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1. Introduction and Preliminaries

All groups in this paper are finite. Let π(G) stand for the set of all prime divisors of the
order of a group G, |π(G)| the number of the elements of π(G), S(G) and Soc(G) the largest
normal solvable subgroup and the socle of G, respectively. Let F denote a formation, U the
class of supersolvable groups.

Let Σ be an abstract group theoretical property, for example, solvability, nilpotency, super-
solvability, p-closed, etc. Following Chen in [5], if all proper subgroups or all proper quotient
groups of a group G have the property Σ but G does not have the property Σ, we say that
G is an inner-Σ-group or an outer-Σ-group, respectively. If G is both an inner-Σ-group and
an outer-Σ-group, then G is called a minimal non-Σ-group. The inner-Σ-groups here are also
called minimal non-Σ-groups in [16, p.258] or [2], or critical groups or S-critical groups for the
class of Σ-groups in [7, VII, 6.1] or [1, p.252], respectively. The outer-Σ-groups here just are the
groups in the boundary or Q-boundary of Σ in [7, III, 2.1] or [1, 2.3.6]. In [13], we introduced
the concepts of inner-Σ-Ω-groups and outer-Σ-Ω-groups by replacing all proper subgroups and
all proper quotient groups of a group G with subsets Ω of proper subgroups and proper quotient
groups of a group. The other notations and terminologies in this paper are standard (see [12]).

Let H ≤ G. We have H ≤ 〈H, Hg〉 ≤ 〈H, g〉 for any g ∈ G. It is clear that H = 〈H, Hg〉 for
all g ∈ G if and only if H £ G. In [7], H is called abnormal in G if 〈H, Hg〉 = 〈H, g〉 for all
g ∈ G. The famous Wielandt theorem shows that H ¢ ¢〈H, Hg〉 for all g ∈ G if and only if
H ¢ ¢G. In [16] H is called pronormal in G if H is conjugate to Hg in 〈H, Hg〉 for all g ∈ G.
Those show that the normality of a subgroup H in G may be detected from the normality of
H in 〈H, Hg〉. Loosely speaking, the more 〈H, Hg〉 is near 〈H, g〉, the more H is not normal;
the more 〈H, Hg〉 is near H, the more H is normal. The size of 〈H, Hg〉 is a measurement of
normalities of H in G, or identity the size of 〈H, Hg〉 by the kinds of generalized normalities
of H in G. This leads us to investigate properties of G from the size of H in 〈H, Hg〉. In this
paper, we investigate the influence of the index of the subgroup H in 〈H, Hg〉 on the structure
of G for cyclic subgroups H of G and g ∈ G and get some results.

This work was supported by the National Natural Science Foundation of China (Grant N.11171243), the
Scientific Research Foundation for Doctors, Henan University of Science and Technology (N. 09001610).
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2. Preliminaries

As introduced in [2], the inner-nilpotent groups and minimal non-supersolvable groups are
classified completely by Redei in [15] and Nagebeckïı in [14] respectively. For the convenience
of future reference, we collect the results given by Chen in [5] in Lemma 2.1 and Lemma 2.2.

Lemma 2.1. ( [5, Theorem 1.1]) Suppose that G is an inner-nilpotent group. Then

(1) There are primes p and q such that |G| = paqb.

(2) G has a normal Sylow q-subgroup Q; if q > 2, then exp(Q) = q and if q = 2, then
exp(Q) ≤ 4; G has a cyclic Sylow p-subgroup P = 〈a〉.

(3) Let c ∈ Q, then c is a generator if and only if [c, a] 6= 1.

(4) If c is a generator of Q, then [c, a] = c−1ca is also a generator of Q.

(5) If c is a generator of Q, then Q = 〈c, ca, · · · , cap−2
, cap−1〉, namely, Q = 〈[c, a], [c, a]a,

· · · , [c, a]a
p−1〉.

Minimal inner-supersolvale groups have six classes. We fix the notations Gt standing for a
group in the t-th classes and Gt may be described in the following Lemma 2.2 in this paper.

Lemma 2.2. ( [5, p.49-51, Theorem 7.3]) Suppose that a group G is minimal inner-supersolvable.
Then G ∼= Gt and Gt satisfies one of the following, where 1 ≤ t ≤ 6.

