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Abstract A connected graph G is said to be factor-critical if G — v has a perfect
matching for every vertex v of G. Lovdsz proved that every factor-critical graph has an
ear decomposition. In this paper, the ear decomposition of the factor-critical graphs G
satisfying that G — v has a unique perfect matching for any vertex v of G with degree at
least 3 is characterized. From this, the number of maximum matchings of factor-critical
graphs with the special ear decomposition is obtained.
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1 Introduction and terminology

First, we give some notation and definitions. For details, see [1] and [2]. Let G be
a simple graph. An edge subset M C E(G) is a matching of G if no two edges in M
are incident with a common vertex. A matching M of G is a perfect matching if every
vertex of GG is incident with an edge in M. A matching M of G is a maximum matching
if |M'| < |M]| for any matching M’ of G. Let v be a vertex of G. The degree of v in G is
denoted by dg(v) and §(G) =min{dg(v) | v € V(G)}. Let P = ujus - - - uy be a path and
1 <s<t<k Then ususy---uy is said to be a subpath of P, denoted by P(ug,u;). Let
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P =wuy---u, and Q = ugtigyq - - - ugys be two paths of G such that V(P) NV (Q) = {u}.
The path uy -+ Uptipy - - - Upts 1S denoted by uy PupQuyy,. Denote ugtg_q -+ -u; by P71

Let P = uwv; ---viv be a path or a cycle ( in this case, u = v) of G. We say that P is
odd if k is even ( i.e., P has an odd number of edges), otherwise, P is even. P is said to
be pending if dg(u) > 3, dg(v) > 3, and either P has no interior vertices ( i.e., P = uv)
or each of its interior vertices has degree 2 ( i.e., dg(v;) = 2 for 1 <i < k). We say that
a path ( cycle) is even pending if it is both even and pending and a path ( cycle) is odd
pending if it is both odd and pending. Let P be a pending path or cycle of G. Denote
the subgraph of G obtained from G by either deleting the edge if P has only one edge or
deleting all interior vertices of P by G — P.

We say that a connected graph G is factor-critical if G — v has a perfect matching for
every vertex v € V(G). Let G be a factor-critical graph. Then G has the odd number of
vertices, has no cut edges and all pending cycles of G are odd.

The problem of finding the number of maximum matchings of a graph plays an im-
portant role in graph theory and combinatorial optimization since it has a wide range of
applications. For example, in the chemical context, the number of perfect matchings of
graphs is referred to as Kekulé structure count [3]. In physical field, the Dimer problem is
essentially equal to the number of perfect matchings of a graph [4]. The number of perfect
matchings is an important topological index which had been applied for estimation of the
resonant energy, total m-electron energy and calculation of Pauling bond order [5] and [6].
But the enumeration problem for perfect matchings in general graphs ( even in bipartite
graphs) is NP-complete [2]. Hence, it makes sense that the enumeration problem for
maximum matchings is a difficult one. In this paper, we study the number of maximum
matchings in factor-critical graphs. The reasons to be interested in factor-critical graphs
are following.

According to Gallai-Edmonds’ Decomposition Theorem, any graph can be con-
structed by three types of graphs which are graphs with a perfect matching, bipartite
graphs and factor-critical graphs. So the factor-critical graphs in Matching Theory are
important.

In the following, we introduce the ear decomposition of factor-critical graphs.

Let G be a graph and G’ a subgraph of G. An ear of G relative to G’ is either an odd



path or an odd cycle of G and having both ends ( two ends are the same in the case that
the ear is a cycle)—but no interior vertices—in G’. An ear is said to be open if it is a path,
otherwise, closed. An ear decomposition of G starting with G’ is a representation of G in
the form: G = G'+ P, +- - -+ Py, where P; is an ear of G relative to G;_;, where Gq = G,
Gi1=G 4+ P +---+P_qfor 1 <i<k(seeFigure 1).

Figure 1. An ear decomposition of a graph G with three ears.

Proposition 1.1. [2] Let G be a connected graph. Then G is factor-critical if and only
if G has an ear decomposition G = C + Py + - - - + Py, starting with an odd cycle C', where
k=[E(G)| - [V(G)|.

