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Abstract A connected graph G is said to be factor-critical if G − v has a perfect

matching for every vertex v of G. Lovász proved that every factor-critical graph has an

ear decomposition. In this paper, the ear decomposition of the factor-critical graphs G

satisfying that G− v has a unique perfect matching for any vertex v of G with degree at

least 3 is characterized. From this, the number of maximum matchings of factor-critical

graphs with the special ear decomposition is obtained.
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1 Introduction and terminology

First, we give some notation and definitions. For details, see [1] and [2]. Let G be

a simple graph. An edge subset M ⊆ E(G) is a matching of G if no two edges in M

are incident with a common vertex. A matching M of G is a perfect matching if every

vertex of G is incident with an edge in M . A matching M of G is a maximum matching

if |M ′| ≤ |M | for any matching M ′ of G. Let v be a vertex of G. The degree of v in G is

denoted by dG(v) and δ(G) =min{dG(v) | v ∈ V (G)}. Let P = u1u2 · · ·uk be a path and

1 ≤ s ≤ t ≤ k. Then usus+1 · · ·ut is said to be a subpath of P , denoted by P (us, ut). Let
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P = u1 · · ·uk and Q = ukuk+1 · · ·uk+s be two paths of G such that V (P )∩ V (Q) = {uk}.
The path u1 · · ·ukuk+1 · · ·uk+s is denoted by u1PukQuk+s. Denote ukuk−1 · · ·u1 by P−1.

Let P = uv1 · · · vkv be a path or a cycle ( in this case, u = v) of G. We say that P is

odd if k is even ( i.e., P has an odd number of edges), otherwise, P is even. P is said to

be pending if dG(u) ≥ 3, dG(v) ≥ 3, and either P has no interior vertices ( i.e., P = uv)

or each of its interior vertices has degree 2 ( i.e., dG(vi) = 2 for 1 ≤ i ≤ k). We say that

a path ( cycle) is even pending if it is both even and pending and a path ( cycle) is odd

pending if it is both odd and pending. Let P be a pending path or cycle of G. Denote

the subgraph of G obtained from G by either deleting the edge if P has only one edge or

deleting all interior vertices of P by G− P .

We say that a connected graph G is factor-critical if G− v has a perfect matching for

every vertex v ∈ V (G). Let G be a factor-critical graph. Then G has the odd number of

vertices, has no cut edges and all pending cycles of G are odd.

The problem of finding the number of maximum matchings of a graph plays an im-

portant role in graph theory and combinatorial optimization since it has a wide range of

applications. For example, in the chemical context, the number of perfect matchings of

graphs is referred to as Kekulé structure count [3]. In physical field, the Dimer problem is

essentially equal to the number of perfect matchings of a graph [4]. The number of perfect

matchings is an important topological index which had been applied for estimation of the

resonant energy, total π-electron energy and calculation of Pauling bond order [5] and [6].

But the enumeration problem for perfect matchings in general graphs ( even in bipartite

graphs) is NP-complete [2]. Hence, it makes sense that the enumeration problem for

maximum matchings is a difficult one. In this paper, we study the number of maximum

matchings in factor-critical graphs. The reasons to be interested in factor-critical graphs

are following.

According to Gallai-Edmonds’ Decomposition Theorem, any graph can be con-

structed by three types of graphs which are graphs with a perfect matching, bipartite

graphs and factor-critical graphs. So the factor-critical graphs in Matching Theory are

important.

In the following, we introduce the ear decomposition of factor-critical graphs.

Let G be a graph and G′ a subgraph of G. An ear of G relative to G′ is either an odd
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path or an odd cycle of G and having both ends ( two ends are the same in the case that

the ear is a cycle)–but no interior vertices–in G′. An ear is said to be open if it is a path,

otherwise, closed. An ear decomposition of G starting with G′ is a representation of G in

the form: G = G′+P1 + · · ·+Pk, where Pi is an ear of G relative to Gi−1, where G0 = G′,

Gi−1 = G′ + P1 + · · ·+ Pi−1 for 1 ≤ i ≤ k ( see Figure 1).

G'

P1

P3

P2

Figure 1. An ear decomposition of a graph G with three ears.

Proposition 1.1. [2] Let G be a connected graph. Then G is factor-critical if and only

if G has an ear decomposition G = C + P1 + · · ·+ Pk starting with an odd cycle C, where

k = |E(G)| − |V (G)|.
Let G = C +P1 + · · ·+Pk be an ear decomposition of a factor-critical graph G starting

with an odd cycle C. Then by Proposition 1.1, Gi is also a factor-critical graph for any

0 ≤ i ≤ k− 1, where G0 = C and Gi = C + P1 + · · ·+ Pi. If some ear Pi is pending, then

G = C + P1 + · · · + Pi−1 + Pi+1 + · · · + Pk + Pi is also an ear decomposition of G and

G−Pi = C +P1 + · · ·+Pi−1 +Pi+1 + · · ·+Pk is an ear decomposition of G−Pi. Then by

Proposition 1.1, G− Pi is also a factor-critical graph. Let SG = {w ∈ V (G)|dG(w) ≥ 3}.
Then x ∈ SG if and only if x is an end of some ear Pi. We say a subgraph G′ of a graph

G is nice if either G − V (G′) = ∅ or G − V (G′) has a perfect matching. Then C and

Gi = C + P1 + · · ·+ Pi are nice subgraphs of G for 1 ≤ i ≤ k − 1.