(I) G1 is a minimal nonabelian group and |G1| = pqβ, where p - q − 1, β ≥ 2.

(II) G2 = 〈a, c1〉 and |G2| = pαrp and pα−1‖r − 1, where α ≥ 2,
apα

= cr
1 = cr

2 = · · · = cr
p = 1; cicj = cjci; ca

i = ci+1, i = 1, 2, · · · , p − 1; ca
p = ct

1,

where t(mod r)
′
s exponent is pα−1.

(III) G3 = 〈a, b, c1〉 and |G3| = 8r2 and 4 | r − 1.
a4 = cr

1 = cr
2 = 1, a2 = b2, ba = a−1b, ca

1 = c2, ca
2 = c−1

1 , cb
1 = cs

1, cb
2 = cs

2,
where s(mod r)

′
s exponent is 4.

(IV) G4 = 〈a, b, c1〉 and |G4| = pα+βrp and pmax{α,β} | r − 1, where β ≥ 2.

apα
= bpβ

= cr
1 = cr

2 = · · · = cr
p = 1; cicj = cjci, ab = b1+pβ−1

a; ca
i = ci+1, i = 1, 2, · · · ,

p− 1; ca
p = ct

1, cb
i = cu1+ipβ−1

i , i = 1, 2, · · · , p; where t and u(mod r)
′
s exponent are pα−1

and pβ, respectively.

(V) G5 = 〈a, b, c, c1〉 and |G5| = pα+β+1rp and pmax{α,β} | r − 1.

apα
= bpβ

= cp = cr
1 = cr

2 = · · · = cr
p = 1; cicj = cjci, ba = abc, ca = ac, cb = bc,

ca
i = ci+1, i = 1, 2, · · · , p− 1; ca

p = ct
1, cc

i = cu
i , cb

i = cvup−i+1

i , where t, v and u(mod r)
′
s

exponents are pα−1, pβ and p, respectively.

(VI) G6 = 〈a, b, c1〉, |G6| = pαqrp and pαq | r − 1, p | q − 1, α ≥ 1.
apα

= bq = cr
1 = cr

2 = · · · = cr
p = 1; cicj = cjci, i, j = 1, 2, · · · , p; ca

i = ci+1, i = 1,

2, · · · , p − 1; ca
p = ct

1; ba = bu, cb
i = cvui−1

i , i = 1, 2, · · · , p; where t and v(mod r)
′
s

exponents are pα−1 and q, respectively; u(mod q)
′
s exponent is p.

A finite group G is called a simple Kn-group if G is a simple group with |π(G)| = n (see [4]).

Lemma 2.3. ( [11]) A K3-simple group is isomorphic to one of the groups L2(5), L2(9), L2(7),
L2(8)), L2(17), L3(3), U3(3), U4(2).
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Lemma 2.4. Let G be a simple group with non-solvable proper subgroups. If G is not isomor-
phic to L2(q) and the non-solvable composition factors of all non-solvable maximal subgroups
of G are isomorphic to A5, then G ∈ {L3(5), U3(4)}.

Proof (1) Suppose that G ∼= An. If n > 6, then An has a simple maximal subgroup An−1

such that An−1 is not isomorphic to A5. Hence n ≤ 6. Since A6
∼= L2(9) and all maximal

subgroup of A5 are solvable by [6], a contradiction.

(2) Suppose that G is a sporadic simple group. Since J3 has a maximal subgroup L2(19),
we have G 6∼= J3. But if G 6∼= J3, by [6], G has a maximal subgroup M containing a section
L2(11) or L2(7), so the non-solvable composition factors of M are not isomorphic to A5, a
contradiction.

(3) Let G be a Lie type simple group over GF (q), where q = pf and p is a prime. Checking
the subgroup listed in Lemma [19, Lemma 2.5], the possibility of G is one of groups Ln(q),
D4(q), Un(q). Since D4(q) has a section D3(q), we have G 6∼= D4(q). Assume that G ∼= Ln(q)
with n ≥ 3. Note that G has a section Ln−1(q). We have n = 3 and q ≤ 5. Since L3(4) has a
maximal subgroup L2(7) and L3(3) is a minimal nonsolvable simple group, we have G ∼= L3(5).
Suppose that G ∼= Un(q) with n ≥ 3. Since Un−1(q) is a section of Un(q), we have n = 3 and
q ≤ 5. Note that U3(3) and U3(5) have a section L2(7) and A7, respectively. So we are left with
G ∼= U3(4), and hence the result is true. 2

Lemma 2.5. ( [18]) Let G be a minimal simple group, then G is isomorphic to one of following
groups.

