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Abstract. Given a starlike function g ∈ S∗, an analytic stan-
dardly normalized function f in the unit disk D is called close-
to-convex with respect to g if there exists δ ∈ (−π/2, π/2) such
that

Re

{
eiδ

zf ′(z)

g(z)

}
> 0, z ∈ D.

For the class C(h) of all close-to-convex functions with respect to
h(z) := z/(1 − z), z ∈ D, a Fekete-Szegö problem is examined.

1. Introduction

A classical problem settled by Fekete and Szegö [9] is to find for each
λ ∈ [0, 1] the maximum value of the coefficient functional

Φλ(f) :=
∣∣a3 − λa22

∣∣
over the class S of univalent functions f in the unit disk D := {z ∈ C :
|z| < 1} of the form

(1.1) f(z) = z +
∞∑
n=2

anz
n, z ∈ D.

By applying the Loewner method they proved that

max
f∈S

Φλ(f) =

{
1 + 2 exp (−2λ/(1− λ)) , λ ∈ [0, 1),
1, λ = 1.

The problem of calculating maxf∈F Φλ(f) for various compact sub-
classes F of the class of all normalized analytic functions f in D of the
form (1.1), as well as for λ being an arbitrary real or complex number,
was considered by many authors (see e.g. [12], [15], [26], [17], [13], [6],
[2]).
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Let S∗ denote the class of starlike functions, i.e., f ∈ S∗ if f is of
the form (1.1) and

Re
zf ′(z)

f(z)
> 0, z ∈ D.

Given δ ∈ (−π/2, π/2) and g ∈ S∗, a function f of the form (1.1) is
called close-to-convex with argument δ with respect to g if

(1.2) Re

{
eiδ

zf ′(z)

g(z)

}
> 0, z ∈ D.

Let Cδ(g) denote the class of all such functions. Let

C(g) :=
∪

δ∈(−π/2,π/2)

Cδ(g), Cδ :=
∪
g∈S∗

Cδ(g)

be the classes of functions called close-to-convex with respect to g and
close-to-convex with argument δ, respectively (see [25, pp. 184-185],
[11]). At the end let

C :=
∪

δ∈(−π/2,π/2)

Cδ =
∪

δ∈(−π/2,π/2)

∪
g∈S∗

Cδ(g)

denote the class of close-to-convex functions (see [25], [14]). It is well
known that S∗ and C are the subclasses of S.

Using a specific starlike function from S∗ the inequality (1.2) de-
fines related subclass of close-to-convex functions, namely, Cδ(g). Two
important ones are given by the Koebe function

k(z) :=
z

(1− z)2
, z ∈ D.

and by the convex function

(1.3) h(z) :=
z

1− z
=

∞∑
n=1

zn, z ∈ D,

i.e., the classes of analytic functions f of the form (1.1) are defined,
respectively, by the following conditions:

(1.4) Re
{
eiδ(1− z)2f ′(z)

}
> 0, z ∈ D,

and

(1.5) Re
{
eiδ(1− z)f ′(z)

}
> 0, z ∈ D,

where δ ∈ (−π/2, π/2).
For the first time the inequalities (1.4) and (1.5), treated as the uni-

valence criteria, were distinguished explicitly, probably, in [25, p. 185],
where some coefficients results for both classes were shown, as well.
Clearly, h as in (1.3), and k have integer coefficients in their power



FEKETE-SZEGÖ PROBLEM 3

series in D. It is known that there are only nine such starlike functions
(see e.g. [10], [24]). Therefore starlike functions with integer coeffi-
cients, and the corresponding classes C(g) of close-to-convex functions
with respect to g, as well as their generalizations, are the subject of
studies by many authors with using various techniques (some recent
results see e.g. [3], [20], [21], [5], [7], [28], [23], [4]).

Since the Koebe function k and the function h are extremal for var-
ious computational problems in the class of starlike and convex univa-
lent functions, respectively, it is interesting to examine the Fekete-Szegö
functional for the classes C(k) and C(h). For the whole class C of close-
to-convex functions, the sharp bound of the Fekete-Szegö functional
was calculated by Koepf in [17] who extended the earlier result for the
class C0 due to Keogh and Merkes [15], namely, it was proved that

max
f∈C

Φλ(f) = max
f∈C0

Φλ(f)

=

 |3− 4λ|, λ ∈ (−∞, 1/3] ∪ [1,+∞),
1/3 + 4/(9λ), λ ∈ [1/3, 2/3],
1, λ ∈ [2/3, 1].

