THE INDICES OF SUBGROUPS OF FINITE GROUPS IN THE JOIN OF THEIR CONJUGATE PAIRS

XIANHUA LI AND YONG XU

Abstract

Let G be a finite group and $H \leq G$. In this paper, we investigate the influence of the index of H in $\left\langle H, H^{g}\right\rangle$ on the structure of G.

Key words: conjugate subgroup pair, index, solvable group, supersolvable group.
AMS Subject Classifications: 20D10, 20D15.

1. Introduction and Preliminaries

All groups in this paper are finite. Let $\pi(G)$ stand for the set of all prime divisors of the order of a group $G,|\pi(G)|$ the number of the elements of $\pi(G), S(G)$ and $\operatorname{Soc}(G)$ the largest normal solvable subgroup and the socle of G, respectively. Let \mathcal{F} denote a formation, \mathcal{U} the class of supersolvable groups.
Let Σ be an abstract group theoretical property, for example, solvability, nilpotency, supersolvability, p-closed, etc. Following Chen in [5], if all proper subgroups or all proper quotient groups of a group G have the property Σ but G does not have the property Σ, we say that G is an inner- Σ-group or an outer- Σ-group, respectively. If G is both an inner- Σ-group and an outer- Σ-group, then G is called a minimal non- Σ-group. The inner- Σ-groups here are also called minimal non- Σ-groups in [16, p.258] or [2], or critical groups or S-critical groups for the class of Σ-groups in [7, VII, 6.1] or [1, p.252], respectively. The outer- Σ-groups here just are the groups in the boundary or Q-boundary of Σ in [7, III, 2.1] or [1, 2.3.6]. In [13], we introduced the concepts of inner- Σ - Ω-groups and outer- Σ - Ω-groups by replacing all proper subgroups and all proper quotient groups of a group G with subsets Ω of proper subgroups and proper quotient groups of a group. The other notations and terminologies in this paper are standard (see [12]).
Let $H \leq G$. We have $H \leq\left\langle H, H^{g}\right\rangle \leq\langle H, g\rangle$ for any $g \in G$. It is clear that $H=\left\langle H, H^{g}\right\rangle$ for all $g \in G$ if and only if $H \unlhd G$. In [7], H is called abnormal in G if $\left\langle H, H^{g}\right\rangle=\langle H, g\rangle$ for all $g \in G$. The famous Wielandt theorem shows that $H \triangleleft \triangleleft\left\langle H, H^{g}\right\rangle$ for all $g \in G$ if and only if $H \triangleleft \triangleleft G$. In [16] H is called pronormal in G if H is conjugate to H^{g} in $\left\langle H, H^{g}\right\rangle$ for all $g \in G$. Those show that the normality of a subgroup H in G may be detected from the normality of H in $\left\langle H, H^{g}\right\rangle$. Loosely speaking, the more $\left\langle H, H^{g}\right\rangle$ is near $\langle H, g\rangle$, the more H is not normal; the more $\left\langle H, H^{g}\right\rangle$ is near H, the more H is normal. The size of $\left\langle H, H^{g}\right\rangle$ is a measurement of normalities of H in G, or identity the size of $\left\langle H, H^{g}\right\rangle$ by the kinds of generalized normalities of H in G. This leads us to investigate properties of G from the size of H in $\left\langle H, H^{g}\right\rangle$. In this paper, we investigate the influence of the index of the subgroup H in $\left\langle H, H^{g}\right\rangle$ on the structure of G for cyclic subgroups H of G and $g \in G$ and get some results.

[^0]
2. Preliminaries

As introduced in [2], the inner-nilpotent groups and minimal non-supersolvable groups are classified completely by Redei in [15] and Nagebeckiï in [14] respectively. For the convenience of future reference, we collect the results given by Chen in [5] in Lemma 2.1 and Lemma 2.2.
Lemma 2.1. ([5, Theorem 1.1]) Suppose that G is an inner-nilpotent group. Then
(1) There are primes p and q such that $|G|=p^{a} q^{b}$.
(2) G has a normal Sylow q-subgroup Q; if $q>2$, then $\exp (Q)=q$ and if $q=2$, then $\exp (Q) \leq 4 ; G$ has a cyclic Sylow p-subgroup $P=\langle a\rangle$.
(3) Let $c \in Q$, then c is a generator if and only if $[c, a] \neq 1$.
(4) If c is a generator of Q, then $[c, a]=c^{-1} c^{a}$ is also a generator of Q.
(5) If c is a generator of Q, then $Q=\left\langle c, c^{a}, \cdots, c^{a^{p-2}}, c^{a^{p-1}}\right\rangle$, namely, $Q=\left\langle[c, a],[c, a]^{a}\right.$, $\left.\cdots,[c, a]^{a^{p-1}}\right\rangle$.