Let G = C+ P+ - -+ P, be an ear decomposition of a factor-critical graph G starting
with an odd cycle C'. Then by Proposition 1.1, G; is also a factor-critical graph for any
0<i<k-—1,where Go=Cand G; =C+ P, +---+ P,. If some ear P; is pending, then
G=C+P+--+P_1+ P+ -+ P+ P, is also an ear decomposition of G and
G-P=C+P+--+P_1+ P11+ -+ P is an ear decomposition of G — P;. Then by
Proposition 1.1, G — P; is also a factor-critical graph. Let S¢ = {w € V(G)|dg(w) > 3}.
Then x € Sg if and only if z is an end of some ear P;. We say a subgraph G’ of a graph
G is nice if either G — V(G') = 0 or G — V(G’') has a perfect matching. Then C' and
G;=C+ P, + ---+ P, are nice subgraphs of G for 1 <i <k — 1.

Let @ be a path of G, wy and wy the end vertices of ). @ is said to be a quasi-even-

pending path if wy,ws € S¢, and either @ is even pending or Q(w;,w,) is even for any
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two vertices w;, w; € Sg N V(Q) such that the subpath @Q(w;,w;) is pending, that is, Q)
can be written as Q) = w1 Qi1w2Q2 - - - ws_1Qs_1ws, where w; € S for 1 < ¢ < s and Q; is
an even pending path of G joining w; and w;4; for 1 < j < s—1 ( see Figure 2). Further,
let Q; = wjujiujo - ujor,—1ywjiy1 for 1 < j < s —1. Then we say that uji_1) is an odd

vertex of () for 1 <1 < k;.
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Figure 2. A quasi-even-pending path Q = wjujwevwsz1 2023wy, Where uq, vy, 21, 23 are

odd vertices of Q).

Let G be a graph and H a subgraph of G. Then a quasi-even-pending path @) of H
is also quasi-even-pending path of G if any odd vertex of @) has degree 2 in G ( i.e., the
degrees of all odd vertices are unchanged in GG). Conversely, a quasi-even-pending path
Q@ of G is also quasi-even-pending path of H if () is a path of H and two ends of () have
degree at least 3 in H. Then according to the definitions of quasi-even-pending paths and

ears, it is easy to obtain the following.

Proposition 1.2. Let H be a subgraph of a graph G, P an ear of G relative to H and
G = H+ P. Then @y is also a quasi-even-pending path of H for any quasi-even-pending
path Q1 of G such that two ends of Q1 are in Sy and Q3 is also a quasi-even-pending path
of G for any quasi-even-pending path Qs of H such that no ends of P are odd vertices of

Q2.



Let Q = 2QwyQs - - - ws_1Qs_1y be a quasi-even-pending paths of GG, where Q); is an
even pending path of G for 1 <i < s—1. Let S = {wsq,- -+ ,ws_1}. Then |S| = s—2 and
Q@ —z—1y— S has s —1 odd components which are also components of G —x —y — 5.
Hence G — x — y has no perfect matchings. For any S; C Sg, G —x —y — S; — S has at
least s — 1 odd components. Hence G — x —y — S; has no perfect matchings. So we have

the following.

Proposition 1.3. Let G be a factor-critical graph and Q) a quasi-even-pending path of G
joiming x and y. Then G —x —y and G — x —y — S1 have no perfect matchings, where
S1 C Sq.

Let Q = 2QuweQs - ws_1Qs_1y and Q' = xQ| 20, - z_1Q) 1y be two interior
disjoint quasi-even-pending paths of G joining z and y, where @; and Q' are an even
pending path of G, respectively, for 2 < i < s—1and 2 < 5 < t—1. Let 5 =
{wg, -+ jws_1}, So = {z2,-+ ,2z.1} and § = S; U Sy U{y}. Then |S| = s+t — 3 and
G —x — S has at least s+t — 2 odd components. Hence G — = has no perfect matchings.

So we have the following.

Proposition 1.4. Let G be a factor-critical graph and Sg defined as above. Then for any
two vertices x,y € Sg, there exists at most one quasi-even-pending path of G joining x

and y.

Proof Suppose, to the contrary, that P and @) are two quasi-even-pending paths of
G joining = and y. Clearly, we can find two vertices z; and y; in Sg NV (P) NV (Q)
such that the subpath P(x1,;) of P and the subpath Q(z1,y;) of @ are interior-disjoint.

Then G — x1 has no perfect matchings, which contradicts with that G is factor-critical.

Proposition 1.5. Let G be a factor-critical graph, P an odd pending path of G, Q) a
quasi-even-pending path of G, and P and () share the same end vertices. Then P U Q is

a nice cycle of G.

Proof Let P = xu, - - - ugpy be an odd pending path of G and Q) = xQ122Q2 - - - 2101y
be a quasi-even-pending path of G, where (); is an even pending path of G for 1 <17 < t—1.
Then Q — = has a perfect matching, say M;, and P and @) are interior disjoint. Hence



PUQ = xPyQ 'z is an odd cycle of G, say C. Since G is factor-critical, G — x has
a perfect matching. Let My = {ujus, usuy, - -, ugg_q1uok}. Then My U M; C M for any
perfect matching M of G — x. Hence M — My — M, is a perfect matching of G — V(C).
So, C'is a nice cycle of G.