For further results on the Fekete-Szegö functional for classes of close-
to-convex functions, particularly, for strongly close-to-convex functions
see [18], [1], [22], [8] and [16].

In [19] the authors considered the Fekete and Szegö problem for the
class C(k). It was shown that

max
f∈C(k)

Φλ(f)

≤


|3− 4λ|, λ ∈ (−∞, 1/3] ∪ [1,+∞),

1

3
· (2− 3λ)2

2− |2− 3λ|
+ |1− λ|+ 2

3
, λ ∈ [1/3, 1],

with sharpness of the result when λ ∈ R \ (2/3, 1).
In this paper we examine the Fekete and Szegö problem for the class

C(h). We show that

max
f∈C(h)

Φλ(f)

≤


∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
|2− 3λ|, λ ∈ (−∞, 2/9] ∪ [10/9,+∞),

1

12
· (2− 3λ)2

2− |2− 3λ|
+

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
, λ ∈ [2/9, 10/9],

with sharpness of the result when λ ∈ R \ (2/3, 4/3).
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2. Main result

By P we denote the class of all analytic functions p in D of the form

(2.1) p(z) = 1 +
∞∑
n=1

cnz
n, z ∈ D,

having a positive real part in D. Let

L(z) :=
1 + z

1− z
, z ∈ C \ {1}.

For each ε ∈ T := {z ∈ C : |z| = 1} let

pε(z) := L(εz), z ∈ D.
Clearly pε ∈ P for every ε ∈ T.

The inequalities (2.2) and (2.3) below are well known. They can be
found in [27, pp. 41 and 166].

Lemma 2.1. If p ∈ P is of the form (2.1), then

(2.2) |cn| ≤ 2, n ∈ N,
and

(2.3)

∣∣∣∣c2 − c21
2

∣∣∣∣ ≤ 2− |c1|2

2
.

Both inequalities are sharp. The equality in (2.2) holds for every
function pε ∈ P , ε ∈ T. The equality in (2.3) holds for every function

(2.4) pt,θ(z) := tL
(
eiθz

)
+ (1− t)L

(
e2iθz2

)
= 1 + 2teiθz + 2e2iθz2 + · · · , z ∈ D,

where t ∈ [0, 1] and θ ∈ R.

Now we prove the main theorem of this paper. The source of the
method of proof is in Koepf’s work [17], where the upper bound of Φλ

for close-to-convex functions with λ restricted to the interval (1/2, 2/3)
was calculated. However we use the technique homogenously for the
class C(h) for all real λ, analogously as in [19] for the class C(k).

Theorem 2.2.

(2.5) max
f∈C(h)

Φλ(f)

≤


∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
|2− 3λ|, λ ∈ (−∞, 2/9] ∪ [10/9,+∞),

1

12
· (2− 3λ)2

2− |2− 3λ|
+

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
, λ ∈ [2/9, 10/9].
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For each λ ∈ R\(2/3, 4/3), the inequality is sharp and the equality is
attained by a function in C0(h). In particular, for each λ ∈ [2/9, 2/3] the
second equality is attained by the function fλ given by the differential
equation

(2.6) f ′
λ(z) =

1

1− z
ptλ,0(z), fλ(0) = 0, z ∈ D,

where tλ := 1/(3λ)−1/2. For each λ ∈ (−∞, 2/9]∪ [4/3,+∞), the first
equality is attained by the function

(2.7) f2/9(z) := log(1− z) +
2z

1− z
, log 1 = 0, z ∈ D.

Proof. Observe that f ∈ C(h) if and only if

(2.8) eiδ(1− z)f ′(z) = p(z) cos δ + i sin δ, z ∈ D,
for some δ ∈ (−π/2, π/2) and p ∈ P . Thus

(2.9) zf ′(z) = e−iδh(z) (p(z) cos δ + i sin δ) , z ∈ D.
Setting the series (1.1), (1.3) and (2.1) into (2.9), by comparing coeffi-
cients, we get

a2 =
1

2

(
c1e

−iδ cos δ + 1
)
,

a3 =
1

3

(
c2e

−iδ cos δ + c1e
−iδ cos δ + 1

)
.