Let Q be a path of G, w1 and ws the end vertices of Q. Q is said to be a quasi-even-

pending path if w1, ws ∈ SG, and either Q is even pending or Q(wi, wj) is even for any
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two vertices wi, wj ∈ SG ∩ V (Q) such that the subpath Q(wi, wj) is pending, that is, Q

can be written as Q = w1Q1w2Q2 · · ·ws−1Qs−1ws, where wi ∈ SG for 1 ≤ i ≤ s and Qj is

an even pending path of G joining wj and wj+1 for 1 ≤ j ≤ s−1 ( see Figure 2). Further,

let Qj = wjuj1uj2 · · ·uj(2kj−1)wj+1 for 1 ≤ j ≤ s− 1. Then we say that uj(2l−1) is an odd

vertex of Q for 1 ≤ l ≤ kj.

w

w

w

w
1

2

3

4

uv

z

zz

1

1

2 3

1

Figure 2. A quasi-even-pending path Q = w1u1w2v1w3z1z2z3w4, where u1, v1, z1, z3 are

odd vertices of Q.

Let G be a graph and H a subgraph of G. Then a quasi-even-pending path Q of H

is also quasi-even-pending path of G if any odd vertex of Q has degree 2 in G ( i.e., the

degrees of all odd vertices are unchanged in G). Conversely, a quasi-even-pending path

Q of G is also quasi-even-pending path of H if Q is a path of H and two ends of Q have

degree at least 3 in H. Then according to the definitions of quasi-even-pending paths and

ears, it is easy to obtain the following.

Proposition 1.2. Let H be a subgraph of a graph G, P an ear of G relative to H and

G = H + P . Then Q1 is also a quasi-even-pending path of H for any quasi-even-pending

path Q1 of G such that two ends of Q1 are in SH and Q2 is also a quasi-even-pending path

of G for any quasi-even-pending path Q2 of H such that no ends of P are odd vertices of

Q2.
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Let Q = xQ1w2Q2 · · ·ws−1Qs−1y be a quasi-even-pending paths of G, where Qi is an

even pending path of G for 1 ≤ i ≤ s− 1. Let S = {w2, · · · , ws−1}. Then |S| = s− 2 and

Q − x − y − S has s − 1 odd components which are also components of G − x − y − S.

Hence G− x− y has no perfect matchings. For any S1 ⊆ SG, G− x− y − S1 − S has at

least s− 1 odd components. Hence G− x− y− S1 has no perfect matchings. So we have

the following.

Proposition 1.3. Let G be a factor-critical graph and Q a quasi-even-pending path of G

joining x and y. Then G − x − y and G − x − y − S1 have no perfect matchings, where

S1 ⊆ SG.

Let Q = xQ1w2Q2 · · ·ws−1Qs−1y and Q′ = xQ′
1z2Q

′
2 · · · zt−1Q

′
t−1y be two interior

disjoint quasi-even-pending paths of G joining x and y, where Qi and Q′
j are an even

pending path of G, respectively, for 2 ≤ i ≤ s − 1 and 2 ≤ j ≤ t − 1. Let S1 =

{w2, · · · , ws−1}, S2 = {z2, · · · , zt−1} and S = S1 ∪ S2 ∪ {y}. Then |S| = s + t − 3 and

G− x− S has at least s + t− 2 odd components. Hence G− x has no perfect matchings.

So we have the following.

Proposition 1.4. Let G be a factor-critical graph and SG defined as above. Then for any

two vertices x, y ∈ SG, there exists at most one quasi-even-pending path of G joining x

and y.

Proof Suppose, to the contrary, that P and Q are two quasi-even-pending paths of

G joining x and y. Clearly, we can find two vertices x1 and y1 in SG ∩ V (P ) ∩ V (Q)

such that the subpath P (x1, y1) of P and the subpath Q(x1, y1) of Q are interior-disjoint.

Then G− x1 has no perfect matchings, which contradicts with that G is factor-critical.

Proposition 1.5. Let G be a factor-critical graph, P an odd pending path of G, Q a

quasi-even-pending path of G, and P and Q share the same end vertices. Then P ∪Q is

a nice cycle of G.

Proof Let P = xu1 · · ·u2ky be an odd pending path of G and Q = xQ1z2Q2 · · · zt−1Qt−1y

be a quasi-even-pending path of G, where Qi is an even pending path of G for 1 ≤ i ≤ t−1.