Pulleyblank proved [2] that a 2-connected factor-critical graph G has at least |E(G)]
maximum matchings. Liu and Hao proved [7] that G has exactly |F(G)| maximum match-
ings if and only if G has an ear decomposition G = C' + P, + - - - + P, such that two ends
of P; are joined in G;_; by a pending path of length 2 of GG, and if G has a such ear
decomposition, then G — w has a unique perfect matching for any w € Sg. But it is not
vice versa. In this paper, we study the ear decomposition of the factor-critical graph G
with the property that G — w has a unique perfect matching for any w € S5 and from
this, the enumeration problem for maximum matchings of factor-critical graphs with the

special ear decomposition is solved.

2 Results and proofs

For convenience, we say that an ear decomposition G = C' + P, + --- + P, starting
from an odd cycle C of a factor-critical graph G has Property A if for any open ear P,
two ends of P; are joined by a path @; of GG;_; which is a quasi-even-pending path of G.

Then we have the following.

Proposition 2.1. Let G = C+ P, +---+ P be an ear decomposition of a factor-critical
graph G having Property A. Then Gy_1 =C + P, + -+ + Py_1 has also Property A.

Proof Then G = Gy_1 + P,. Since G = C + P, + --- + P, has Property A, we can
assume that @); is a path of G;_; joining two ends of P; which is a quasi-even-pending path
of G for any open ear P;, where 1 < i < k—1. Since (G;_; is factor-critical, two ends of );
have degree at least 2 in GG;_;. Then the ends of (); have degree at least 3 in GG;. So, by
Proposition 1.2, ); is also quasi-even-pending of G;_;. Then G,y =C+ P +-- -+ Py
also has Property A.

By the similar reasons as above, we have the following.



Proposition 2.2. Let G =C+ P, + - -+ P, be an ear decomposition of a factor-critical
graph G having Property A and P; be pending. Then G =C+ P +--- P, 1+ P 1+ -+
Po1+P+P,andG—FP,=C+P+---P_1+ P+ + P11+ Py also have Property
A.

We say that a factor-critical graph has Property A if there exists an ear decomposition
of G having Property A. We say that a factor-critical graph G has Property B if G — v

has a unique perfect matching for any v € S ( see Figure 3).

O

Figure 3. A factor-critical graph G with Property B.

Theorem 1. Let G be a factor-critical graph and the ear decomposition G = C + P, +
-+« + P, of G have Property A. Then G has Property B.

Proof. Then for 1 < i < k-1, G; = C+ P, + --- + P, has also Property A by
Proposition 2.2. We prove the statement by induction on k. When k =0, G = C. When
k=1,G=CH+ P,. Clearly, C' and C'+ P; have Property B. Suppose that £k = m > 2 and
it holds for £ < m. Let u € Sg. Now we prove that G — u has a unique perfect matching.

We distinguish the following cases.



Case 1 dg,_,(u) > 3.
Let P, = zuy---ugy. Then Gy = G —{uy, - ,uy}. In the case that P has only
one edge ( i.e., P, = xy), Gx—1 = G — zy. Then Gj_; is factor-critical and Gy_; =
C+ P, + -+ P,_1 has Property A by Proposition 2.1. So, by the induction hypothesis,
G1_1 — u has a unique perfect matching.

Case 1.1 P, is open.
Let m; be the number of perfect matchings of G — u containing {ug;_jug;|l < j < [}
and mgy the one of G — u containing {xuy, yuy} U {ugjusj1|1 < j <1 —1}. Since Py is
pending, G — u has exactly my + my perfect matchings. Clearly, the number of perfect
matchings of Gy_1 — v and Gy_1 — {u, z,y} are m; and my, respectively. Then m; = 1.
Since G has Property A, there exists a quasi-even-pending path of G joining x and y. By
Proposition 1.3, Gx_1 — {x,y, u} has no perfect matchings. Then my = 0. It follows that
G — u has a unique perfect matching.

Case 1.2 P, is closed.
In this case, x = y. Clearly, every perfect matching of G' — u contains all edges ugj_1ug;
for 1 < j <. Then the number of perfect matchings of G — u is equal to one of Gj_1 — u.
It follows that G — u has a unique perfect matching.