(2.10)

Let λ ∈ R. Using (2.3) from the above we have

(2.11) Φλ(f) =
∣∣a3 − λa22

∣∣
=

∣∣∣∣13c2e−iδ cos δ +
1

3
c1e

−iδ cos δ +
1

3

−1

4
λ
(
c21e

−2iδ cos2 δ + 2c1e
−iδ cos δ + 1

)∣∣∣∣
=

∣∣∣∣13 − 1

4
λ+

1

3

(
c2 −

c21
2

)
e−iδ cos δ +

1

6
c21

(
1− 3

2
λe−iδ cos δ

)
e−iδ cos δ

+

(
1

3
− 1

2
λ

)
c1e

−iδ cos δ

∣∣∣∣
≤
∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 1

3

(
2− |c1|2

2

)
cos δ +

|c1|2

6

∣∣∣∣1− 3

2
λe−iδ cos δ

∣∣∣∣ cos δ
+

∣∣∣∣13 − 1

2
λ

∣∣∣∣ |c1| cos δ
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=

∣∣∣∣13 − 1

4
λ

∣∣∣∣
+

(
2

3
+

|c1|2

6

(√
1−

(
3λ− 9

4
λ2

)
cos2 δ − 1

)
+

1

6
|2− 3λ| |c1|

)
cos δ.

Set x := |c1| and y := cos δ. Clearly, y ∈ (0, 1] and, in view of (2.2),
x ∈ [0, 2]. Set R := [0, 2] × [0, 1]. It is convenient to use in further
computation γ := 2− 3λ instead of λ. For (x, y) ∈ R and γ ∈ R define

Fγ(x, y)

:=
1

12
|2 + γ|+ 1

3

(
2 +

x2

2

(√
1−

(
1− 1

4
γ2

)
y2 − 1

)
+

1

2
|γ|x

)
y.

Consequently, in view of (2.11) we have

max
f∈C(h)

Φλ(f) ≤ max
(x,y)∈R

Fγ(x, y).

Now for each γ ∈ R we find the maximum value of Fγ on the rectangle
R.

1. In the corners of R we have

Fγ(0, 0) = Fγ(2, 0) =
1

12
|2 + γ|,

Fγ(0, 1) =
1

12
|2 + γ|+ 2

3
, Fγ(2, 1) =

1

12
|2 + γ|+ 2

3
|γ|.

(2.12)

2. x = 0, y ∈ (0, 1).
Then a linear function

(0, 1) ∋ y 7→ Fγ(0, y) =
1

12
|2 + γ|+ 2

3
y

has no critical point in (0, 1), evidently.
3. x ∈ (0, 2), y = 0.
Then we have a constant function

(2.13) (0, 2) ∋ x 7→ Fγ(x, 0) =
1

12
|2 + γ|.

4. x ∈ (0, 2), y = 1.
Let

(2.14) Gγ(x) := Fγ(x, 1)

=
1

12
(|γ| − 2)x2 +

1

6
|γ|x+

1

12
|2 + γ|+ 2

3
.

(a) For |γ| = 2 we get the linear functions G−2 and G2 which have
no critical points in (0, 2).
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(b) Let |γ| ̸= 2. Then G′
γ(x) = 0 if and only if

(2.15) x =
|γ|

2− |γ|
=: xγ.

Hence xγ ∈ (0, 2) if and only if

0 <
|γ|

2− |γ|
< 2.

The left-hand inequality holds when

(2.16) γ ̸= 0 and |γ| < 2.

We can write the right-hand inequality as

3|γ| − 4

2− |γ|
< 0

and, in view of (2.16), it holds when |γ| < 4/3. This with (2.16) yield
that xγ ∈ (0, 2) when γ ∈ (−4/3, 4/3) \ {0}.

Thus, taking into account of part (a), we have that the function Gγ

has a critical point in (0, 2), namely, xγ as the unique one, if and only
if γ ∈ (−4/3, 4/3) \ {0}.