Then Q − x has a perfect matching, say M1, and P and Q are interior disjoint. Hence
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P ∪ Q = xPyQ−1x is an odd cycle of G, say C. Since G is factor-critical, G − x has

a perfect matching. Let M0 = {u1u2, u3u4, · · · , u2k−1u2k}. Then M0 ∪M1 ⊆ M for any

perfect matching M of G− x. Hence M −M0 −M1 is a perfect matching of G− V (C).

So, C is a nice cycle of G.

Pulleyblank proved [2] that a 2-connected factor-critical graph G has at least |E(G)|
maximum matchings. Liu and Hao proved [7] that G has exactly |E(G)| maximum match-

ings if and only if G has an ear decomposition G = C + P1 + · · ·+ Pk such that two ends

of Pi are joined in Gi−1 by a pending path of length 2 of G, and if G has a such ear

decomposition, then G− w has a unique perfect matching for any w ∈ SG. But it is not

vice versa. In this paper, we study the ear decomposition of the factor-critical graph G

with the property that G − w has a unique perfect matching for any w ∈ SG and from

this, the enumeration problem for maximum matchings of factor-critical graphs with the

special ear decomposition is solved.

2 Results and proofs

For convenience, we say that an ear decomposition G = C + P1 + · · · + Pk starting

from an odd cycle C of a factor-critical graph G has Property A if for any open ear Pi,

two ends of Pi are joined by a path Qi of Gi−1 which is a quasi-even-pending path of G.

Then we have the following.

Proposition 2.1. Let G = C + P1 + · · ·+ Pk be an ear decomposition of a factor-critical

graph G having Property A. Then Gk−1 = C + P1 + · · ·+ Pk−1 has also Property A.

Proof Then G = Gk−1 + Pk. Since G = C + P1 + · · · + Pk has Property A, we can

assume that Qi is a path of Gi−1 joining two ends of Pi which is a quasi-even-pending path

of G for any open ear Pi, where 1 ≤ i ≤ k−1. Since Gi−1 is factor-critical, two ends of Qi

have degree at least 2 in Gi−1. Then the ends of Qi have degree at least 3 in Gi. So, by

Proposition 1.2, Qi is also quasi-even-pending of Gk−1. Then Gk−1 = C + P1 + · · ·+ Pk−1

also has Property A.

By the similar reasons as above, we have the following.
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Proposition 2.2. Let G = C + P1 + · · ·+ Pk be an ear decomposition of a factor-critical

graph G having Property A and Pi be pending. Then G = C +P1 + · · ·Pi−1 +Pi+1 + · · ·+
Pk−1 +Pk +Pi and G−Pi = C +P1 + · · ·Pi−1 +Pi+1 + · · ·+Pk−1 +Pk also have Property

A.

We say that a factor-critical graph has Property A if there exists an ear decomposition

of G having Property A. We say that a factor-critical graph G has Property B if G − v

has a unique perfect matching for any v ∈ SG ( see Figure 3).

C

u

v

P
3

P

P

1

2

Figure 3. A factor-critical graph G with Property B.

Theorem 1. Let G be a factor-critical graph and the ear decomposition G = C + P1 +

· · ·+ Pk of G have Property A. Then G has Property B.

Proof. Then for 1 ≤ i ≤ k − 1, Gi = C + P1 + · · · + Pi has also Property A by

Proposition 2.2. We prove the statement by induction on k. When k = 0, G = C. When

k = 1, G = C +P1. Clearly, C and C +P1 have Property B. Suppose that k = m ≥ 2 and

it holds for k < m. Let u ∈ SG. Now we prove that G−u has a unique perfect matching.

We distinguish the following cases.
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Case 1 dGk−1
(u) ≥ 3.

Let Pk = xu1 · · ·u2ly. Then Gk−1 = G − {u1, · · · , u2l}. In the case that Pk has only

one edge ( i.e., Pk = xy), Gk−1 = G − xy. Then Gk−1 is factor-critical and Gk−1 =

C + P1 + · · ·+ Pk−1 has Property A by Proposition 2.1. So, by the induction hypothesis,

Gk−1 − u has a unique perfect matching.

Case 1.1 Pk is open.

Let m1 be the number of perfect matchings of G − u containing {u2j−1u2j|1 ≤ j ≤ l}
and m2 the one of G − u containing {xu1, yu2l} ∪ {u2ju2j+1|1 ≤ j ≤ l − 1}. Since Pk is

pending, G − u has exactly m1 + m2 perfect matchings. Clearly, the number of perfect

matchings of Gk−1 − u and Gk−1 − {u, x, y} are m1 and m2, respectively. Then m1 = 1.

Since G has Property A, there exists a quasi-even-pending path of G joining x and y. By

Proposition 1.3, Gk−1 − {x, y, u} has no perfect matchings. Then m2 = 0. It follows that

G− u has a unique perfect matching.

Case 1.2 Pk is closed.

In this case, x = y. Clearly, every perfect matching of G − u contains all edges u2j−1u2j

for 1 ≤ j ≤ l. Then the number of perfect matchings of G−u is equal to one of Gk−1−u.