Case 2 dg,_,(u) =2.
Then w is an end of Py ( see the vertex u in Figure 3). Without loss of generality, u = z,
where x and y are two ends of Pj. In the following, we prove that G — = has a unique
perfect matching. We can assume that all other ears P; are not pending, 1 <i < k — 1.
Otherwise, suppose that some P; is pending, where i < k — 1. Then u ¢ V(F;). Hence
x has degree at least 3in G - P, =C+P,+---P1+ P41+ -+ Py + P.. By
Proposition 2.2, G can be rewritten as G =C+P+--- P, 1+ P11+ -+ P 1+ P+ P,
which also has Property A . Then it belongs to Case 1. So, we only consider the case
that Py is a unique pending ear. Then some end of P, must be an interior vertex of P;_;.
Now we distinguish the following cases.

Case 2.1 zx and y are not on the same pending path or pending cycle of Gy_;.
Then Py is open. Since G has property A, x and y are joined in Gj_; by a quasi-even-
pending path @ of G. Let Q1 = zx;--- 2951wy be the pending subpath of @) starting

from z to the second vertex w; of degree at least 3 ( where, z is the first vertex of degree



at least 3) on Q. Then wy # y. So dg, ,(w1) = dg(wy) > 3. It is easy to prove that
the number of perfect matchings of G — x is equal to the number of perfect matchings of
G_1 —wy since Py is odd pending and @), is even pending. By the induction hypothesis,
G_1 — wy has a unique perfect matching. It follows that G — x has a unique perfect
matching.
Case 2.2 z and y are vertices of a pending path or pending cycle of Gj_;.

It follows that =,y € V(FP,_1) and z is an interior vertex of Py_; since dg,_,(u) = 2.
Let P,_; = wuv; - --vgz. Then we can assume that x = v;, where 1 < 7 < 2¢. First, we
consider the case that Py is closed. Then x = y. It is easy to prove that the number of
perfect matchings of G — z is equal to the number of perfect matchings of Gy_; — x, and
the number of perfect matchings of GG;,_; —z is equal to the number of perfect matchings of
G}_1—z if 7 is odd, otherwise, the number of perfect matchings of Gj,_; —x is equal to the
number of perfect matchings of Gy_; —w. By the induction hypothesis, both G;_; —w and
G_1 — z have a unique perfect matching, respectively. Then G — x has a unique perfect
matching. Thus we can assume that P is open. Without loss of generality, suppose that y
is on the subpath of P;_; from z to z. Since G has Property A, x and y are joined in G_
by a quasi-even-pending path @ of G. Hence either P,_(z,y) = Q or (Py_1(w,z))"! and
Pi_1(y, z) are two subpaths of Q. If P,_i(x,y) = @, then either P,_;(w,z) or Py_1(y, z)
is even since Py is odd. If (P,_(w,z))™" and P,_;(y,2) are two subpaths of @, then
both Py_1(w, z) and P,_4(y, z) are even since () is a quasi-even-pending path of G. Hence
Py_1(w,z) or Py_1(y, 2z) is even in any case. First, suppose that P,_;(w,x) is even. Then
the number of perfect matchings of G — z is equal to the number of perfect matchings
of Gj_1 — w. By the induction hypothesis, G),_; — w has a unique perfect matching. It
follows that G — x has a unique perfect matching. Suppose that P,_;(w,x) is odd and
Pi_1(y, z) is even. Then Py_1(z,y) is even since P;_; is odd. It follows that the number
of perfect matchings of G — x is equal to the number of perfect matchings of G,_; — 2. By
the induction hypothesis, Gy_; — z has a unique perfect matching. It follows that G — =

has a unique perfect matching. The proof is completed. [ |

Lemma 2.1. Let G be a factor-critical graph and G = C' + Py + --- + Py, have Property
A. Then G — u has at least two perfect matchings for any quasi-even-pending path Q of
G and any odd vertex u of Q).