Minimal inner-supersolvale groups have six classes. We fix the notations G_{t} standing for a group in the t-th classes and G_{t} may be described in the following Lemma 2.2 in this paper.
Lemma 2.2. ([5, p.49-51, Theorem 7.3]) Suppose that a group G is minimal inner-supersolvable. Then $G \cong G_{t}$ and G_{t} satisfies one of the following, where $1 \leq t \leq 6$.
(I) G_{1} is a minimal nonabelian group and $\left|G_{1}\right|=p q^{\beta}$, where $p \nmid q-1, \beta \geq 2$.
(II) $G_{2}=\left\langle a, c_{1}\right\rangle$ and $\left|G_{2}\right|=p^{\alpha} r^{p}$ and $p^{\alpha-1} \| r-1$, where $\alpha \geq 2$,
$a^{p^{\alpha}}=c_{1}^{r}=c_{2}^{r}=\cdots=c_{p}^{r}=1 ; c_{i} c_{j}=c_{j} c_{i} ; c_{i}^{a}=c_{i+1}, i=1,2, \cdots, p-1 ; c_{p}^{a}=c_{1}^{t}$, where $t(\bmod r)^{\prime} s$ exponent is $p^{\alpha-1}$.
(III) $G_{3}=\left\langle a, b, c_{1}\right\rangle$ and $\left|G_{3}\right|=8 r^{2}$ and $4 \mid r-1$.
$a^{4}=c_{1}^{r}=c_{2}^{r}=1, a^{2}=b^{2}, b a=a^{-1} b, c_{1}^{a}=c_{2}, c_{2}^{a}=c_{1}^{-1}, c_{1}^{b}=c_{1}^{s}, c_{2}^{b}=c_{2}^{s}$, where $s(\bmod r)^{\prime} s$ exponent is 4 .
(IV) $G_{4}=\left\langle a, b, c_{1}\right\rangle$ and $\left|G_{4}\right|=p^{\alpha+\beta} r^{p}$ and $p^{\max \{\alpha, \beta\}} \mid r-1$, where $\beta \geq 2$.
$a^{p^{\alpha}}=b^{p^{\beta}}=c_{1}^{r}=c_{2}^{r}=\cdots=c_{p}^{r}=1 ; c_{i} c_{j}=c_{j} c_{i}, a b=b^{1+p^{\beta-1}} a ; c_{i}^{a}=c_{i+1}, i=1,2, \cdots$, $p-1 ; c_{p}^{a}=c_{1}^{t}, c_{i}^{b}=c_{i}^{u^{1+i p^{\beta-1}}}, i=1,2, \cdots, p$; where t and $u(\bmod r)^{\prime} s$ exponent are $p^{\alpha-1}$ and p^{β}, respectively.
(V) $G_{5}=\left\langle a, b, c, c_{1}\right\rangle$ and $\left|G_{5}\right|=p^{\alpha+\beta+1} r^{p}$ and $p^{\max \{\alpha, \beta\}} \mid r-1$.
$a^{p^{\alpha}}=b^{p^{\beta}}=c^{p}=c_{1}^{r}=c_{2}^{r}=\cdots=c_{p}^{r}=1 ; c_{i} c_{j}=c_{j} c_{i}, b a=a b c, c a=a c, c b=b c$, $c_{i}^{a}=c_{i+1}, i=1,2, \cdots, p-1 ; c_{p}^{a}=c_{1}^{t}, c_{i}^{c}=c_{i}^{u}, c_{i}^{b}=c_{i}^{v u^{p-i+1}}$, where t, v and $u(\bmod r)^{\prime} s$ exponents are $p^{\alpha-1}, p^{\beta}$ and p, respectively.
(VI) $G_{6}=\left\langle a, b, c_{1}\right\rangle,\left|G_{6}\right|=p^{\alpha} q r^{p}$ and $p^{\alpha} q|r-1, p| q-1, \alpha \geq 1$.
$a^{p^{\alpha}}=b^{q}=c_{1}^{r}=c_{2}^{r}=\cdots=c_{p}^{r}=1 ; c_{i} c_{j}=c_{j} c_{i}, i, j=1,2, \cdots, p ; c_{i}^{a}=c_{i+1}, i=1$,
$2, \cdots, p-1 ; c_{p}^{a}=c_{1}^{t} ; b^{a}=b^{u}, c_{i}^{b}=c_{i}^{u^{u^{i-1}}}, i=1,2, \cdots, p$; where t and $v(\bmod r)^{\prime} s$ exponents are $p^{\alpha-1}$ and q, respectively; $u(\bmod q)^{\prime} s$ exponent is p.
A finite group G is called a simple K_{n}-group if G is a simple group with $|\pi(G)|=n$ (see [4]).
Lemma 2.3. ([11]) A K_{3}-simple group is isomorphic to one of the groups $L_{2}(5), L_{2}(9), L_{2}(7)$, $\left.L_{2}(8)\right), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)$.

Lemma 2.4. Let G be a simple group with non-solvable proper subgroups. If G is not isomorphic to $L_{2}(q)$ and the non-solvable composition factors of all non-solvable maximal subgroups of G are isomorphic to A_{5}, then $G \in\left\{L_{3}(5), U_{3}(4)\right\}$.