It follows that G− u has a unique perfect matching.

Case 2 dGk−1
(u) = 2.

Then u is an end of Pk ( see the vertex u in Figure 3). Without loss of generality, u = x,

where x and y are two ends of Pk. In the following, we prove that G − x has a unique

perfect matching. We can assume that all other ears Pi are not pending, 1 ≤ i ≤ k − 1.

Otherwise, suppose that some Pi is pending, where i ≤ k − 1. Then u 6∈ V (Pi). Hence

x has degree at least 3 in G − Pi = C + P1 + · · ·Pi−1 + Pi+1 + · · · + Pk−1 + Pk. By

Proposition 2.2, G can be rewritten as G = C +P1 + · · ·Pi−1 +Pi+1 + · · ·+Pk−1 +Pk +Pi

which also has Property A . Then it belongs to Case 1. So, we only consider the case

that Pk is a unique pending ear. Then some end of Pk must be an interior vertex of Pk−1.

Now we distinguish the following cases.

Case 2.1 x and y are not on the same pending path or pending cycle of Gk−1.

Then Pk is open. Since G has property A, x and y are joined in Gk−1 by a quasi-even-

pending path Q of G. Let Q1 = xx1 · · ·x2s+1w1 be the pending subpath of Q starting

from x to the second vertex w1 of degree at least 3 ( where, x is the first vertex of degree
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at least 3) on Q. Then w1 6= y. So dGk−1
(w1) = dG(w1) ≥ 3. It is easy to prove that

the number of perfect matchings of G− x is equal to the number of perfect matchings of

Gk−1−w1 since Pk is odd pending and Q1 is even pending. By the induction hypothesis,

Gk−1 − w1 has a unique perfect matching. It follows that G − x has a unique perfect

matching.

Case 2.2 x and y are vertices of a pending path or pending cycle of Gk−1.

It follows that x, y ∈ V (Pk−1) and x is an interior vertex of Pk−1 since dGk−1
(u) = 2.

Let Pk−1 = wv1 · · · v2tz. Then we can assume that x = vj, where 1 ≤ j ≤ 2t. First, we

consider the case that Pk is closed. Then x = y. It is easy to prove that the number of

perfect matchings of G− x is equal to the number of perfect matchings of Gk−1 − x, and

the number of perfect matchings of Gk−1−x is equal to the number of perfect matchings of

Gk−1−z if j is odd, otherwise, the number of perfect matchings of Gk−1−x is equal to the

number of perfect matchings of Gk−1−w. By the induction hypothesis, both Gk−1−w and

Gk−1 − z have a unique perfect matching, respectively. Then G− x has a unique perfect

matching. Thus we can assume that Pk is open. Without loss of generality, suppose that y

is on the subpath of Pk−1 from x to z. Since G has Property A, x and y are joined in Gk−1

by a quasi-even-pending path Q of G. Hence either Pk−1(x, y) = Q or (Pk−1(w, x))−1 and

Pk−1(y, z) are two subpaths of Q. If Pk−1(x, y) = Q, then either Pk−1(w, x) or Pk−1(y, z)

is even since Pk−1 is odd. If (Pk−1(w, x))−1 and Pk−1(y, z) are two subpaths of Q, then

both Pk−1(w, x) and Pk−1(y, z) are even since Q is a quasi-even-pending path of G. Hence

Pk−1(w, x) or Pk−1(y, z) is even in any case. First, suppose that Pk−1(w, x) is even. Then

the number of perfect matchings of G − x is equal to the number of perfect matchings

of Gk−1 − w. By the induction hypothesis, Gk−1 − w has a unique perfect matching. It

follows that G − x has a unique perfect matching. Suppose that Pk−1(w, x) is odd and

Pk−1(y, z) is even. Then Pk−1(x, y) is even since Pk−1 is odd. It follows that the number

of perfect matchings of G−x is equal to the number of perfect matchings of Gk−1−z. By

the induction hypothesis, Gk−1 − z has a unique perfect matching. It follows that G− x

has a unique perfect matching. The proof is completed.

Lemma 2.1. Let G be a factor-critical graph and G = C + P1 + · · · + Pk have Property

A. Then G − u has at least two perfect matchings for any quasi-even-pending path Q of

G and any odd vertex u of Q.
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Proof. It suffices to prove that G − u has at least two perfect matchings for any even

pending path Q of G and any odd vertex u of Q. We prove the lemma by induction on

k = |E(G)| − |V (G)|. When k = 0, G is an odd cycle, say C. When k = 1, G = C + P1.