Proof. It suffices to prove that G — u has at least two perfect matchings for any even
pending path @ of G and any odd vertex u of (). We prove the lemma by induction on
k=|E(G)| —|V(G)|. When k =0, G is an odd cycle, say C. When k=1, G =C+ P,.
Clearly, the statement is true. Suppose that £ = m > 2 and the statement is true for
E<m-—1. Since G=C+ P, +---+ P, has Property A, G, 1 =C+ P, +---+ P, has
Property A by Proposition 2.1. Let P, = xuy - - - ugyy and My = {ujug, usuy, - -+, ugy_1ug; )
Then z,y € S¢, Se¢ — {z,y} C Sg,_, € S¢ and dg(u;) = 2 for 1 < i < 2[. Let () be an
even pending path of G and u an odd vertex of Q. Then dg(u) = 2 and two ends of @
are in Sg. If u is an odd vertex of an even pending path of Gj_1, then by the induction
hypothesis, G;_1 — u has at least two perfect matchings, say M; and M,. Then M; U M,
and M, U M, are two perfect matchings of G — u. So we can assume that u is not odd
vertex of any even pending path of G;_;. Since Py is odd pending and () is even pending,
@ is a path of Gy_;. It follows that dg, ,(u) = 2 and there exists at least one end of @
not in Sg, ,. Then x or y is an end of ). Without loss of generality, suppose that x is
an end of (). Then dg, ,(x) = 2. Since k > 2, G, is not a cycle. Then u is an interior
vertex of a pending path or pending cycle of GG;_;. Since G has Property A, there exists
a path P of Gj_; joining z and y which is a quasi-even-pending path of G.

Claim () is a subpath of P.
We distinguish two cases to prove the claim.

Case 1 wu is an interior vertex of a pending cycle of G_1, say C’.
Then C' is odd and @ is a part of C". Let Sg, , NV(C") = {w}. If two ends of @ are
interior vertices of C’, then it follows that two ends of () are x and y since two ends of
Q@ are in Sg. Then by Proposition 1.4, ) = P. So we can assume that w is the other
end of Q. Let P* = C'" — V(Q). Then P* is odd since C” is odd and @ is even. Hence
P*NV(P)=0. It follows that @ is a subpath of P.

Case 2 u is an interior vertex of a pending path of G_1, say P’.
Let w and z be two ends of P’. Then w, z € Sg,_, and @ is a subpath of P". If two ends
of ) are interior vertices of P’, then we can deduce that ) = P by the similar method
as above. So we can assume that ) and P’ share a common end, say w. Then P’ is odd.
( Otherwise, u is an odd vertices of P’ since u is odd vertex of @), a contradiction.) It

follows that () is a subpath of P.
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By Proposition 1.5, P, U P is a nice cycle of G. Then G — V(P U P) has a perfect
matching, say M’. Since u is odd vertex of @, u is odd vertex of P by Claim. Let M be
the perfect matching of P, U P —u. Then M contains {zuy, usug, - - , ug_oloy_1, ugy}. It
follows that M U M’ is a perfect matching of G —u. Since Gj_; is factor-critical, G_; —u
has a perfect matching, say M;. Then M; U M, is a perfect matching of G — u. Hence

G — u has at least two perfect matchings. |

Lemma 2.2. Let G be a factor-critical graph having Property A. Then there exists a

unique quasi-even-pending path of G joining u and v for any two vertices u,v € Sg.

Proof. By Proposition 1.4, it suffices to prove that there exists a quasi-even-pending
path of GG joining v and v for any two vertices u,v € Sg. Let G = C+ P, + --- 4+ Py
be an ear decomposition of G having Property A. We prove the lemma by induction on
k. When £ <1, G = C or G = C' + P,. Clearly, the statement is true. Suppose that
k =m > 2 and the statement is true for £ < m —1. Let P, = zuy - - - ugy, H = Gj_1 and
Sy ={w € V(H)|dg(w) > 3}. Then x,y € Sg and Sg — {z,y} C Sy C Sg. According
to Property A, there exists a path ) of H joining  and y which is a quasi-even-pending
path of G. Let @ = xQ122Q2 - - - z,_1Q;_1y be a quasi-even-pending path of G, where Q);
is an even pending path of G for 1 <7 <t — 1. Let u,v € Sg. Then we can assume that
{u,v} # {x,y}. Then {u,v} N Sy # (). By Proposition 2.1, H=C+ P, + -+ P, has
Property A. We distinguish the following cases.

Case 1 u,v € Sy.
By the induction hypothesis, there exists a quasi-even-pending path P of H joining u and
v. Since G has Property A, GG has Property B. Hence G — x and G — y have a unique
perfect matching, respectively. Then by Lemma 2.1, x and y are not odd vertices of P.
By Proposition 1.2, P is also a quasi-even-pending path of G.

Case 2 Either u ¢ Sy and v € Sy or v & Sy and u € Sy.
Without loss of generality, suppose that © € Sy and v € Sy. Since H is factor-critical,
dy(u) = 2. It follows that u is an end of P,. Without loss of generality, suppose that
u = x. Then v # y. In the following, we prove that there exists a quasi-even-pending
path of G joining z and v. If v is on @, then Q(x,v) is a quasi-even-pending path of G
joining x and v. Suppose that v ¢ V(Q).