Moreover we have

(2.17) Fγ(xγ, 1) = Gγ (xγ)

=
1

12
· (|γ| − 2) |γ|2

(2− |γ|)2
+

1

6
· |γ|2

2− |γ|
+

1

12
|2 + γ|+ 2

3

=
1

12
· γ2

2− |γ|
+

1

12
|2 + γ|+ 2

3

=
1

12
· (|γ| − 4)2

2− |γ|
+

1

12
|2 + γ|.

5. x = 2, y ∈ (0, 1).
Let

Hγ(y) := Fγ(2, y)

=
1

12
|2 + γ|+ 2

3
y

√
1−

(
1− 1

4
γ2

)
y2 +

1

3
|γ|y.

(a) For |γ| = 2 we get the linear functions H−2 and H2 which have
no critical points in (0, 1).

(b) Let |γ| ̸= 2. Note first that

(2.18)

√
1−

(
1− 1

4
γ2

)
y2 > 0, y ∈ (0, 1).
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Indeed, equating the left-hand side of (2.18) to zero, we get the equation
equivalently written as

(2.19) (4− γ2)y2 = 4, y ∈ (0, 1).

Since y2 > 0, we have |γ| < 2. But then from (2.19) we obtain

y2 =
4

4− γ2
> 1,

which is a contradiction. Thus the equation (2.19) has no solution, so
(2.18) holds. Now we have

(2.20) H ′
γ(y) = 0

if and only if√
1−

(
1− 1

4
γ2

)
y2 +

−
(
1− 1

4
γ2

)
y2√

1−
(
1− 1

4
γ2

)
y2

+
1

2
|γ| = 0.

Setting

s :=

√
1−

(
1− 1

4
γ2

)
y2,

the above equality is equivalent to

s+
s2 − 1

s
+

1

2
|γ| = 0,

i.e.,

(2.21) 4s2 + |γ|s− 2 = 0.

By (2.18) we have s > 0, so we conclude that

s =

√
γ2 + 32− |γ|

8

is the unique solution of (2.21). Thus√
1−

(
1− 1

4
γ2

)
y2 =

√
γ2 + 32− |γ|

8
.

As |γ| ̸= 2, simple calculations yield

8
(
4− γ2

)
y2 = 16− γ2 + |γ|

√
γ2 + 32.

Hence, obviously, |γ| < 2 and

(2.22) y2 =
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)
.
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In consequence, the solution in (0, 1) of the equation (2.22), and hence
(2.20), exists if and only if

(2.23) 0 <
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)
< 1.

The left-hand inequality in (2.23) is clearly true since |γ| < 2 and

16− γ2 + |γ|
√

γ2 + 32 > 0.

Write the right-hand inequality as

16− γ2 + |γ|
√

γ2 + 32 < 8(4− γ2).

Equivalently, we have

(2.24) |γ|
√

γ2 + 32 < 16− 7γ2.

Since both sides of (2.24) are positive, squaring them we obtain

3γ4 − 16γ2 + 16 > 0.

Taking into account that |γ| < 2 and solving the last inequality we
obtain that |γ| < 2/

√
3. Thus (2.23) holds for |γ| < 2/

√
3, and it is

false for γ ∈ (−2,−2/
√
3] ∪ [2/

√
3, 2).

Summarizing, we proved that (2.23) holds, and hence the solution in
(0, 1) of (2.22) and further of (2.20) exists, if and only if |γ| < 2/

√
3.

Consequently, we can conclude that the function Hγ has a critical point
in (0, 1), namely,

y =

√
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)
=: yγ

as the unique solution of (2.22) if and only if |γ| < 2/
√
3.

Moreover

(2.25) Fγ(2, yγ) = Hγ(yγ)

=
1

12
|2 + γ|+ 2

3
yγ

(√
γ2 + 32− |γ|

8
+

1

2
|γ|

)

=
1

12
|2 + γ|+ 1

12

√
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)

(√
γ2 + 32 + 3|γ|

)
.

6. x ∈ (0, 2), y ∈ (0, 1).
We will prove that for each γ ∈ R, the function Fγ has no critical

point in (0, 2)× (0, 1).
Observe first that

∂Fγ

∂x
= 0
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if and only if

y

(
1

3
x

(√
1−

(
1− 1

4
γ2

)
y2 − 1

)
+

1

6
|γ|

)
= 0,

and since y ̸= 0 and x ̸= 0, if and only if

(2.26)

√
1−

(
1− 1

4
γ2

)
y2 = 1− |γ|

2x
.