Proof (1) Suppose that $G \cong A_{n}$. If $n>6$, then A_{n} has a simple maximal subgroup A_{n-1} such that A_{n-1} is not isomorphic to A_{5}. Hence $n \leq 6$. Since $A_{6} \cong L_{2}(9)$ and all maximal subgroup of A_{5} are solvable by [6], a contradiction.
(2) Suppose that G is a sporadic simple group. Since J_{3} has a maximal subgroup $L_{2}(19)$, we have $G \not \approx J_{3}$. But if $G \not \approx J_{3}$, by $[6], G$ has a maximal subgroup M containing a section $L_{2}(11)$ or $L_{2}(7)$, so the non-solvable composition factors of M are not isomorphic to A_{5}, a contradiction.
(3) Let G be a Lie type simple group over $G F(q)$, where $q=p^{f}$ and p is a prime. Checking the subgroup listed in Lemma [19, Lemma 2.5], the possibility of G is one of groups $L_{n}(q)$, $D_{4}(q), U_{n}(q)$. Since $D_{4}(q)$ has a section $D_{3}(q)$, we have $G \not \approx D_{4}(q)$. Assume that $G \cong L_{n}(q)$ with $n \geq 3$. Note that G has a section $L_{n-1}(q)$. We have $n=3$ and $q \leq 5$. Since $L_{3}(4)$ has a maximal subgroup $L_{2}(7)$ and $L_{3}(3)$ is a minimal nonsolvable simple group, we have $G \cong L_{3}(5)$. Suppose that $G \cong U_{n}(q)$ with $n \geq 3$. Since $U_{n-1}(q)$ is a section of $U_{n}(q)$, we have $n=3$ and $q \leq 5$. Note that $U_{3}(3)$ and $U_{3}(5)$ have a section $L_{2}(7)$ and A_{7}, respectively. So we are left with $G \cong U_{3}(4)$, and hence the result is true.
Lemma 2.5. ([18]) Let G be a minimal simple group, then G is isomorphic to one of following groups.
(1) $G \cong L_{2}(q)$ with $q=p^{f},|G|=\frac{1}{d} q\left(q^{2}-1\right)$ with $d=(2, q-1)$.
(2) $G \cong L_{2}\left(2^{q}\right), q$ is an odd prime, $|G|=2^{q}\left(2^{2 q}-1\right)$.
(3) $G \cong L_{2}\left(3^{q}\right), q$ is an odd prime, $|G|=\frac{1}{2} 3^{q}\left(3^{2 q}-1\right)$.
(4) $G \cong S z\left(2^{q}\right), q$ is an odd prime, $|G|=\left(2^{2 q}+1\right) 2^{2 q}\left(2^{q}-1\right)$.
(5) $G \cong L_{3}(3),|G|=2^{4} \cdot 3^{3} \cdot 13$.

3. Main results and their proofs

Theorem 3.1. Let G be a non-solvable group. If $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right| \leq 2$ for $g \in G$ and any cyclic subgroup H of G of prime power order, then $G / S(G)$ is isomorphic to one of A_{5} or S_{5}.

Proof Clearly, the condition holds in every subgroup of G. For any $N \triangleleft G$, we consider $\bar{G}=G / N$. Let $C / N=\bar{C}$ be a cyclic subgroup of \bar{G} such that the order of C / N is a power of a prime. Then there exists a cyclic subgroup H of G such that $C / N=H N / N$ and the order of H is a power of a prime. For any $g \in G$, we have $\left\langle H N / N,(H N / N)^{g}\right\rangle=\left\langle H N / N, H^{g} N / N\right\rangle=$ $\left\langle H, H^{g}\right\rangle N / N$. It is easy to see that

$$
\left|\left\langle H N / N,(H N / N)^{g}\right\rangle: H N / N\right|=\left|\left\langle H, H^{g}\right\rangle: H\right| /\left|\left\langle H, H^{g}\right\rangle \cap N: H \cap N\right| .
$$

By the hypothesis, $\left.\left|\pi\left(\mid\left\langle C / N,(C / N)^{g}\right\rangle: C / N\right)\right|\right)\left|\leq\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right| \leq 2\right.$, so the condition holds in every epimorphic image of G.

Now suppose that G is a minimal counterexample to our theorem. Then G is non-solvable and $S(G)=1$. Since every proper subgroup of G satisfies the condition of Theorem 3.1, by the minimality of G, every proper subgroup H of G is either solvable or $\operatorname{Soc}(H / S(H))=A_{5}$. If $\operatorname{Soc}(G) \neq G$, since the condition is subgroup heredity, we have $\operatorname{Soc}(G) \cong A_{5}$ and the result is true. If $\operatorname{Soc}(G)=G$, since $S(G)=1, G$ must be a simple group. If G has non-solvable maximal
subgroups, since the non-solvable composition factors of all non-solvable maximal subgroups of G are isomorphic to A_{5}, by Lemma 2.4, G is one of $L_{2}(q), L_{3}(5)$ and $U_{3}(4)$. If all maximal subgroups of G are solvable, then G is the minimal simple subgroup listed in Lemma 2.5. Hence we can divide the proof into the following cases.
(1) $G \cong L_{2}(q)$ with $q=p^{f},|G|=\frac{1}{d} q\left(q^{2}-1\right)$ with $d=(2, q-1)$.

Suppose that $f \neq 1$, let $f_{1} \mid f$ such that $f / f_{1}=s$, a prime. Then G has a section $L_{2}\left(p^{f_{1}}\right)$, hence $f_{1}=1$ and $p=5$. Let r be a largest primitive prime divisor of $p^{2 s}-1$. By [9], $r>2 s+1$ or $r^{2} \mid p^{s}+1$ and $r=2 s+1$. By Dickson's Theorem [12], the group G has a dihedral maximal subgroup T of order $q+1$. Let H be a Sylow r-subgroup of T, then $T=N_{G}(H)$. Let $g \in G \backslash N_{G}(H)$. Then $H^{g} \not \leq T$ and so $H<\left\langle H, H^{g}\right\rangle \leq G$. If $\left\langle H, H^{g}\right\rangle \neq G$, then there exists a maximal subgroup S of G such that $H<\left\langle H, H^{g}\right\rangle \leq S$. Since $|H| \nmid\left|A_{5}\right|$, by Dickson's Theorem and $r \nmid q-1$, it is easy to see that S is a dihedral subgroup of G of order $q+1$ and so $S=N_{G}(H)=T$, this is impossible. This implies that $G=\left\langle H, H^{g}\right\rangle$. It is clear that $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right| \geq 3$, a contradiction. Hence we may assume that $f=1$ and $q=p$, a prime. We choose $H=G_{p} \in \operatorname{Syl}_{p}(G)$ and $g \in G \backslash N_{G}(H)$. If $\left\langle H, H^{g}\right\rangle \neq G$, then there exists a maximal subgroup T of G such that $H<\left\langle H, H^{g}\right\rangle \leq T$. By Dickson's Theorem [12], if T contains a cyclic subgroup of order p, then T is a normalizer of some Sylow p-subgroup S of G, that is, $T=N_{G}(S)$ and $S \in S y l_{p}(G)$. By the uniqueness of Sylow p-subgroup of $T=N_{G}(S)$, we have $H^{g}=H$, thus $g \in N_{G}(H)$, a contradiction. This implies that $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right|=|\pi(|G: H|)| \geq|\pi(G)|-1$. If $|\pi(G)| \geq 4$, then $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right| \geq 3$, a contradiction. So $|\pi(G)|=3$. By Lemma 2.3, G is isomorphic to one of simple groups $L_{2}(5), L_{2}(7), L_{2}(17)$.