11



Case 2.1 V(Q)N Sy # 0.
Then 2o € Sy and 2z, = y if @ is pending. By the induction hypothesis, there exists a
quasi-even-pending path P of H joining z, and v. If  is a vertex of P, then Q7" is the
subpath of P since dy(x) = 2. Then P(z,v) is a quasi-even-pending path of G joining
x and v. Suppose that @ & V(P). Then V(Q1) N V(P) = {22}. Hence 2Q12:Pv is a
quasi-even-pending path of G joining x and v.

Case 2.2 V(Q)N Sy = 0.
Then @ is a pending path of G and dy(z) = dy(y) = 2. Since k > 2, H is not a cycle.
Then there exists a pending path or a pending cycle of H containing ().

Case 2.2.1 (] is a pending cycle of H containing Q).
Since H is factor-critical, C} is odd. Let V(C;) N Sy = {w}. Then z,y,w partite C}
into three paths, say Cy(w,z), Ci(x,y) and C;(y,w), where Ci(x,y) = Q. Then either
Ci(w,z) or Cy(y,w) is even. Without loss of generality, suppose that Cy(w,x) is even.
By the induction hypothesis, there exists a quasi-even-pending path P of H joining w and
v(in the case that w = v, P is a vertex). Then xC}(w,z) 'wPv is a quasi-even-pending
path of GG joining x and v.

Case 2.2.2 P’ is a pending path of H containing Q).

Let V(P') NSy = {w,z}. Then xz,y partite P’ into three paths, one of which is
Q. Suppose that other two paths are P'(w,z) and P'(y, z), respectively. By Lemma 2.1,
P'(w,x) is even or P'(y, z) is even.(Otherwise, P’ is even. Then P’ is a quasi-even-pending
path of H and x is an odd vertex of P’. Then H — x has at least two perfect matchings by
Lemma 2.1. Hence GG — x has at least two perfect matchings, which contradicts with that
G has Property B.) Suppose that P'(w,x) is even. By the induction hypothesis, there
exists a quasi-even-pending path of H joining w and v(in the case that w = v, the path
is a vertex). Then we can find a quasi-even-pending path of G joining x and v by the
similar method as one in Case 2.1. Similarly, if P'(y, z) is even, then we can also find a

quasi-even-pending path of G joining x and v. |
Theorem 2. Let G be a factor-critical graph with Property B. Then G has Property A.

Proof. Since G is factor-critical, G has an ear decomposition G = C + P, + --- + F.
We prove the theorem by induction on k = |E(G)| — |[V(G)|. When k = 0, G = C.
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When k£ = 1, G = C' 4+ P,. Clearly, the statement is true. Suppose that &k = m > 2
and the statement is true for £ < m — 1. Let P, = zuy---uyy. Then x,y € Sg and
dg(u;) = 2 for 1 < i < 2[. Since G has Property B, G,_; has Property B. ( Otherwise,
suppose v € Sg,_, such that Gj_; — v has two perfect matchings, say M; and M,. Then
v € Sa, My U {ujug, uguy - - - ug_qug } and My U {ujug, usuy - - - ug_jusg } are two perfect
matchings of G — v, a contradiction.) Then by the induction hypothesis, there exists an
ear decomposition Gy_1 = C' + Q1 + - - - + Qr_1 having Property A. Then by Lemma 2.1,
G_1 — u has at least two perfect matchings for any odd vertex u of a quasi-even-pending
path of Gy_1. It follows that x and y are not odd vertices of a quasi-even-pending path
of Gi_1 since G — x and G — y have a unique perfect matching, respectively. Then any
quasi-even-pending path of G_; is also quasi-even-pending path of G by Proposition 1.2.
In the following, we prove that G = C" + Q1 + -+ - + Qx_1 + Py is an ear decomposition
of G having Property A. If P, is closed, then G = C'"+ Q1+ --- + Qr_1 + P, is an ear
decomposition of G having Property A. We can assume that Py is open ( i.e., x # y).
Then it suffices to prove that there exists a quasi-even-pending path of GG joining x and
y. We distinguish the following cases.

Case 1l =z,y¢€ Sq, ,-
Since Gj_1 = C"+ Q1+ - -+ Qp_1 has Property A, there exists a quasi-even-pending path
Q@ of Gi_1 joining x and y by Lemma 2.2. Clearly, @) is a quasi-even-pending path of G.

Case 2 dg, ,(x)=2andye€ Sg, , ordg,_,(y) =2 and z € Sg,_,.
Without loss of generality, suppose that dg, () =2 and y € S, ,. Then x is a vertex
of a pending path or a pending cycle of Gy_1.