(1) G ∼= L2(q) with q = pf , |G| = 1
d
q(q2 − 1) with d = (2, q − 1).

(2) G ∼= L2(2
q), q is an odd prime, |G| = 2q(22q − 1).

(3) G ∼= L2(3
q), q is an odd prime, |G| = 1

2
3q(32q − 1).

(4) G ∼= Sz(2q), q is an odd prime, |G| = (22q + 1)22q(2q − 1).

(5) G ∼= L3(3), |G| = 24 · 33 · 13.

3. Main results and their proofs

Theorem 3.1. Let G be a non-solvable group. If |π(|〈H, Hg〉 : H|)| ≤ 2 for g ∈ G and any
cyclic subgroup H of G of prime power order, then G/S(G) is isomorphic to one of A5 or S5.

Proof Clearly, the condition holds in every subgroup of G. For any N ¢ G, we consider
G = G/N . Let C/N = C be a cyclic subgroup of G such that the order of C/N is a power of a
prime. Then there exists a cyclic subgroup H of G such that C/N = HN/N and the order of
H is a power of a prime. For any g ∈ G, we have 〈HN/N, (HN/N)g〉 = 〈HN/N, HgN/N〉 =
〈H, Hg〉N/N . It is easy to see that

|〈HN/N, (HN/N)g〉 : HN/N | = |〈H, Hg〉 : H|/|〈H, Hg〉 ∩N : H ∩N |.
By the hypothesis, |π(|〈C/N, (C/N)g〉 : C/N)|)| ≤ |π(|〈H, Hg〉 : H|)| ≤ 2, so the condition
holds in every epimorphic image of G.

Now suppose that G is a minimal counterexample to our theorem. Then G is non-solvable
and S(G) = 1. Since every proper subgroup of G satisfies the condition of Theorem 3.1, by the
minimality of G, every proper subgroup H of G is either solvable or Soc(H/S(H)) = A5. If
Soc(G) 6= G, since the condition is subgroup heredity, we have Soc(G) ∼= A5 and the result is
true. If Soc(G) = G, since S(G) = 1, G must be a simple group. If G has non-solvable maximal
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subgroups, since the non-solvable composition factors of all non-solvable maximal subgroups
of G are isomorphic to A5, by Lemma 2.4, G is one of L2(q), L3(5) and U3(4). If all maximal
subgroups of G are solvable, then G is the minimal simple subgroup listed in Lemma 2.5. Hence
we can divide the proof into the following cases.

(1) G ∼= L2(q) with q = pf , |G| = 1
d
q(q2 − 1) with d = (2, q − 1).

Suppose that f 6= 1, let f1 | f such that f/f1 = s, a prime. Then G has a section L2(p
f1),

hence f1 = 1 and p = 5. Let r be a largest primitive prime divisor of p2s − 1. By [9],
r > 2s+1 or r2 | ps +1 and r = 2s+1. By Dickson’s Theorem [12], the group G has a dihedral
maximal subgroup T of order q + 1. Let H be a Sylow r-subgroup of T , then T = NG(H).
Let g ∈ G \ NG(H). Then Hg � T and so H < 〈H, Hg〉 ≤ G. If 〈H, Hg〉 6= G, then there
exists a maximal subgroup S of G such that H < 〈H, Hg〉 ≤ S. Since |H| - |A5|, by Dickson’s
Theorem and r - q − 1, it is easy to see that S is a dihedral subgroup of G of order q + 1
and so S = NG(H) = T , this is impossible. This implies that G = 〈H, Hg〉. It is clear that
|π(|〈H, Hg〉 : H|)| ≥ 3, a contradiction. Hence we may assume that f = 1 and q = p, a prime.
We choose H = Gp ∈ Sylp(G) and g ∈ G\NG(H). If 〈H, Hg〉 6= G, then there exists a maximal
subgroup T of G such that H < 〈H, Hg〉 ≤ T . By Dickson’s Theorem [12], if T contains a cyclic
subgroup of order p, then T is a normalizer of some Sylow p-subgroup S of G, that is, T = NG(S)
and S ∈ Sylp(G). By the uniqueness of Sylow p-subgroup of T = NG(S), we have Hg = H, thus
g ∈ NG(H), a contradiction. This implies that |π(|〈H, Hg〉 : H|)| = |π(|G : H|)| ≥ |π(G)| − 1.
If |π(G)| ≥ 4, then |π(|〈H, Hg〉 : H|)| ≥ 3, a contradiction. So |π(G)| = 3. By Lemma 2.3, G
is isomorphic to one of simple groups L2(5), L2(7), L2(17).