Suppose that $G \cong L_{2}(7)$, then G has two maximal subgroups classes S_{4} and $7: 3$, which have different orders. Let $a \in S_{4}$ and $g \in G$ such that $|a|=4$ and $|g|=7$. Then $D_{8}=N_{G}(\langle a\rangle)$. If $\left\langle a, a^{g}\right\rangle \leq S_{4}$, then there exists $x \in S_{4}$ such that $a^{g}=a^{x}$, thus $\left(g x^{-1}\right) a=a\left(g x^{-1}\right)$. Since $C_{G}(a)=\langle a\rangle, g x^{-1} \in\langle a\rangle$. Hence $g \in S_{4}$, this is impossible. So $\left\langle a, a^{g}\right\rangle \not \leq S_{4}$, and $\left\langle a, a^{g}\right\rangle=G$, $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right|=3$, a contradiction.
Suppose that $G \cong L_{2}(17)$, then D_{16} is a maximal subgroup of G. Let $a \in D_{16}$ and $g \in G$ such that $|a|=8$ and $|g|=17$. Then $D_{16}=N_{G}(\langle a\rangle)$. If $\left\langle\langle a\rangle,\langle a\rangle^{g}\right\rangle \leq D_{16}$, then $\langle a\rangle=\langle a\rangle^{g}$, $g \in D_{16}$, a contradiction. Hence $\left\langle\langle a\rangle,\langle a\rangle^{g}\right\rangle \not \approx D_{16}$. From all maximal subgroup of G, it is easy to see that $\left\langle\langle a\rangle,\langle a\rangle^{g}\right\rangle=G$. We have $\left|\pi\left(\left|\left\langle\langle a\rangle,\langle a\rangle^{g}\right\rangle:\langle a\rangle\right|\right)\right|=3$, a contradiction.

If $G \cong L_{2}(5)$, then $G \cong A_{5}$ and the result is true.
(2) $G \cong L_{2}\left(2^{q}\right), q$ is an odd prime, $|G|=2^{q}\left(2^{2 q}-1\right)$.

Suppose that G is isomorphic to $L_{2}(8)$, then G has three maximal subgroups classes $2^{3}: 7, D_{18}$ and D_{14}, which have different orders. Let L be a subgroup of D_{18} of order 3, then $D_{18}=N_{G}(L)$. Let $g \in G$ with $|g|=7$. Since the subgroup of D_{18} of order 3 is unique, if $\left\langle L, L^{g}\right\rangle \leq D_{18}$, then $L=L^{g}$, this is impossible. Hence $\left\langle L, L^{g}\right\rangle \not \leq D_{18}$ and $\left\langle L, L^{g}\right\rangle=G,\left|\pi\left(\left\langle L, L^{g}\right\rangle: L\right)\right|=3$, a contradiction. Hence we assume that $q>3$. By Dickson's Theorem, G has a maximal subgroup T such that T is a dihedral group of order $2\left(2^{q}+1\right)$. Let T_{1} be a maximal cyclic subgroup of T with order $2^{q}+1$. We choose $H=R \in \operatorname{Syl}_{r}\left(T_{1}\right)$ and $g \in G \backslash N_{G}(H)$, where $r=\max \left(\pi\left(T_{1}\right)\right)$ and $|H|=|R|=r^{i}$, then $T=N_{G}(H)$ and $H<\left\langle H, H^{g}\right\rangle \leq G$. If $\left\langle H, H^{g}\right\rangle \neq G$, then there exists a maximal subgroup S of G such that $H<\left\langle H, H^{g}\right\rangle \leq S$. By Dickson's Theorem [12], if S contains a cyclic subgroup of order r^{i}, then S is a dihedral subgroup of G of order $2\left(2^{q}+1\right)$. Since there is a unique cyclic subgroup of order r^{i} in a dihedral group of order $2\left(2^{q}+1\right)$, we have $H^{g}=H$, thus $g \in N_{G}(H)$, a contradiction. Hence $\left\langle H, H^{g}\right\rangle=G$. This implies that $\left|\pi\left(\left|\left\langle H, H^{g}\right\rangle: H\right|\right)\right|=|\pi(|G: H|)| \geq|\pi(G)|-1$. By Lemma 2.3, $|\pi(G)| \geq 4$, hence $\left|\pi\left(\left\langle H, H^{g}\right\rangle: H\right)\right| \geq 3$, a contradiction.
(3) $G \cong L_{2}\left(3^{q}\right), q$ is an odd prime, $|G|=\frac{1}{2} 3^{q}\left(3^{2 q}-1\right)$.