Case 2.1 «z is a vertex of an even pending path P of G_;.
Then z is not odd vertex of P. Let w,z be two ends of P. Then w,z € Sg,_,, both
P(w,x) and P(x,z) are even. By Lemma 2.2, there exists a quasi-even-pending path of
G_1 joining w and y. Then we can find a quasi-even-pending path of G joining x and y.

Case 2.2 1z is a vertex of an odd pending path P of Gy_;.
Let w, z be two ends of P. Then P is interior disjoint with any quasi-even-pending path
of Gi_1, and either P(w,x) is even or P(z, z) is even. Without loss of generality, suppose
that P(w,x) is even. Since Gj_; has Property A and w,y € Sg,_,, there exists a quasi-

even-pending path Q of G_; joining w and y by Lemma 2.2. Then 2P~ (w, z)wQy is a
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quasi-even-pending path of G.

Case 2.3 1z is a vertex of a pending cycle C of Gj_;.
Let V(C1) N Sg,_, = {w}. Since Gjy_ is factor-critical, Cy is odd. Then Cy; —w — =z
consists of two paths one of which is even and the other is odd, say the odd one is P.
Let P = C; — V(P). Then P’ is an even pending path of G joining x and w. By the
similar reasons, there exists a quasi-even-pending path () of Gj_ joining w and y. Then
xP'wQy is a quasi-even-pending path of G.

Case 3 dg,_,(r) =2 and dg, ,(y) = 2.
Then z and y are an interior vertex of a pending path or a pending cycle of Gy_q,
respectively.

Case 3.1 z and y are vertices of a pending cycle C; of Gy_1.
Let V(Cy) N Sg,_, = {w}. Then w, z and y partite Cy into three paths, say Ci(w,z),
Ci(x,y), and Cy(y,w). If Ci(x,y) is even, then Cy(x,y) is a quasi-even-pending path of
G. We can assume that Cy(z,y) is odd. Then either C;(w,z) and C;(y,w) are odd or
Ci(w,x) and C}(y,w) are even. Since G has Property B, G — w has a unique perfect
matching. Then C(w,z) and Ci(y,w) are even. (Otherwise, we can find two perfect
matchings in the subgraph C; + P, — w. Clearly, C; + Py is a nice subgraph of G. Then
G — w has at least two perfect matchings, a contradiction.) So, zCy(w,x) 'wC(y,w) 'y
is a quasi-even-pending path of G.

Case 3.2 z and y are vertices of an odd pending path P of Gy_;.
Let w, z be two ends of P. Since GG_; has Property A, there exists a quasi-even-pending
path @ of G;_; joining w and z by Lemma 2.2. Then P U () is a nice subgraph of Gy_;
by Proposition 1.5. Hence P U Q + Py is a nice subgraph of G. Clearly, x and y partite
P into three paths, say P(w,x), P(z,y) and P(y,z). If P(x,y) is even, then P(z,y) is a
quasi-even-pending path of G. So, suppose that P(x,y) is odd. Then either P(w,z) and
P(y, z) are odd or P(w,x) and P(y, z) are even. Since G has Property B, G — w has a
unique perfect matching. Then P(w,z) and P(y, z) are even. ( Otherwise, we can find
two perfect matchings in the subgraph PUQ + P, —w. Then G—w has at least two perfect
matchings, a contradiction.) So, zP(w,z) *wQzP(y,z) 'y is a quasi-even-pending path
of G.

Case 3.3 = and y are vertices of an even pending path P of Gj_;.
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Let w, z be two ends of P. Clearly,  and y partite P into three paths, say P(w,z),
P(z,y) and P(y, z). Since G has Property B, P(z,y) is even. ( Otherwise, suppose that
P(z,y) is odd. Then either P(w,z) is even or P(y, z) is even. Without loss of generality,
suppose that P(w,z) is even and P(y, z) is odd. It is easy to check that P + P is a nice
subgraph of G and P + P, — z has two perfect matchings. Then G — z has at least two
perfect matchings, a contradiction.) Then P(z,y) is a quasi-even-pending path of G.
Case 3.4 x and y are on the different pending paths or cycles of G_;.

Let P and P’ be two pending paths or cycles of (G,_; containing = and y, respectively,
wy, z1 be two ends of P and wy, 25 be two ends of P’ (in the case that P and P’ are cycles,
w; = 21 and we = 29). Since x and y are not odd vertices of a quasi-even-pending path
of G_1, P(wy,x) is even or P(x, z1) is even, and P’'(ws,y) or P'(y, z2) is even. Without
loss of generality, suppose that P(wq,x) and P’'(wse,y) are even. Since G_; has Property
A, there exists a quasi-even-pending path @) of Gj_; joining w; and ws by Lemma 2.2.
Then by the similar method, we can find a quasi-even-pending path of G joining x and y
in PUP' UQ. [

By Theorem 1 and Theorem 2, we have the following.