Suppose that G ∼= L2(7), then G has two maximal subgroups classes S4 and 7 : 3, which have
different orders. Let a ∈ S4 and g ∈ G such that |a| = 4 and |g| = 7. Then D8 = NG(〈a〉).
If 〈a, ag〉 ≤ S4, then there exists x ∈ S4 such that ag = ax, thus (gx−1)a = a(gx−1). Since
CG(a) = 〈a〉, gx−1 ∈ 〈a〉. Hence g ∈ S4, this is impossible. So 〈a, ag〉 � S4, and 〈a, ag〉 = G,
|π(|〈H, Hg〉 : H|)| = 3, a contradiction.

Suppose that G ∼= L2(17), then D16 is a maximal subgroup of G. Let a ∈ D16 and g ∈ G
such that |a| = 8 and |g| = 17. Then D16 = NG(〈a〉). If 〈〈a〉, 〈a〉g〉 ≤ D16, then 〈a〉 = 〈a〉g,
g ∈ D16, a contradiction. Hence 〈〈a〉, 〈a〉g〉 � D16. From all maximal subgroup of G, it is easy
to see that 〈〈a〉, 〈a〉g〉 = G. We have |π(|〈〈a〉, 〈a〉g〉 : 〈a〉|)| = 3, a contradiction.

If G ∼= L2(5), then G ∼= A5 and the result is true.

(2) G ∼= L2(2
q), q is an odd prime, |G| = 2q(22q − 1).

Suppose that G is isomorphic to L2(8), then G has three maximal subgroups classes 23 : 7, D18

and D14, which have different orders. Let L be a subgroup of D18 of order 3, then D18 = NG(L).
Let g ∈ G with |g| = 7. Since the subgroup of D18 of order 3 is unique, if 〈L,Lg〉 ≤ D18, then
L = Lg, this is impossible. Hence 〈L,Lg〉 � D18 and 〈L,Lg〉 = G, |π(〈L,Lg〉 : L)| = 3,
a contradiction. Hence we assume that q > 3. By Dickson’s Theorem, G has a maximal
subgroup T such that T is a dihedral group of order 2(2q + 1). Let T1 be a maximal cyclic
subgroup of T with order 2q + 1. We choose H = R ∈ Sylr(T1) and g ∈ G \ NG(H), where
r = max(π(T1)) and |H| = |R| = ri, then T = NG(H) and H < 〈H, Hg〉 ≤ G. If 〈H, Hg〉 6= G,
then there exists a maximal subgroup S of G such that H < 〈H, Hg〉 ≤ S. By Dickson’s
Theorem [12], if S contains a cyclic subgroup of order ri, then S is a dihedral subgroup of G
of order 2(2q + 1). Since there is a unique cyclic subgroup of order ri in a dihedral group of
order 2(2q + 1), we have Hg = H, thus g ∈ NG(H), a contradiction. Hence 〈H, Hg〉 = G. This
implies that |π(|〈H, Hg〉 : H|)| = |π(|G : H|)| ≥ |π(G)| − 1. By Lemma 2.3, |π(G)| ≥ 4, hence
|π(〈H, Hg〉 : H)| ≥ 3, a contradiction.
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(3) G ∼= L2(3
q), q is an odd prime, |G| = 1

2
3q(32q − 1).

By Dickson’s Theorem, G has a dihedral maximal subgroup T of order 3q + 1. Let T1

be a maximal cyclic subgroup of T with order 1
2
(3q + 1). We choose H = R ∈ Sylr(T1)

and g ∈ G \ NG(H), where r = max(π(T1)) and |H| = |R| = ri, then T = NG(H) and
H < 〈H, Hg〉 ≤ G. Since q is an odd prime, we have |π(L2(3

q))| ≥ 4. Using the same method
as (2), we still get a contradiction.

