d by adding
k− 2 pendant edges u1v1, . . . , u1vk−2 and n− d− k+ 1 new vertices w1, . . . , wn−k−d+1 and
joining wi to u0, u2 for each 1 ≤ i ≤ n− k − d+ 1. Clearly, G has order n and diameter d.
By Proposition ??, the set {u0, ud, v1, . . . , vk−2} is the unique minimum restrained geodetic
set of G and so G has the desired property.

It is well-known that for every connected graph G, rad(G) ≤ diam(G) ≤ 2 rad(G).
Chartrand et al. [?] showed that every three positive integers r, d, and k ≥ 2 with r ≤ d ≤ 2r
are realizable as the radius, the diameter and the geodetic number, respectively. Their
theorem can be extended so that restrained geodetic number instead of the geodetic number,
can be prescribed as well.
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Theorem 10. For positive integers r, d, and p ≥ 2 with r ≤ d ≤ 2r, there exists a connected
graph G with rad(G) = r, diam(G) = d and gr(G) = p.

Proof. If r = 1, then we let G = Kp or G = K2 ∨ (Kp−1 ∪ K1) according to whether
d = 1 or 2, respectively. Let r ≥ 2. If r = d = 2, then we let G = K2 ∨ (K2 ∪K2), G =
(K1 ∪ K2) ∨ (K2 ∪ K2) or G = K2,p−2 according to p = 2, 3 or p ≥ 4, respectively. If
r = d ≥ 3 and p = 2, then we let G = C2r (r ≥ 3).

Now assume r = d ≥ 3 and p ≥ 3. Let G be the graph obtained from disjoint union of
a cycle C2r = (x1, x2, . . . , x2r) of order 2r and the complete graph Kp−2 by joining x1 and
x2r to all vertices of Kp−2. Clearly, rad(G) = diam(G) = r. Since the vertices of Kp−2 lie
on no geodetic path, each restrained geodetic set of G must contain V (Kp−2) . Since also
I[V (Kp−2)∪ {xi}] 6= V (G) for each 1 ≤ i ≤ 2r, we have gr(G) ≥ p. On the other hand, the
set V (Kp−2) ∪ {xr, xr+1} is a restrained geodetic set of G and hence gr(G) = p.

Finally, let 2 ≤ r < d and p ≥ 2. Let C2r = (x1, x2, . . . , x2r) be a cycle of order 2r and
let Pd−r+1 = u0u1 . . . ud−r be a path of order d − r + 1 (and length d − r). Let G be the
graph obtained from C2r and Pd−r+1 by identifying x1 and u0. Add p − 2 new pendant
edges ud−r−1w1, . . . , ud−r−1wp−2. Then rad(G) = r and diam(G) = d. The graph G has
p − 1 end-vertices, that is, L = {ud−r, w1, . . . , wp−2}. By Proposition ??, L is contained
in each restrained geodetic set of G and that I[L] 6= V (G). Hence, gr(G) ≥ p. On the
other hand, we have I[L ∪ {xr+1}] = V (G), implying that gr(G) = p. This completes the
proof.

Next we study the effect of adding an edge on the restrained geodetic number of a graph.

Lemma 11. For any connected graph G and any two nonadjacent vertices x and y of G,
gr(G) ≤ gr(G+ xy) + 2. In addition, if M ′ is a geodetic set of G+ xy, then M ′ ∪ {x, y} is
a geodetic set of G.

Proof. Let M ′ be a geodetic set of G+ xy. Assume there exists z ∈ V (G) \ IG[M ′]. Then
there is a u-v geodesic path P : u . . . z . . . v in G+ xy with u, v ∈M ′ such that x and y are
neighbors in P . Moreover, without loss of generality, there exist the following possibilities:
(i) P : u . . . xy . . . z . . . v, (ii) P : uy . . . z . . . v, (u = x) (iii) P : uz . . . v, (u = x and y = z).
Hence, IG[M ′ ∪ {x, y}] = V (G), as is required.

The following corollary is an immediate result of Lemma ??.

Corollary 12. Let x and y be nonadjacent vertices of a connected graph G and let M ′ be
a gr(G+ xy)-set. If G[V (G) \ (M ′ ∪ {x, y})] has no isolated vertices, then M ′ ∪ {x, y} is a
restrained geodetic set of G and gr(G+ xy) ≥ gr(G)− 2.