Theorem 3. Let G be a factor-critical graph G. Then G has Property A if and only if
Property B.

Now we study the number of maximum matchings of a factor-critical graph having

Property A. The following lemma is useful.

Lemma 2.3. Let G be a factor-critical graph and G = C+ P, +-- -+ Py, an ear decompo-
sition having Property A. Then for any open ear P;, G — x — y has ezactly %J mazimum
matchings, where x and y are the ends of P; and l; is the length of the quasi-even-pending

path Q; of G joining v and y in Gj_1, where Gj_1 = C + P, +--- + P;_;.

Proof. Since G is factor-critical, a maximum matching of G — x — y covers all but one
vertex. Since @); is a quasi-even-pending path of G, the vertex uncovered by M must
be on @); and all other vertices on (); are matched with vertices on @); by M for any
maximum matching M of G — x — y, that is, every maximum matching of G — xz — y

consists of a maximum matching of ); — {z,y} and a perfect matching of G — V(Q);).
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We can assume that Q; = xu; - - - Ugk, —1W1 Uk, - * * Uk 42ky—2W2 * * * Ws—1Upt1 * * * Unt 2k —1Y,
where n = (2k; — 1)+ (2ko — 1) + - - + (2kso1 — 1), [; = 2ky + - - - + 2k, d(w;) > 3 and
dc(uj) = 2 for all w; and u; on ). By Theorem 1, G — x has a unique perfect matching,
say My. Then {ujug,- -, gk, —1W1, Uog, Uk, +1, "+ s Untok.—1Y ) C My. It follows that
G — V(Q;) has a unique perfect matching. So, the number of maximum matchings of
G — z — y equals to that of Q; — {z,y}. It is easy to check that Q); — {z, y} has exactly
L L

- maximum matchings. So, G — z — y has precisely 3 maximum matchings. The proof

is completed. [ |

Theorem 4. Let G be a factor-critical graph and the ear decomposition G = C + P, +
. l 1 .

--+ + Py have Property A. Then G has precisely |[E(G)| + F + --- + % — k mazimum

matchings, where l; is the length of the quasi-even-pending path Q; of G joining two ends

of P, in G;_1 and l; = 0 in the case that P; is closed for 1 <1 < k.

Proof. By induction on k. When k& = 0, G = C. Then G has exactly |F(G)| maximum
matchings. Suppose that it holds for £ < m and consider the case for kK = m > 1. Let
Py =zuy - ugqy, Qr = 2vy - v, 1y and Gy = C + P, + - - - + P,_;. By the induction
hypothesis, G_ has exactly |E(Gy_1)|+ 2 +---+ l’“T‘l — k+ 1 maximum matchings. Let
M = {M|M is a maximum matching of G},
M ={M € M{urug, - ,uy_uy C M},
M* ={M € M|zuy, uny, ugugi € M, 1 <1 <1 —1},

M; ={M € M|M misses u;}, for 1 <1i < 2l.

Then (M', M*, My, -+, My) is a partition of M. Clearly, |M'| = |E(G_1)|+ L+ -+
l’“T* —k+1. By Lemma 2.3, G—x—y has %" maximum matchings. Simple checks show that
|IM*| = %“ By Theorem 1, G—x and G—y have a unique perfect matching, respectively. It
follows that [M;| = 1 for 1 <i < 2[. Thus |M| = |E(Gj_1)|+ 5+ -+ 5521 —k+ 1420+ % =
|E(G)|+ 4% + -+ % — k. The proof is completed. [

According to Theorem 4, we can easily obtain a sufficient condition that a factor-
critical graph G has precisely |F(G)| — ¢+ 1 maximum matchings shown as the corollary
in the following, where ¢ is the number of blocks of G. In fact, the condition in the
corollary is a sufficient and necessary condition that a factor-critical graph GG has precisely

|E(G)| — ¢ + 1 maximum matchings as shown in Theorem 9 in [7].
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Corollary 2.1. Let G be a factor-critical graph and the ear decomposition G = C' + P, +

-+ Py satisfy that for any open ear P;, two ends of P; are joined in G;_1 by a pending

path of G with length 2. Then G has precisely |E(G)| — ¢+ 1 mazimum matchings, where
¢ 18 the number of blocks of G.
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