Clearly, the statement is true. Suppose that k = m ≥ 2 and the statement is true for

k ≤ m− 1. Since G = C + P1 + · · ·+ Pk has Property A, Gk−1 = C + P1 + · · ·+ Pk−1 has

Property A by Proposition 2.1. Let Pk = xu1 · · ·u2ly and M0 = {u1u2, u3u4, · · · , u2l−1u2l}.
Then x, y ∈ SG, SG − {x, y} ⊆ SGk−1

⊆ SG and dG(ui) = 2 for 1 ≤ i ≤ 2l. Let Q be an

even pending path of G and u an odd vertex of Q. Then dG(u) = 2 and two ends of Q

are in SG. If u is an odd vertex of an even pending path of Gk−1, then by the induction

hypothesis, Gk−1− u has at least two perfect matchings, say M1 and M2. Then M1 ∪M0

and M2 ∪M0 are two perfect matchings of G − u. So we can assume that u is not odd

vertex of any even pending path of Gk−1. Since Pk is odd pending and Q is even pending,

Q is a path of Gk−1. It follows that dGk−1
(u) = 2 and there exists at least one end of Q

not in SGk−1
. Then x or y is an end of Q. Without loss of generality, suppose that x is

an end of Q. Then dGk−1
(x) = 2. Since k ≥ 2, Gk−1 is not a cycle. Then u is an interior

vertex of a pending path or pending cycle of Gk−1. Since G has Property A, there exists

a path P of Gk−1 joining x and y which is a quasi-even-pending path of G.

Claim Q is a subpath of P .

We distinguish two cases to prove the claim.

Case 1 u is an interior vertex of a pending cycle of Gk−1, say C ′.

Then C ′ is odd and Q is a part of C ′. Let SGk−1
∩ V (C ′) = {w}. If two ends of Q are

interior vertices of C ′, then it follows that two ends of Q are x and y since two ends of

Q are in SG. Then by Proposition 1.4, Q = P . So we can assume that w is the other

end of Q. Let P ∗ = C ′ − V (Q). Then P ∗ is odd since C ′ is odd and Q is even. Hence

P ∗ ∩ V (P ) = ∅. It follows that Q is a subpath of P .

Case 2 u is an interior vertex of a pending path of Gk−1, say P ′.

Let w and z be two ends of P ′. Then w, z ∈ SGk−1
and Q is a subpath of P ′. If two ends

of Q are interior vertices of P ′, then we can deduce that Q = P by the similar method

as above. So we can assume that Q and P ′ share a common end, say w. Then P ′ is odd.

( Otherwise, u is an odd vertices of P ′ since u is odd vertex of Q, a contradiction.) It

follows that Q is a subpath of P .
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By Proposition 1.5, Pk ∪ P is a nice cycle of G. Then G − V (Pk ∪ P ) has a perfect

matching, say M ′. Since u is odd vertex of Q, u is odd vertex of P by Claim. Let M be

the perfect matching of Pk ∪P −u. Then M contains {xu1, u2u3, · · · , u2l−2u2l−1, u2ly}. It

follows that M ∪M ′ is a perfect matching of G−u. Since Gk−1 is factor-critical, Gk−1−u

has a perfect matching, say M1. Then M1 ∪M0 is a perfect matching of G − u. Hence

G− u has at least two perfect matchings.

Lemma 2.2. Let G be a factor-critical graph having Property A. Then there exists a

unique quasi-even-pending path of G joining u and v for any two vertices u, v ∈ SG.

Proof. By Proposition 1.4, it suffices to prove that there exists a quasi-even-pending

path of G joining u and v for any two vertices u, v ∈ SG. Let G = C + P1 + · · · + Pk

be an ear decomposition of G having Property A. We prove the lemma by induction on

k. When k ≤ 1, G = C or G = C + P1. Clearly, the statement is true. Suppose that

k = m ≥ 2 and the statement is true for k ≤ m− 1. Let Pk = xu1 · · ·u2ly, H = Gk−1 and

SH = {w ∈ V (H)|dH(w) ≥ 3}. Then x, y ∈ SG and SG − {x, y} ⊆ SH ⊆ SG. According

to Property A, there exists a path Q of H joining x and y which is a quasi-even-pending

path of G. Let Q = xQ1z2Q2 · · · zt−1Qt−1y be a quasi-even-pending path of G, where Qi

is an even pending path of G for 1 ≤ i ≤ t− 1. Let u, v ∈ SG. Then we can assume that

{u, v} 6= {x, y}. Then {u, v} ∩ SH 6= ∅. By Proposition 2.1, H = C + P1 + · · ·+ Pk−1 has

Property A. We distinguish the following cases.

Case 1 u, v ∈ SH .

By the induction hypothesis, there exists a quasi-even-pending path P of H joining u and

v. Since G has Property A, G has Property B. Hence G − x and G − y have a unique

perfect matching, respectively. Then by Lemma 2.1, x and y are not odd vertices of P .

By Proposition 1.2, P is also a quasi-even-pending path of G.

Case 2 Either u 6∈ SH and v ∈ SH or v 6∈ SH and u ∈ SH .