Theorem 13. For integers a and b with a ≥ 3, b ≥ −2 and a + b ≥ 2, there exists a
connected graph G and an edge e ∈ E(G) such that gr(G) = a and gr(G+ e) = a+ b.

Proof. We consider four cases.

Case 1. b = −2.
Let Ha,−2 be the graph obtained from a path P6 = u0u1 . . . u6, by adding a−3 pendant edges
u1v1, . . . , u1va−3 and a pendant edge u4w. By Observation ??, the set {w, u0, u6, v1, . . . , va−3}
is the unique minimum restrained geodetic set of G and hence gr(Ha,−2) = a. Assume
H ′a,−2 = Ha,−2 + va−3w. It is easy to see that the set {u0, u6, v1, . . . , va−4} is a minimum
restrained geodetic set of H ′a,−2 and so gr(H

′
a,−2) = a− 2.
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Case 2. b = −1.
Suppose C5 = (u1, u2, u3, u4, u5) is a cycle on five vertices andK1,a−1 is a star with the center
x and end-vertices y1, . . . , ya−1. Let Ha,−1 = (C5∪K1,a−1)+y1u5 and H ′a,−1 = Ha,−1+y1u1.
It is easy to verify that {y2, . . . , ya−1, u2, u3} and {y2, . . . , ya−1, u3} are gr(Ha,−1)-set and
gr(H

′
a,−1)-set, respectively. Hence, gr(Ha,−1) = a and gr(H

′
a,−1) = a− 1.

Case 3. b = 0.
Let Ha,0 be the graph obtained from a path P5 = u1u2u3u4u5 by adding a − 1 pendant
edges u5v1, . . . , u5va−1. Assume H ′a,0 = Ha,0+u1u4. Clearly, {u1, v1, . . . , va−1} is the unique
gr(Ha,0)-set and {u2, v1, . . . , va−1} is the unique gr(H

′
a,0)-set. Thus gr(Ha,0) = gr(H

′
a,0) = a.

Case 4. b ≥ 1.
Let K2,b be a complete bipartite graph with partite sets {u1, u2} and {v1, . . . , vb}, and
let K1,a−1 be a star with the center x and end-vertices {y1, . . . , ya−1}. Assume Ha,b =
(K2,b ∪K1,a−1) + u2x and H ′a,b = Ha,b + u1u2. It is easy to see that {u1, y1, . . . , ya−1} and
{u1, y1, . . . , ya−1, v1, . . . , vb} are the unique minimum restrained geodetic set of Ha,b and
H ′a,b, respectively. Hence gr(Ha,b) = a and gr(H

′
a,b) = a+ b and the proof is complete.

3 Forcing subsets in restrained geodetic sets of a graph

Let G be a connected nontrivial graph and let S be a gr(G)-set. A subset T of S is called a
forcing subset of S if S is the unique extension of T to a gr(G)-set. The forcing restrained
geodetic number f(S, gr) of S is defined by f(S, gr) = min{|T | | T is a forcing subset of S}.
An f(S, gr)-set is a forcing subset of S of size f(S, gr). The forcing restrained geodetic
number f(G, gr) is defined by f(G, gr) = min{f(S, gr) | S is a gr(G)-set}. Hence, for every
connected graph G, f(G, gr) ≥ 0.

The concept of forcing numbers has been studied in different areas of combinatorics and
graph theory, including the chromatic number [?], the domination number [?, ?, ?] and the
geodetic number [?, ?, ?, ?, ?]. The forcing geodetic set and the forcing geodetic number
in a graph were introduced by Chartrand et al. in [?].

Observation 14. Let G be a connected graph of order n ≥ 2.

(i) 0 ≤ f(G, gr) ≤ gr(G) ≤ n;

(ii) f(G, gr) = 0 if and only if G has a unique gr(G)-set;

(iii) f(G, gr) = 1 if and only if G has at least two distinct gr(G)-sets but some vertices of
G belongs to exactly one gr(G)-set;

(iv) f(G, gr) ≥ 2 if and only if every vertex of each gr(G)-set belongs to at least two
gr(G)-sets.

The following corollaries are immediate consequences of Observations ?? and ??.

Corollary 15. For a tree T , f(T, gr) = 0.