By Dickson's Theorem, G has a dihedral maximal subgroup T of order $3^{q}+1$. Let T_{1} be a maximal cyclic subgroup of T with order $\frac{1}{2}\left(3^{q}+1\right)$. We choose $H=R \in \operatorname{Syl}_{r}\left(T_{1}\right)$ and $g \in G \backslash N_{G}(H)$, where $r=\max \left(\pi\left(T_{1}\right)\right)$ and $|H|=|R|=r^{i}$, then $T=N_{G}(H)$ and $H<\left\langle H, H^{g}\right\rangle \leq G$. Since q is an odd prime, we have $\left|\pi\left(L_{2}\left(3^{q}\right)\right)\right| \geq 4$. Using the same method as (2), we still get a contradiction.
(4) $G \cong S z\left(2^{q}\right), q$ is an odd prime, $|G|=\left(2^{2 q}+1\right) 2^{2 q}\left(2^{q}-1\right)$.

By [17], G has a maximal subgroup T of order $2^{2}\left(2^{q}+2^{\frac{q+1}{2}}+1\right)$. Let T_{1} be a maximal cyclic subgroup of T with order $2^{q}+2^{\frac{q+1}{2}}+1$. We choose $H=R \in \operatorname{Syl}_{r}\left(T_{1}\right)$ and $g \in G \backslash N_{G}(H)$, where $r=\max \left(\pi\left(T_{1}\right)\right)$ and $|H|=|R|=r^{i}$, then $T=N_{G}(H)$ and $H<\left\langle H, H^{g}\right\rangle \leq G$. Since q is an odd prime, we have $\left|\pi\left(S z\left(2^{q}\right)\right)\right| \geq 4$. Using the same method as (2), we also get a contradiction.
(5) $G \cong L_{3}(3),|G|=2^{4} \cdot 3^{3} \cdot 13$.

By [6], the maximal subgroup of G containing a Sylow 2-subgroup of G is isomorphic to $M=3^{2}: 2 S_{4}$. Let L be a cyclic subgroup of M of order 8 and $g \in G$ with $|g|=13$, then $C_{G}(L)=L$. Since $|\operatorname{Aut}(L)|=4$, we have $\left|N_{G}(L)\right|=2^{4}$ and $N_{G}(L) \in \operatorname{Syl}_{2}(G)$. Without loss of generality, we may assume that $N_{G}(L) \leq M$. If $\left\langle L, L^{g}\right\rangle \leq M$, then there exist $m \in M$ such that $N_{G}(L)=N_{G}(L)^{g m}$. Since $N_{G}\left(N_{G}(L)\right)=N_{G}(L), g=a m^{-1}$, where $a \in N_{G}(L)$. Thus $g \in M$, a contradiction. Hence $\left\langle L, L^{g}\right\rangle=G$, we have $\left|\pi\left(\left\langle L, L^{g}\right\rangle: L\right)\right|=3$, a contradiction.
(6) $G \cong L_{3}(5),|G|=2^{5} \cdot 3 \cdot 5^{3} \cdot 31$.

By [6], the maximal subgroup M of G containing a Sylow 31-subgroup of G is isomorphic to $31: 3$. Let L be a cyclic subgroup of M of order 31 and $g \in G$ with $|g|=5$. Then $M=N_{G}(L)$ and $g \notin M$. If $\left\langle L, L^{g}\right\rangle<G$, then $\left\langle L, L^{g}\right\rangle$ is contained in M, as M is the unique maximal subgroup containing L, hence $L^{g}=L$ and so $g \in M$, a contradiction. Thus $\left\langle L, L^{g}\right\rangle=G$ and we have $\left|\pi\left(\left\langle L, L^{g}\right\rangle: L\right)\right|=3$, a contradiction.
(7) $G \cong U_{3}(4),|G|=2^{6} \cdot 3 \cdot 5^{2} \cdot 13$.

By [6], the maximal subgroup M of G containing a Sylow 13 -subgroup of G is isomorphic to $13: 3$. The proof is similar to the case $G \cong L_{3}(5)$.
These contradictions complete the proof of this theorem.
Theorem 3.2. Let G be a group. Assume that $\left|\left\langle H, H^{g}\right\rangle: H\right|$ is a prime power for $g \in G$ and any cyclic subgroup H of G of prime power order. Then G is solvable.

Proof By Theorem 3.1 and its proof of heredity, if we assume that G is a minimal counterexample to our theorem, then $G \cong A_{5}$. By [8, Proposition 4.21], if H and H^{g} are distinct Sylow 5-subgroups of A_{5}, then $A_{5}=\left\langle H, H^{g}\right\rangle$, a contradiction. This contradiction completes the proof.

Theorem 3.3. Let G be a group. Assume that $\left|\left\langle H, H^{g}\right\rangle: H\right|$ is square-free for $g \in G$ and any cyclic subgroup H of G of prime power order. Then G is supersolvable.

Proof Using the same proof as Theorem 3.1, we may obtain that the condition is subgroup and quotient group heredity. If we suppose that G is a minimal counterexample to our theorem, then G is a minimal inner-supersolvable group. By Lemma 2.2, we may divide the argument into the following cases. In the argument we shall use notations of generating elements of G_{i} in Lemma 2.2.
(1) G is isomorphic to G_{1}.