Without loss of generality, suppose that u 6∈ SH and v ∈ SH . Since H is factor-critical,

dH(u) = 2. It follows that u is an end of Pk. Without loss of generality, suppose that

u = x. Then v 6= y. In the following, we prove that there exists a quasi-even-pending

path of G joining x and v. If v is on Q, then Q(x, v) is a quasi-even-pending path of G

joining x and v. Suppose that v 6∈ V (Q).
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Case 2.1 V (Q) ∩ SH 6= ∅.
Then z2 ∈ SH and z2 = y if Q is pending. By the induction hypothesis, there exists a

quasi-even-pending path P of H joining z2 and v. If x is a vertex of P , then Q−1
1 is the

subpath of P since dH(x) = 2. Then P (x, v) is a quasi-even-pending path of G joining

x and v. Suppose that x 6∈ V (P ). Then V (Q1) ∩ V (P ) = {z2}. Hence xQ1z2Pv is a

quasi-even-pending path of G joining x and v.

Case 2.2 V (Q) ∩ SH = ∅.
Then Q is a pending path of G and dH(x) = dH(y) = 2. Since k ≥ 2, H is not a cycle.

Then there exists a pending path or a pending cycle of H containing Q.

Case 2.2.1 C1 is a pending cycle of H containing Q.

Since H is factor-critical, C1 is odd. Let V (C1) ∩ SH = {w}. Then x, y, w partite C1

into three paths, say C1(w, x), C1(x, y) and C1(y, w), where C1(x, y) = Q. Then either

C1(w, x) or C1(y, w) is even. Without loss of generality, suppose that C1(w, x) is even.

By the induction hypothesis, there exists a quasi-even-pending path P of H joining w and

v(in the case that w = v, P is a vertex). Then xC1(w, x)−1wPv is a quasi-even-pending

path of G joining x and v.

Case 2.2.2 P ′ is a pending path of H containing Q.

Let V (P ′) ∩ SH = {w, z}. Then x, y partite P ′ into three paths, one of which is

Q. Suppose that other two paths are P ′(w, x) and P ′(y, z), respectively. By Lemma 2.1,

P ′(w, x) is even or P ′(y, z) is even.(Otherwise, P ′ is even. Then P ′ is a quasi-even-pending

path of H and x is an odd vertex of P ′. Then H−x has at least two perfect matchings by

Lemma 2.1. Hence G−x has at least two perfect matchings, which contradicts with that

G has Property B.) Suppose that P ′(w, x) is even. By the induction hypothesis, there

exists a quasi-even-pending path of H joining w and v(in the case that w = v, the path

is a vertex). Then we can find a quasi-even-pending path of G joining x and v by the

similar method as one in Case 2.1. Similarly, if P ′(y, z) is even, then we can also find a

quasi-even-pending path of G joining x and v.

Theorem 2. Let G be a factor-critical graph with Property B. Then G has Property A.

Proof. Since G is factor-critical, G has an ear decomposition G = C + P1 + · · · + Pk.

We prove the theorem by induction on k = |E(G)| − |V (G)|. When k = 0, G = C.
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When k = 1, G = C + P1. Clearly, the statement is true. Suppose that k = m ≥ 2

and the statement is true for k ≤ m − 1. Let Pk = xu1 · · ·u2ly. Then x, y ∈ SG and

dG(ui) = 2 for 1 ≤ i ≤ 2l. Since G has Property B, Gk−1 has Property B. ( Otherwise,

suppose v ∈ SGk−1
such that Gk−1 − v has two perfect matchings, say M1 and M2. Then

v ∈ SG, M1 ∪ {u1u2, u3u4 · · ·u2l−1u2l} and M2 ∪ {u1u2, u3u4 · · ·u2l−1u2l} are two perfect

matchings of G− v, a contradiction.) Then by the induction hypothesis, there exists an

ear decomposition Gk−1 = C ′ + Q1 + · · ·+ Qk−1 having Property A. Then by Lemma 2.1,

Gk−1−u has at least two perfect matchings for any odd vertex u of a quasi-even-pending

path of Gk−1. It follows that x and y are not odd vertices of a quasi-even-pending path

of Gk−1 since G − x and G − y have a unique perfect matching, respectively. Then any

quasi-even-pending path of Gk−1 is also quasi-even-pending path of G by Proposition 1.2.

In the following, we prove that G = C ′ + Q1 + · · · + Qk−1 + Pk is an ear decomposition

of G having Property A. If Pk is closed, then G = C ′ + Q1 + · · · + Qk−1 + Pk is an ear

decomposition of G having Property A. We can assume that Pk is open ( i.e., x 6= y).

Then it suffices to prove that there exists a quasi-even-pending path of G joining x and

y. We distinguish the following cases.

Case 1 x, y ∈ SGk−1
.

Since Gk−1 = C ′+Q1 + · · ·+Qk−1 has Property A, there exists a quasi-even-pending path

Q of Gk−1 joining x and y by Lemma 2.2. Clearly, Q is a quasi-even-pending path of G.

Case 2 dGk−1
(x) = 2 and y ∈ SGk−1

or dGk−1
(y) = 2 and x ∈ SGk−1

.