Corollary 16. For n ≥ 1, f(Kn, gr) = 0.

Theorem 17. Every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 3, can be realized as the
forcing restrained geodetic number and the restrained geodetic number of some connected
graph, respectively.
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Proof. We have already seen that f(Kb, gr) = 0 and gr(Kb) = b. Thus, we assume that
0 < a ≤ b. We consider the following cases.

Case 1. a = b− 1.
Let Da,a+1 be the graph with vertex set V (Da,a+1) = {x1, x2} ∪ {ui, vi | 1 ≤ i ≤ a+ 1} and
edge set E(Da,a+1) = {x1x2} ∪ {x1ui, x2vi, uivi | 1 ≤ i ≤ a+ 1} (see Figure 2).

Obviously, {u1, . . . , ua, v1} is a restrained geodetic set of Da,a+1 and hence gr(Da,a+1) ≤
a + 1. Let S be an arbitrary gr(Da,a+1)-set. If ui, vi 6∈ S for some 1 ≤ i ≤ a + 1, then
we must have a geodesic path P containing the path x1uivix2, which is a contradiction
because x1x2 ∈ E(Da,a+1). Therefore |S ∩ {ui, vi}| ≥ 1 for each 1 ≤ i ≤ a + 1 and hence
gr(Da,a+1) = |S| ≥ a+ 1. Thus gr(Da,a+1) = a+ 1.

Now we show that f(Da,a+1, gr) = a. If S is a gr(Da,a+1)-set, then |S ∩ {ui, vi}| = 1 for
each 1 ≤ i ≤ a+ 1. Since the sets {u1, . . . , ua+1} and {v1, . . . , va+1} are not gr(Da,a+1)-set,
we must have S∩{u1, . . . , ua+1} 6= ∅ and S∩{v1, . . . , va+1} 6= ∅. It is easy to see that every
set S of vertices with |S ∩ {ui, vi}| = 1 for each 1 ≤ i ≤ a+ 1, S ∩ {u1, . . . , ua+1} 6= ∅ and
S ∩ {v1, . . . , va+1} 6= ∅ is a gr(Da,a+1)-set. It follows that every set S of vertices of order at
most a − 1 with |S ∩ {ui, vi}| ≤ 1 for each 1 ≤ i ≤ a + 1, can be extended to at least two
gr(Da,a+1)-sets. Thus f(Da,a+1, gr) ≥ a. On the other hand, clearly the set {u1, . . . , ua}
is a forcing subset of the gr(Da,a+1)-set {u1, . . . , ua, v1}. Thus f(Da,a+1, gr) ≤ a and hence
f(Da,a+1, gr) = a. t t

t tqqqt t
t t

t t

ua+1

ua

u2

u1

va+1

va

v2

v1

x1 x2

t t
t tqqqt t
t t

t t

ua+1

ua

u2

u1

va+1

va

v2

v1

x1 x2
Kb−a+1

Fig. 2: The graph Da,a+1 Fig. 3: The graph Da,b

Case 2. Assume 1 ≤ a ≤ b− 2.
Let Da,b be a graph obtained from Kb−a−1 ∪ Da,a+1 by joining x1 and x2 to all vertices
of Kb−a−1 (see Figure 3). Let S be a gr(Da,b)-set. Since the vertices of Kb−a−1 lie on no
geodetic path, we have V (Kb−a−1) ⊆ S. An argument similar to that described in Case 1
shows that |S ∩ {ui, vi}| ≥ 1 for each 1 ≤ i ≤ a+ 1. Thus gr(Da,b) = |S| ≥ b. On the other
hand, it is easy to see that the set {u1, . . . , ua+1, v1} is a restrained geodetic set of Da,b,
implying that gr(Da,b) ≤ b. Thus gr(Da,b) = b.

Now let S be a gr(Da,b)-set and let F be a forcing set of S. As above, we must have
|F | ≥ a. It is easy to see that the set {ui | 1 ≤ i ≤ a} is a forcing set of the restrained
geodetic set V (Kb−a−1) ∪ {u1, . . . , ua, v1}, which implies that f(Da,b, gr) = a.

Case 3. a = b.
We consider three subcases.