Then G is isomorphic to an inner-nilpotent group, $G=P Q$, where $P=\langle a\rangle$. We choose $H=P$ and $g=c$, where c is a generator of Q. Then $\left(a^{-1}\right)^{c} \in\left\langle H, H^{c}\right\rangle$, so $[c, a]=\left(a^{-1}\right)^{c} a \in$ $\left\langle H, H^{c}\right\rangle$, thus $a,[c, a],[c, a]^{a}, \cdots,[c, a]^{a^{p-1}}$ belong to $\left\langle H, H^{c}\right\rangle$. By Lemma 2.1 (4) and (5), we have $\left\langle H, H^{c}\right\rangle=G$. Thus, by the hypothesis, $\left|\left\langle H, H^{g}\right\rangle: H\right|=|G: H|=r^{p}$ is square-free, a contradiction.
(2) G is isomorphic to G_{2}.

Let $P \in S y l_{p}(G)$. We choose $H=P=\langle a\rangle$ and $g=c_{1}$, then $\left(a^{-1} a^{c_{1}}\right)^{-1}=c_{1}^{-1} c_{2} \in\left\langle H, H^{c_{1}}\right\rangle$, so $\left(c_{1}^{-1} c_{2}\right)^{a}=c_{2}^{-1} c_{3} \in\left\langle H, H^{c_{1}}\right\rangle$, thus $c_{1}^{-1} c_{2} c_{2}^{-1} c_{3}=c_{1}^{-1} c_{3}$ belongs to $\left\langle H, H^{c_{1}}\right\rangle$. Similarly, we have $c_{1}^{-1} c_{4}, c_{1}^{-1} c_{5}, \cdots c_{1}^{-1} c_{p}$ belong to $\left\langle H, H^{c_{1}}\right\rangle$. Then $\left(c_{1}^{-1} c_{p}\right)^{a}=c_{2}^{-1} c_{1}^{t} \in\left\langle H, H^{c_{1}}\right\rangle$, so $c_{1}^{-1} c_{2} c_{2}^{-1} c_{1}^{t}=$ $c_{1}^{t-1} \in\left\langle H, H^{c_{1}}\right\rangle$. Since $t(\bmod r)^{\prime} s$ exponent is $p^{\alpha-1}$ and $\alpha \geq 2$, we get $(t-1, r)=1$, thus $c_{1} \in\left\langle H, H^{c_{1}}\right\rangle$. Hence a, c_{1}, \cdots, c_{p} belong to $\left\langle H, H^{c_{1}}\right\rangle,\left\langle H, H^{c_{1}}\right\rangle=G$. By the hypothesis, $\left|\left\langle H, H^{g}\right\rangle: H\right|=|G: H|=r^{p}$ is square-free, a contradiction.
(3) G is isomorphic to G_{3}.

We choose $H=\langle a\rangle$ and $g=c_{1}$. Let $T=\left\langle a, a^{c_{1}}\right\rangle$. Then $a^{-1} a^{c_{1}}=\left(c_{1}^{-1}\right)^{a} c_{1}=c_{2}^{-1} c_{1} \in T$, $\left(c_{2}^{-1} c_{1}\right)^{a}=c_{1} c_{2} \in T$, thus $c_{2}^{-1} c_{1} c_{1} c_{2}=\left(c_{1}\right)^{2} \in T$. Since $(2, r)=1$, we have $c_{1} \in T$, then $\left\{a, c_{1}, c_{2}\right\} \subset T$. So $|T: H|=r^{2}$, contrary to the condition that $\left|\left\langle H, H^{g}\right\rangle: H\right|=|T: H|$ is square-free.
(4) G is isomorphic to G_{t}, where $t \in\{4,5,6\}$.

We choose $H=\langle a\rangle$ and $g=c_{1}$. Let $T=\left\langle a, a^{c_{1}}\right\rangle$. Assume that $p \geq 3$. Then $a^{-1} a^{c_{1}}=$ $\left(c_{1}^{-1}\right)^{a} c_{1}=c_{2}^{-1} c_{1} \in T,\left(c_{2}^{-1} c_{1}\right)^{a}=c_{3}^{-1} c_{2} \in T$, thus $c_{2}^{-1} c_{1} c_{3}^{-1} c_{2}=c_{3}^{-1} c_{1} \in T$. So $\left\langle c_{2}^{-1} c_{1}, c_{3}^{-1} c_{1}\right\rangle \leq T$. Obviously, $\left\langle c_{2}^{-1} c_{1}\right\rangle \cap\left\langle c_{3}^{-1} c_{1}\right\rangle=1$, then $r^{2}| |\left\langle c_{2}^{-1} c_{1}, c_{3}^{-1} c_{1}\right\rangle \mid$, hence $r^{2}| | T: H \mid$, contrary to the condition that $\left|\left\langle H, H^{g}\right\rangle: H\right|=|T: H|$ is square-free. Assume that $p=2$ and $\alpha \geq 2$. We have $c_{1} c_{2}^{-1} \in T$ and $\left(c_{1} c_{2}^{-1}\right)^{a}=c_{2} c_{1}^{-t} \in T$, so $c_{1} c_{2}^{-1} c_{2} c_{1}^{-t}=c_{1}^{1-t} \in T$. Since $t(\bmod r)^{\prime} s$ exponent is $p^{\alpha-1}$ and $\alpha \geq 2$, we get $r \nmid t-1$, that is, $(1-t, r)=1$, thus $c_{1} \in T$. Hence a, c_{1}, c_{2} belong to T. So $|T: H|=r^{2}$, contrary to the condition that $\left|\left\langle H, H^{g}\right\rangle: H\right|=|T: H|$ is square-free. Assume that $p=2$ and $\alpha=1$. We choose $H=\langle b\rangle$. Let $g=c_{1}^{-1} c_{2}^{-1}$ and $l=b^{-1} b^{g}$.