Note that γ ̸= 0 because if γ = 0, then y = 0 in (2.26) which contradicts
the assumption. Moreover, by (2.18) the left-hand side of (2.26) is
positive. Thus the solution of (2.26) can exist only when γ ̸= 0 and
x > |γ|/2. For x > |γ|/2, since x ∈ (0, 2), we have

(2.27) 0 < |γ| < 2x < 4.

By squaring (2.26), we get

(2.28) −
(
1− 1

4
γ2

)
y2 = −|γ|

x
+

γ2

4x2
.

On the other hand, we have

(2.29)
∂Fγ

∂y
= 0

if and only if

2

3
+

x2

6

(√
1−

(
1− 1

4
γ2

)
y2 − 1

)

+
1

6
|γ|x+

x2

6
·

−
(
1− 1

4
γ2

)
y2√

1−
(
1− 1

4
γ2

)
y2

= 0.

Then from (2.28), we equivalently have

4 + x2

(
−|γ|
2x

)
+ |γ|x+

(
−|γ|

x
+

γ2

4x2

)
x2

1− |γ|
2x

= 0,

and after simplifying,

4 +
1

2
|γ|x+

−2|γ|x2 +
1

2
γ2x

2x− |γ|
= 0.
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Thus

(2.30) |γ|x2 − 8x+ 4|γ| = 0, x ∈ (0, 2).

By (2.27), γ ̸= 0. Then the discriminant ∆ = 16(4 − γ2) ≥ 0 if only
if γ ∈ [−2, 2] \ {0}. If ∆ = 0, then |γ| = 2 which implies x = 2,
a contradiction. Thus the equation (2.30) has no root when |γ| ≥
2. Consequently, for |γ| ≥ 2 the function Fγ has no critical point in
(0, 2)× (0, 1).

Now consider γ ∈ (−2, 2)\{0}. The roots of (2.30) are the following:

x1 =
4− 2

√
4− γ2

|γ|
, x2 =

4 + 2
√
4− γ2

|γ|
.

Since x2 > 0, γ ̸= 0 and x1x2 = 4, we immediately see that 0 < x1 <
2 < x2. Thus x2 /∈ (0, 2) and it remains to consider x1.

Observe that x1 > |γ|/2. This follows from the fact that the inequal-
ity

4− 2
√

4− γ2

|γ|
>

1

2
|γ|

is equivalent to

8− γ2 > 4
√
4− γ2,

which is evidently true for γ ∈ (−2, 2) \ {0}.
Setting x1 to the equation (2.28), we have

(2.31) y2 =

|γ|
x1

− γ2

4x2
1

1− 1

4
γ2

=
4|γ|x1 − γ2

x2
1 (4− γ2)

=

(
16− γ2 − 8

√
4− γ2

)
γ2(

4− 2
√

4− γ2
)2

(4− γ2)
.

A solution in (0, 1) of the above equation exists if and only if, for |γ| < 2
and γ ̸= 0,

(2.32) 0 <

(
16− γ2 − 8

√
4− γ2

)
γ2(

4−
√

4− γ2
)2

(4− γ2)
< 1.

Since

16− γ2 − 8
√
4− γ2 > 0 ⇔ γ4 + 32γ2 > 0
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and the last inequality is true, so the left-hand inequality in (2.32)
holds. Write the right-hand inequality in (2.32) as(

16− γ2 − 8
√

4− γ2
)
γ2 <

(
4− 2

√
4− γ2

)2
(4− γ2)

which, after a simple computation, will give

(2.33) 8(8− 3γ2)
√

4− γ2 < 5γ4 − 64γ2 + 128.

The left-hand side of (2.33) is nonnegative if and only if

γ ̸= 0 and −
√
8/3 ≤ γ ≤

√
8/3 ≈ 1.633.

On the other hand, the right-hand side of (2.33) is nonnegative if and
only if γ ̸= 0 and |γ| ≤ γ1, where

γ1 =

√
8
(
4−

√
6
)

5
≈ 1.575.

Thus for |γ| ≤ γ1 and γ ̸= 0, by squaring both sides of (2.33) and
simplifying, we get

γ6(25γ2 − 64) > 0.