Subcase 3.1 a = b = 2k, k ≥ 2
For 1 ≤ i ≤ k, suppose Gi is a copy of K3,3 with bipartite sets Xi = {ui1, ui2, ui3} and
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Yi = {vi1, vi2, vi3}. Let M2k be the graph obtained from ∪ki=1Gi by adding two new vertices
x1, x2, adding the edge x1x2 and joining x1 to uij and x2 to vij for each 1 ≤ i ≤ k and
j = 1, 2, 3 (see Figure 4).

It is easy to see that the set {ui1, vi1 | 1 ≤ i ≤ k} is a restrained geodetic set of M2k,
implying that gr(M2k) ≤ 2k. Assume S is a gr(M2k)-set. We claim that |S ∩ Xi| ≥ 1
and |S ∩ Yi| ≥ 1 for each 1 ≤ i ≤ k. Assume to the contrary that S ∩ Xi = ∅ (the case
S ∩ Yi = ∅ is similar) for some i, say i = 1. It follows that Y1 ⊆ S. A similar argument
shows that |S ∪ V (Gi)| ≥ 2 for each i ≥ 2, which implies that |S| ≥ 2k+ 1, a contradiction.
Thus |S ∩Xi| ≥ 1 and |S ∩ Yi| ≥ 1 for each 1 ≤ i ≤ k, implying that |S| ≥ 2k and hence
gr(M2k) = |S| = 2k. Moreover, we must have |S ∩ Xi| = 1 and |S ∩ Yi| = 1 for each
1 ≤ i ≤ k.

Now let S be a gr(M2k)-set and let F be a forcing set of S. We claim that F = S.
Suppose to the contrary that F ⊂ S. We may assume without loss of generality that
u11 ∈ (S \ F ). It is easy to see that (S \ {u11}) ∪ {u12} is a gr(M2k)-set containing F , a
contradiction. Hence, f(M2k, gr) = |F | = |S| = gr(M2k).

t t
t t
t tqqqt t
t t
t t

t tx1 x2

u11

u12

u13

uk1

uk2

uk3

v11

v12

v13

vk1

vk2

vk3 t t
t t
t tqqqt t
t t
t t

t tt tt tt t

x1 x2

u11

u12

u13

uk1

uk2

uk3

v11

v12

v13

vk1

vk2

vk3

z1

z2

z3

w1

w2

w3

Fig. 4: The graph M2k Fig. 5: The graph H2k+3

Subcase 3.2 a = b = 2k + 3, k ≥ 1.
Let H2k+3 be the graph obtained from M2k by adding new vertices z1, z2, z3, w1, w2, w3 and
adding the edges z1z2, z1z3, z2z3, w1w2, w1w3, w2w3, z1w1, z1w3, z2w2, z3w1, z3w3, and x1zi
and x2wi for i = 1, 2, 3 (see Figure 5).

It is easy to verify that the set {ui1, vi1 | 1 ≤ i ≤ k} ∪ {x1, x2, w1} is a restrained
geodetic set of H2k+3, this implies gr(H2k+3) ≤ 2k + 3. If S is a gr(H2k+3)-set, then
as in Case 2, we can see that |S ∩ Xi| ≥ 1 and |S ∩ Yi| ≥ 1 for each 1 ≤ i ≤ k, and
|S ∩ {z1, z2, z3, w1, w2, w3}| ≥ 3. Hence, gr(H2k+3) = 2k + 3. Since every set of vertices
S ⊂ V (H2k+3) with |S ∩ {z1, z2, z3, w1, w2, w3}| = 3, |S ∩Xi| = 1 and |S ∩ Yi| = 1 for each
1 ≤ i ≤ k, is a restrained geodetic set of H2k+3 whenever the set S∩{z1, z2, z3, w1, w2, w3} is
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not one of {z1, z3, w3}, {w1, z3, w3}, {z1, w1, z3} and {z1, w1, w3}, we deduce that for every
gr(H2k+3)-set S, f(S, gr) = |S|. It follows that f(M2k, gr) = gr(M2k).

Subcase 3.2 a = b = 3.
For 1 ≤ i ≤ 3, let Ri be the graph obtained from a complete bipartite graph K2,3 with
partite sets {ui, vi} and {xi1, xi2, xi3} by joining xi1 to xi2 and xi2 to xi3. Assume H3 results
from R1∪R2∪R3 by adding the edges v1u2, v2u3 and v3u1. It is easy to see that f(H3, gr) =
gr(H3) = 3.
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