Assume that $G \cong G_{4}$. Then $l=c_{1}^{u^{1+p^{\beta-1}}-1} c_{2}^{u^{1+2 p^{\beta-1}}-1}, l^{b}=c_{1}^{u^{1+p^{\beta-1}}\left(u^{1+p^{\beta-1}}-1\right)} c_{2}^{u^{1+2 p^{\beta-1}}\left(u^{1+2 p^{\beta-1}}-1\right)}$ and the order of l is r. Suppose that $l^{b} \in\langle l\rangle$. Then $l^{b}=l^{m}$, where $0 \leq m \leq r-1$, thus

$$
\begin{gathered}
c_{1}^{u^{1+p^{\beta-1}}\left(u^{1+p^{\beta-1}}-1\right)} c_{2}^{u^{1+2 p^{\beta-1}}\left(u^{\left.1+2 p^{\beta-1}-1\right)}=c_{1}^{\left(u^{1+p^{\beta-1}}-1\right) m} c_{2}^{\left(u^{1+2 p^{\beta-1}}-1\right) m}\right.} \begin{array}{c}
c_{1}^{\left(u^{1+p^{\beta-1}}-1\right)\left(u^{1+p^{\beta-1}}-m\right)}=c_{2}^{\left(u^{1+2 p^{\beta-1}}-1\right)\left(m-u^{1+2 p^{\beta-1}}\right)}=1 .
\end{array} .
\end{gathered}
$$

Hence $r \mid\left(u^{1+p^{\beta-1}}-1\right)\left(u^{1+p^{\beta-1}}-m\right)$ and $r \mid\left(u^{1+2 p^{\beta-1}}-1\right)\left(m-u^{1+2 p^{\beta-1}}\right)$. Since $u(\bmod r)^{\prime} s$ exponent is p^{β}, we have $u^{p^{\beta}} \equiv 1(\bmod r)$ and $r \nmid u$. Since $\beta \geq 2$, we have $1+p^{\beta-1}<p^{\beta}$, so $r \nmid u^{1+p^{\beta-1}}-1$, thus $r \mid u^{1+p^{\beta-1}}-m$. If $r \mid u^{1+2 p^{\beta-1}}-1$, then $r \mid u^{1+p^{\beta}}-u^{p^{\beta}}$, so $r \mid u-1$, contrary to the condition that $u(\bmod r)^{\prime} s$ exponent is p^{β}. Thus $r \mid m-u^{1+2 p^{\beta-1}}$, hence $r \mid u^{1+p^{\beta}}-u^{1+p^{\beta-1}}$, so $r \mid u^{p^{\beta-1}(p-1)}-1$, contrary to the condition that $u(\bmod r)^{\prime} s$ exponent is p^{β}. Hence $\langle l\rangle^{b} \neq\langle l\rangle$, $\left\langle l, l^{b}\right\rangle=\left\langle l^{b}\right\rangle \times\langle l\rangle \leq\left\langle b, b^{g}\right\rangle$, we have $r^{2}| |\left\langle b, b^{g}\right\rangle: H \mid$, contrary to the condition that $\left|\left\langle b, b^{g}\right\rangle: H\right|$ is square-free.

Assume that $G \cong G_{5}$. Then $l=c_{1}^{v u^{p}-1} c_{2}^{v u^{p-1}-1}, l^{b}=c_{1}^{v u^{p}\left(v u^{p}-1\right)} c_{2}^{v u^{p-1}\left(v u^{p-1}-1\right)}$, the order of l is r. Suppose that $l^{b} \in\langle l\rangle$. Then $l^{b}=l^{m}$, where $0 \leq m \leq r-1$, thus

$$
\begin{gathered}
c_{1}^{v u^{p}\left(v u^{p}-1\right)} c_{2}^{v u^{p-1}\left(v u^{p-1}-1\right)}=c_{1}^{\left(v u^{p}-1\right) m} c_{2}^{\left(v u^{p-1}-1\right) m} \\
c_{1}^{\left(v u^{p}-1\right)\left(v u^{p}-m\right)}=c_{2}^{\left(v u^{p-1}-1\right)\left(m-v u^{p-1}\right)}=1
\end{gathered}
$$

Hence $r \mid\left(v u^{p}-1\right)\left(v u^{p}-m\right)$ and $r \mid\left(v u^{p-1}-1\right)\left(m-v u^{p-1}\right)$. Since $v, u(\bmod r)^{\prime} s$ exponent are p^{β} and p respectively, we have $v^{p^{\beta}} \equiv 1(\bmod r)$ and $u^{p} \equiv 1(\bmod r)$. If $r \mid v u^{p}-1$, then $r \mid v u^{p}-1-\left(u^{p}-1\right)$, that is, $r \mid u^{p}(v-1)$, so $r \mid v-1$, contrary to the condition that $v(\bmod r)^{\prime} s$ exponent is p^{β}. So $r \mid v u^{p}-m$. If $r \mid v u^{p-1}-1$, then $r \mid u^{p}-1-\left(v u^{p-1}-1\right)$, that is, $r \mid u-v$, so $r \mid v^{p}-1$, thus $\beta=\alpha=1$, we have the complement of Sylow r-subgroup in G is abelian, a contradiction. Hence $r \mid m-v u^{p-1}$, thus $r \mid v u^{p}-v u^{p-1}$, so $r \mid u-1$, again a contradiction. Hence $l^{b} \notin\langle l\rangle,\left\langle l, l^{b}\right\rangle=\left\langle l^{b}\right\rangle \times\langle l\rangle \leq\left\langle b, b^{g}\right\rangle$, we have $r^{2}| |\left\langle b, b^{g}\right\rangle: H \mid$, contrary to the condition that $\left|\left\langle b, b^{g}\right\rangle: H\right|$ is square-free.