Note that the above inequality holds if and only if |γ| > 8/5. But

8/5 > γ1, which yields a contradiction. For γ1 < |γ| ≤
√
8/3 the

inequality (2.33) is evidently false. The same holds for
√

8/3 < |γ| < 2.
Indeed, in this case both sides of (2.33) are negative, so squaring them
and simplifying, we get the inequality

γ6(25γ2 − 64) < 0,

which, as easy to see, is false (because will imply |γ| < 8/5 <
√

8/3).
Thus we have proved that for γ ∈ (−2, 2) \ {0}, the equation (2.31)

has no solution in (0, 1), which implies that for such γ the function Fγ

has no critical point in (0, 2)× (0, 1).
Therefore for each γ ∈ R, the function Fγ has no critical point in

(0, 2)× (0, 1).
7. Now we calculate the maximum value of Fγ in R, which is attained

on parts of the boundary of R.
(a) |γ| ≥ 4/3. Then, in view of Parts 4(b) and 5(b), the maximum

value of Fγ is attained at the corner of R, so by (2.12) it suffices to
compare the following values:

(2.34)
1

12
|2 + γ|, 1

12
|2 + γ|+ 2

3
,

1

12
|2 + γ|+ 2

3
|γ|.
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Since |γ| ≥ 4/3 > 1, we see at once that

(2.35) max
(x,y)∈R

Fγ(x, y) = Fγ(2, 1) =
1

12
|2 + γ|+ 2

3
|γ|.

(b) γ = 0. Then, in view of Parts 4(b) and 5(b), the maximum value
of F0 is attained at the corner of R or at y0 = 1/

√
2. Thus comparing

all the values in (2.34) with γ = 0 and F0 (2, y0) = 1/2, by (2.25), we
have

(2.36) max
(x,y)∈R

F0(x, y) = F0(0, 1) =
5

6
.

(c) 2/
√
3 ≤ |γ| < 4/3. Then, in view of Parts 4(b) and 5(b), the

maximum value of Fγ is attained at the corner of R or at xγ = |γ|/(2−
|γ|). Thus we compare all the values in (2.34) and Fγ(xγ, 1).

Since Fγ(2, 1) is the largest value among all the values in (2.34), it
is enough to show that

(2.37) Fγ (xγ, 1) ≥ Fγ(2, 1) =
1

12
|2 + γ|+ 2

3
|γ|.

By (2.17), inequality (2.37) becomes

(|γ| − 4)2

2− |γ|
≥ 8|γ|,

or, equivalently,

(2.38)
(3|γ| − 4)2

2− |γ|
≥ 0,

which is obviously true since |γ| < 4/3 < 2.
(d) |γ| < 2/

√
3, γ ̸= 0. Then we compare all the values in (2.34)

and, by (2.17) and (2.25), Fγ (xγ, 1) and Fγ (2, yγ) . We will show that
Fγ (xγ, 1) is the largest one.

Observe that for |γ| ≤ 1, γ ̸= 0, Fγ(0, 1) is the largest value among

all the values in (2.34), and so is Fγ(2, 1) for 1 < |γ| < 2/
√
3.

For |γ| ≤ 1, γ ̸= 0, we have γ2/(2− |γ|) > 0. So in view of (2.17) we
get at once that

(2.39) Fγ (xγ, 1) ≥ Fγ(0, 1) =
1

12
|2 + γ|+ 2

3
.

For 1 < |γ| < 2/
√
3, the inequality (2.38) is true, so is (2.37).

It remains to prove that for |γ| < 2/
√
3, γ ̸= 0,

(2.40) Fγ (xγ, 1) ≥ Fγ (2, yγ) .
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In view of (2.17) and (2.25) we have

(2.41)
1

12
· (|γ| − 4)2

2− |γ|
+

1

12
|2 + γ|

≥ 1

12
|2 + γ|+ 1

12

√
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)

(√
γ2 + 32 + 3|γ|

)
if and only if

(2.42)
(4− |γ|)2

2− |γ|
≥

√
16− γ2 + |γ|

√
γ2 + 32

8(4− γ2)

(√
γ2 + 32 + 3|γ|

)
.