Without loss of generality, suppose that dGk−1
(x) = 2 and y ∈ SGk−1

. Then x is a vertex

of a pending path or a pending cycle of Gk−1.

Case 2.1 x is a vertex of an even pending path P of Gk−1.

Then x is not odd vertex of P . Let w, z be two ends of P . Then w, z ∈ SGk−1
, both

P (w, x) and P (x, z) are even. By Lemma 2.2, there exists a quasi-even-pending path of

Gk−1 joining w and y. Then we can find a quasi-even-pending path of G joining x and y.

Case 2.2 x is a vertex of an odd pending path P of Gk−1.

Let w, z be two ends of P . Then P is interior disjoint with any quasi-even-pending path

of Gk−1, and either P (w, x) is even or P (x, z) is even. Without loss of generality, suppose

that P (w, x) is even. Since Gk−1 has Property A and w, y ∈ SGk−1
, there exists a quasi-

even-pending path Q of Gk−1 joining w and y by Lemma 2.2. Then xP−1(w, x)wQy is a

13



quasi-even-pending path of G.

Case 2.3 x is a vertex of a pending cycle C1 of Gk−1.

Let V (C1) ∩ SGk−1
= {w}. Since Gk−1 is factor-critical, C1 is odd. Then C1 − w − x

consists of two paths one of which is even and the other is odd, say the odd one is P .

Let P ′ = C1 − V (P ). Then P ′ is an even pending path of G joining x and w. By the

similar reasons, there exists a quasi-even-pending path Q of Gk−1 joining w and y. Then

xP ′wQy is a quasi-even-pending path of G.

Case 3 dGk−1
(x) = 2 and dGk−1

(y) = 2.

Then x and y are an interior vertex of a pending path or a pending cycle of Gk−1,

respectively.

Case 3.1 x and y are vertices of a pending cycle C1 of Gk−1.

Let V (C1) ∩ SGk−1
= {w}. Then w, x and y partite C1 into three paths, say C1(w, x),

C1(x, y), and C1(y, w). If C1(x, y) is even, then C1(x, y) is a quasi-even-pending path of

G. We can assume that C1(x, y) is odd. Then either C1(w, x) and C1(y, w) are odd or

C1(w, x) and C1(y, w) are even. Since G has Property B, G − w has a unique perfect

matching. Then C1(w, x) and C1(y, w) are even. (Otherwise, we can find two perfect

matchings in the subgraph C1 + Pk − w. Clearly, C1 + Pk is a nice subgraph of G. Then

G−w has at least two perfect matchings, a contradiction.) So, xC1(w, x)−1wC1(y, w)−1y

is a quasi-even-pending path of G.

Case 3.2 x and y are vertices of an odd pending path P of Gk−1.

Let w, z be two ends of P . Since Gk−1 has Property A, there exists a quasi-even-pending

path Q of Gk−1 joining w and z by Lemma 2.2. Then P ∪ Q is a nice subgraph of Gk−1

by Proposition 1.5. Hence P ∪ Q + Pk is a nice subgraph of G. Clearly, x and y partite

P into three paths, say P (w, x), P (x, y) and P (y, z). If P (x, y) is even, then P (x, y) is a

quasi-even-pending path of G. So, suppose that P (x, y) is odd. Then either P (w, x) and

P (y, z) are odd or P (w, x) and P (y, z) are even. Since G has Property B, G − w has a

unique perfect matching. Then P (w, x) and P (y, z) are even. ( Otherwise, we can find

two perfect matchings in the subgraph P ∪Q+Pk−w. Then G−w has at least two perfect

matchings, a contradiction.) So, xP (w, x)−1wQzP (y, z)−1y is a quasi-even-pending path

of G.

Case 3.3 x and y are vertices of an even pending path P of Gk−1.
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Let w, z be two ends of P . Clearly, x and y partite P into three paths, say P (w, x),

P (x, y) and P (y, z). Since G has Property B, P (x, y) is even. ( Otherwise, suppose that

P (x, y) is odd. Then either P (w, x) is even or P (y, z) is even. Without loss of generality,

suppose that P (w, x) is even and P (y, z) is odd. It is easy to check that P + Pk is a nice

subgraph of G and P + Pk − z has two perfect matchings. Then G − z has at least two

perfect matchings, a contradiction.) Then P (x, y) is a quasi-even-pending path of G.

Case 3.4 x and y are on the different pending paths or cycles of Gk−1.

Let P and P ′ be two pending paths or cycles of Gk−1 containing x and y, respectively,

w1, z1 be two ends of P and w2, z2 be two ends of P ′ ( in the case that P and P ′ are cycles,

w1 = z1 and w2 = z2). Since x and y are not odd vertices of a quasi-even-pending path

of Gk−1, P (w1, x) is even or P (x, z1) is even, and P ′(w2, y) or P ′(y, z2) is even. Without

loss of generality, suppose that P (w1, x) and P ′(w2, y) are even. Since Gk−1 has Property

A, there exists a quasi-even-pending path Q of Gk−1 joining w1 and w2 by Lemma 2.2.