Assume that $G \cong G_{6}$. Then $l=c_{1}^{v-1} c_{2}^{v^{u}-1}, l^{b}=c_{1}^{v(v-1)} c_{2}^{v^{u}\left(v^{u}-1\right)}$ and the order of l is r. Suppose that $l^{b} \notin\langle l\rangle$. Then $l^{b}=l^{m}$, where $0 \leq m \leq r-1$, that is, $c_{1}^{v(v-1)} c_{2}^{v^{u}\left(v^{u}-1\right)}=c_{1}^{(v-1) m} c_{2}^{\left(v^{u}-1\right) m}$, we have $c_{1}^{(v-1)(v-m)}=c_{2}^{\left(v^{u}-1\right)\left(m-v^{u}\right)}=1$. Hence $r \mid(v-1)(v-m)$ and $r \mid\left(v^{u}-1\right)\left(m-v^{u}\right)$. Since $v(\bmod r)^{\prime} s$ exponent is q, we have $v^{q} \equiv 1(\bmod r), r \nmid v$ and $r \mid v-m$. If $r \mid v^{u}-1$, then $q \mid u$, contrary to the condition that $u(\bmod q)^{\prime} s$ exponent is p. So $r \mid v^{u}-m$, thus $r \mid v^{u}-v$ and so $r \mid\left(v^{u-1}-1\right)$. As before, $q \mid u-1$, again a contradiction. Hence $l^{b} \notin\langle l\rangle$, $\left\langle l, l^{b}\right\rangle=\left\langle l^{b}\right\rangle \times\langle l\rangle \leq\left\langle b, b^{g}\right\rangle$. Therefore, $r^{2}| |\left\langle b, b^{g}\right\rangle: H \mid$, contrary to the condition that $\left|\left\langle b, b^{g}\right\rangle: H\right|$ is square-free.

These contradictions complete the proof of this theorem.

4. Acknowledgments

The authors are grateful to the referee and the editor Rosihan Ali who provided their valuable suggestions and help.

References

[1] A. Ballester-Bolinches; L. M. Ezquerro. Classes of finite groups. Berlin-Heidelberg-New York: SpringerVerlag, 2006.
[2] A. Ballester-Bolinches; R. Esteban-Romero. On minimal non-supersoluble groups. Rev. Mat. Iberoam., 2007, 23: 127-142.
[3] A. Ballester-Bolinches; R. Esteban-Romero; D. J. S. Robinson. On finite minimal nonnilpotent groups. Proc. Amer. Math. Soc., 2005, 133(12): 3455-3462.
[4] Y. Bugeaud; Z. Cao; M. Mignotte. On simple K_{4}-groups. J. Algebra, 2001, 241: 658-668.
[5] Chen, Zhongmu. Inner outer \sum-group and minimal non \sum-group. Southeast Normal University Press, Chongqing, 1988.
[6] J. H. Conway; R. T. Curtis; S. P. Norton; R. A. Parker; R. A. Wilson. ATLAS of Finite Groups. Clarendon Press, Oxford, 1985.
[7] K. Doerk; T. Hawkes. Finite Soluble Groups. Walter de Gruyter. Berlin. New York, 1992.
[8] D. Dummit; R. Foote. Abstract Algebra, third edition. J. Wiley \& Sons Inc., 2004.
[9] Walter Feit. On Large Zsigmondy primes. Proc. Amer. Math. Soc., 1988, 102(1): 29-33.
[10] Guo, Wenbin; Feng, Xiuxian; Huang, Jianhong. New characterizations of some classes of finite groups. Bull. Malays. Math. Sci. Soc. (2), 2011, 34(3): 575-589.
[11] M. Herzog. On finite simple groups of order divisible by three primes only. J. Algebra, 1968, 10: 383-388.
[12] B. Huppert. Endliche Gruppen, I. Springer, New York, Berlin, 1967.
[13] Li, Xianhua; Xu, Yong. Minimal inner- Σ - Ω-groups and their applications. Sci. China Math., 2011, 54(9): 1927-1936.
$[14]$ V. T. Nagrebeckii. Finite minimal non-supersolvable groups. In finite groups(Proc. Gomel Sem., 1973/74)(Russian), 104-108, 229, Izdat."Nauka i Tehnika", Minsk, 1975.
[15] L. Redei. Die endlichen einstufig nichtnilpotenten gruppen. Publ. Math. Debrecen, 1956, 4: 303-324.
[16] D. J. S. Robinson. A Course in the Theory of Groups. New York, Springer-Verlag, 1982.
[17] M. Suzuki. On a class of doubly transitive groups. Ann. of Math., 1962, 75: 105-145.
[18] J. G. Thompson. Nonsolvable finite groups all of whose local subgroups are solvable, I. Bull. Amer. Math. Soc., 1968, 74: 383-437.
[19] Zhang, Xinjian; Li, Xianhua. On the normal index and the c-section of maximal subgroups of a finite group. J. Group Theory, 2010, 13(3): 447-457.

School of Mathematics Science, Soochow University, Suzhou 215006, P. R. China
E-mail address: xhli@suda.edu.cn
School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China

[^0]: This work was supported by the National Natural Science Foundation of China (Grant N.11171243), the Scientific Research Foundation for Doctors, Henan University of Science and Technology (N. 09001610).