Since, for |γ| < 2/
√
3, both sides of (2.42) are positive, by squaring

them, we have

(4− |γ|)4

(2− |γ|)2
≥

16− γ2 + |γ|
√

γ2 + 32

8(4− γ2)

(
10|γ|2 + 32 + 6|γ|

√
γ2 + 32

)
.

Setting u := |γ| ∈
(
0, 2/

√
3
)
, we can write the last inequality, equiva-

lently, as
8(2 + u)(4− u)2

≥ (2− u)
(
16− u2 + u

√
u2 + 32

)(
10u2 + 32 + 6u

√
u2 + 32

)
which, after a straightforward computation, is equivalent to

(2.43) u5−26u4+208u3−288u2−384u+768 ≥ (2−u)u
(
u2 + 32

)3/2
.

Clearly, the right-hand side of the above is positive. To verify this for
the left-hand side, denote

Q1(v) := v5 − 26v4 + 208v3 − 288v2 − 384v + 768, v ∈ [0, u1],

where u1 := 2/
√
3. But writing Q1 as

Q1(v) = v5 + 26(u1 − v)v3 + (64− 26u1)v
3 + 144v(v − 1)2

+528(u1 − v) + (768− 528u1), v ∈ [0, u1],

we see that the coefficients of the above expression are all positive.
Therefore Q1(v) > 0 in [0, u1], so the left-hand side of (2.43) is positive
in (0, u1).

Squaring now the inequality (2.43) we get(
u5 − 26u4 + 208u3 − 288u2 − 384u+ 768

)2 ≥ (2− u)2u2
(
u2 + 32

)3
.

After a straightforward computation we can write the last inequality
as

(2.44) 3u9 − 62u8 + 688u7 − 3376u6 + 5376u5 + 10112u4

−41984u3 + 26624u2 + 36864u− 36864 ≤ 0, u ∈ (0, u1).
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To verify (2.44), we will prove that

(2.45) Q2(v) ≤ 0, v ∈ [0, u1],

where

Q2(v) := 3v9 − 62v8 + 688v7 − 3376v6 + 5376v5 + 10112v4

−41984v3 + 26624v2 + 36864v − 36864, v ∈ [0, u1].

Since

Q2(u1) =
1

81

(
681472− 1282560√

3

)
< 0,

in order to prove that (2.45) holds, it is enough to show that Q′
2(v) ≥ 0

for 0 ≤ v ≤ u1. By the change of variable t := v/u1, we observe that

Q′
2(u1t) = 36864 +

106496√
3

t− 167936t2 +
323584

3
√
3

t3

+
143360

3
t4 − 216064

3
√
3

t5 +
308224

27
t6 − 63488

27
√
3
t7 +

256

3
t8

≥ 36864 + 61485t− 167936t2 + 62273t3

+47786t4 − 41582t5 + 11415t6 − 1358t7 + 85t8 =: S(t).

In order to show that Q′
2(u1t) ≥ 0 for 0 ≤ t ≤ 1, it suffices to see that

S(t) ≥ 0 for 0 ≤ t ≤ 1. But, after computing we have

S(1− t) = 9032 + 44670t+ 34866t2 − 23127t3 − 30479t4 − 3150t5

+4289t6 + 678t7 + 85t8

≥ 9032 + 44670t+ 34866t2 − 23127t− 30479t2 − 3150t

+4289t6 + 678t7 + 85t8

= 9032 + 18393t+ 4387t2 + 4289t6 + 678t7 + 85t8 > 0, t ∈ [0, 1].

Consequently, the inequality (2.45), so (2.44) and further (2.43) hold
which implies that so are (2.41) and (2.40).

Summarizing, taking into account (2.35), (2.36), (2.37), (2.39) and
(2.40) we have proved that

max
(x,y)∈R

Fγ(x, y) =


1

12
|2 + γ|+ 2

3
|γ|, |γ| ≥ 4/3,

1

12
· (|γ| − 4)2

2− |γ|
+

1

12
|2 + γ|, |γ| ≤ 4/3.