Then by the similar method, we can find a quasi-even-pending path of G joining x and y

in P ∪ P ′ ∪Q.

By Theorem 1 and Theorem 2, we have the following.

Theorem 3. Let G be a factor-critical graph G. Then G has Property A if and only if

Property B.

Now we study the number of maximum matchings of a factor-critical graph having

Property A. The following lemma is useful.

Lemma 2.3. Let G be a factor-critical graph and G = C +P1 + · · ·+Pk an ear decompo-

sition having Property A. Then for any open ear Pj, G− x− y has exactly
lj
2

maximum

matchings, where x and y are the ends of Pj and lj is the length of the quasi-even-pending

path Qj of G joining x and y in Gj−1, where Gj−1 = C + P1 + · · ·+ Pj−1.

Proof. Since G is factor-critical, a maximum matching of G − x − y covers all but one

vertex. Since Qj is a quasi-even-pending path of G, the vertex uncovered by M must

be on Qj and all other vertices on Qj are matched with vertices on Qj by M for any

maximum matching M of G − x − y, that is, every maximum matching of G − x − y

consists of a maximum matching of Qj − {x, y} and a perfect matching of G − V (Qj).
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We can assume that Qj = xu1 · · ·u2k1−1w1u2k1 · · ·u2k1+2k2−2w2 · · ·ws−1un+1 · · ·un+2ks−1y,

where n = (2k1 − 1) + (2k2 − 1) + · · ·+ (2ks−1 − 1), lj = 2k1 + · · ·+ 2ks, dG(wi) ≥ 3 and

dG(uj) = 2 for all wi and uj on Q. By Theorem 1, G− x has a unique perfect matching,

say M0. Then {u1u2, · · · , u2k1−1w1, u2k1u2k1+1, · · · , un+2ks−1y} ⊂ M0. It follows that

G − V (Qj) has a unique perfect matching. So, the number of maximum matchings of

G− x− y equals to that of Qj − {x, y}. It is easy to check that Qj − {x, y} has exactly
lj
2

maximum matchings. So, G − x − y has precisely
lj
2

maximum matchings. The proof

is completed.

Theorem 4. Let G be a factor-critical graph and the ear decomposition G = C + P1 +

· · · + Pk have Property A. Then G has precisely |E(G)| + l1
2

+ · · · + lk
2
− k maximum

matchings, where li is the length of the quasi-even-pending path Qi of G joining two ends

of Pi in Gi−1 and li = 0 in the case that Pi is closed for 1 ≤ i ≤ k.

Proof. By induction on k. When k = 0, G = C. Then G has exactly |E(G)| maximum

matchings. Suppose that it holds for k < m and consider the case for k = m ≥ 1. Let

Pk = xu1 · · ·u2ly, Qk = xv1 · · · vlk−1y and Gk−1 = C + P1 + · · ·+ Pk−1. By the induction

hypothesis, Gk−1 has exactly |E(Gk−1)|+ l1
2

+ · · ·+ lk−1

2
− k +1 maximum matchings. Let

M = {M |M is a maximum matching of G},
M′ = {M ∈M|{u1u2, · · · , u2l−1u2l ⊂ M},
M∗ = {M ∈M|xu1, u2ly, u2iu2i+1 ∈ M, 1 ≤ i ≤ l − 1},

Mi = {M ∈M|M misses ui}, for 1 ≤ i ≤ 2l.

Then (M′,M∗,M1, · · · ,M2l) is a partition of M. Clearly, |M′| = |E(Gk−1)|+ l1
2

+ · · ·+
lk−1

2
−k+1. By Lemma 2.3, G−x−y has lk

2
maximum matchings. Simple checks show that

|M∗| = lk
2
. By Theorem 1, G−x and G−y have a unique perfect matching, respectively. It

follows that |Mi| = 1 for 1 ≤ i ≤ 2l. Thus |M| = |E(Gk−1)|+ l1
2
+· · ·+ lk−1

2
−k+1+2l+ lk

2
=

|E(G)|+ l1
2

+ · · ·+ lk
2
− k. The proof is completed.

According to Theorem 4, we can easily obtain a sufficient condition that a factor-

critical graph G has precisely |E(G)| − c + 1 maximum matchings shown as the corollary

in the following, where c is the number of blocks of G. In fact, the condition in the

corollary is a sufficient and necessary condition that a factor-critical graph G has precisely

|E(G)| − c + 1 maximum matchings as shown in Theorem 9 in [7].
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Corollary 2.1. Let G be a factor-critical graph and the ear decomposition G = C + P1 +

· · · + Pk satisfy that for any open ear Pi, two ends of Pi are joined in Gi−1 by a pending

path of G with length 2. Then G has precisely |E(G)| − c + 1 maximum matchings, where

c is the number of blocks of G.
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