Finally, recalling that γ = 2−3λ, the above yields the inequality (2.5).
Now we prove that for λ ∈ R\ (2/3, 4/3) the bounds (2.5) are sharp.
Let λ ∈ [2/9, 2/3]. Since

1

12
· (|γ| − 4)2

2− |γ|
+

1

12
|2 + γ|
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=
1

12
· (2− 3λ)2

2− |2− 3λ|
+

∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3

=
1

12
· (2− 3λ)2

3λ
+ 1− 1

4
λ =

2

3
+

1

9λ
,

the inequality in (2.5) can be written as

(2.46) max
f∈C(h)

Φλ(f) ≤
2

3
+

1

9λ
, λ ∈ [2/9, 2/3].

Let tλ := 1/(3λ)− 1/2. Then tλ ∈ [0, 1] and, in view of (2.4), ptλ,0 ∈ P
with c1 = 2tλ and c2 = 2. Setting δ := 0 and p := ptλ,0 into (2.8), we
get the function fλ given by the equation (2.6) for which, in view of
(2.10),

a2 = tλ +
1

2
=

1

3λ
and

a3 =
1

3
(3 + 2tλ) =

2

3
+

2

9λ
.

Hence

Φλ (fλ) =

∣∣∣∣∣23 +
2

9λ
− λ

(
1

3λ

)2
∣∣∣∣∣ = 2

3
+

1

9λ
,

which makes equality in (2.46), so in (2.5). Clearly, fλ ∈ C(h) because
(2.8) is satisfied for δ = 0. So fλ ∈ C0(h).

Let λ ∈ (−∞, 2/9] ∪ [4/3,+∞). Since∣∣∣∣13 − 1

4
λ

∣∣∣∣+ 2

3
|2− 3λ| =

∣∣∣∣53 − 9

4
λ

∣∣∣∣ ,
the first inequality in (2.5) can be written as

(2.47) max
f∈C(h)

Φλ(f) ≤
∣∣∣∣53 − 9

4
λ

∣∣∣∣ , λ ∈ (−∞, 2/9] ∪ [4/3,+∞).

Set δ := 0 and p := L into (2.8). Then f = f2/9, where f2/9 is given
by (2.6), i.e., it is of the form (2.7), with, by (2.10), a2 = 3/2 and
a3 = 5/3. Since Φλ

(
f2/9

)
= |5/3 − 9λ/4|, it makes equality in (2.47),

so in (2.5). Clearly, f2/9 ∈ C0(h).
The sharp bound of Φλ for λ ∈ (2/3, 4/3) remains an open question.

�
Remark 2.3. In the first version of this manuscript submitted to
the journal, the authors applied Laguerre’s rule of counting zeros of
polynomials in an interval to prove that Q1(v) > 0 and Q2(v) ≤ 0 in
[0, u1]. However, the computation presented in the proof of the above
theorem to show required inequalities for Q1 and Q2, without using
Laguerre theorem, was proposed and done himself by one of the referees
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of this paper. We would like to express gratitude to him and to the
other referees for their constructive comments and suggestions that
helped to improve the clarity of this manuscript.

Remark 2.4. Observe that we can rewrite Theorem 2.2 as

max
f∈C(h)

Φλ(f) =

{
|5/3− 9λ/4| , λ ∈ (−∞, 2/9] ∪ [4/3,+∞),

2/3 + 1/(9λ), λ ∈ [2/9, 2/3],

and

max
f∈C(h)

Φλ(f) ≤


9λ2 − 30λ+ 26

6(4− 3λ)
, λ ∈ (2/3, 10/9],

−1 + 7λ/4, λ ∈ [10/9, 4/3).
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9. M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen,
J. London Math. Soc. 8(1933), 85–89.

10. B. Friedman, Two theorems on schlicht functions, Duke Math. J. 13(1946),
171–177.

11. A. W. Goodman and E. B. Saff, On the definition of a close-to-convex function,
Int. J. Math. and Math. Sci. 1(1978), 125–132.

12. Z. J. Jakubowski, Sur le maximum de la fonctionnelle |A3 − αA2
2|(0 ≤ α < 1)

dans la famille de fonctions FM , Bull. Soc. Sci. Lettres Lódź 13(1962), no. 1,
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with respect to the Koebe function, Submitted.

20. A. Lecko, Some subclasses of close-to-convex functions, Ann. Polon. Math.
LVIII(1993), no. 1, 53–64.

21. A. Lecko, On Differential Subordinations and Inclusion Relation Between
Classes of Analytic Functions, Complex Variables 40(2000), 371–385.
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