(4) G ∼= Sz(2q), q is an odd prime, |G| = (22q + 1)22q(2q − 1).

By [17], G has a maximal subgroup T of order 22(2q + 2
q+1
2 + 1). Let T1 be a maximal cyclic

subgroup of T with order 2q + 2
q+1
2 + 1. We choose H = R ∈ Sylr(T1) and g ∈ G \ NG(H),

where r = max(π(T1)) and |H| = |R| = ri, then T = NG(H) and H < 〈H, Hg〉 ≤ G. Since
q is an odd prime, we have |π(Sz(2q))| ≥ 4. Using the same method as (2), we also get a
contradiction.

(5) G ∼= L3(3), |G| = 24 · 33 · 13.

By [6], the maximal subgroup of G containing a Sylow 2-subgroup of G is isomorphic to
M = 32 : 2S4. Let L be a cyclic subgroup of M of order 8 and g ∈ G with |g| = 13, then
CG(L) = L. Since |Aut(L)| = 4, we have |NG(L)| = 24 and NG(L) ∈ Syl2(G). Without loss
of generality, we may assume that NG(L) ≤ M . If 〈L,Lg〉 ≤ M , then there exist m ∈ M such
that NG(L) = NG(L)gm. Since NG(NG(L)) = NG(L), g = am−1, where a ∈ NG(L). Thus
g ∈ M , a contradiction. Hence 〈L,Lg〉 = G, we have |π(〈L,Lg〉 : L)| = 3, a contradiction.

(6) G ∼= L3(5), |G| = 25 · 3 · 53 · 31.

By [6], the maximal subgroup M of G containing a Sylow 31-subgroup of G is isomorphic to
31 : 3. Let L be a cyclic subgroup of M of order 31 and g ∈ G with |g| = 5. Then M = NG(L)
and g 6∈ M . If 〈L,Lg〉 < G, then 〈L,Lg〉 is contained in M , as M is the unique maximal
subgroup containing L, hence Lg = L and so g ∈ M , a contradiction. Thus 〈L,Lg〉 = G and
we have |π(〈L,Lg〉 : L)| = 3, a contradiction.

(7) G ∼= U3(4), |G| = 26 · 3 · 52 · 13.

By [6], the maximal subgroup M of G containing a Sylow 13-subgroup of G is isomorphic to
13 : 3. The proof is similar to the case G ∼= L3(5).

These contradictions complete the proof of this theorem. 2

Theorem 3.2. Let G be a group. Assume that |〈H, Hg〉 : H| is a prime power for g ∈ G and
any cyclic subgroup H of G of prime power order. Then G is solvable.

Proof By Theorem 3.1 and its proof of heredity, if we assume that G is a minimal coun-
terexample to our theorem, then G ∼= A5. By [8, Proposition 4.21], if H and Hg are distinct
Sylow 5-subgroups of A5, then A5 = 〈H, Hg〉, a contradiction. This contradiction completes
the proof. 2

Theorem 3.3. Let G be a group. Assume that |〈H, Hg〉 : H| is square-free for g ∈ G and any
cyclic subgroup H of G of prime power order. Then G is supersolvable.

Proof Using the same proof as Theorem 3.1, we may obtain that the condition is subgroup
and quotient group heredity. If we suppose that G is a minimal counterexample to our theorem,
then G is a minimal inner-supersolvable group. By Lemma 2.2, we may divide the argument
into the following cases. In the argument we shall use notations of generating elements of Gi

in Lemma 2.2.

(1) G is isomorphic to G1.
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Then G is isomorphic to an inner-nilpotent group, G = PQ, where P = 〈a〉. We choose
H = P and g = c, where c is a generator of Q. Then (a−1)c ∈ 〈H, Hc〉, so [c, a] = (a−1)ca ∈
〈H, Hc〉, thus a, [c, a], [c, a]a, · · · , [c, a]a

p−1
belong to 〈H, Hc〉. By Lemma 2.1 (4) and (5), we

have 〈H, Hc〉 = G. Thus, by the hypothesis, |〈H, Hg〉 : H| = |G : H| = rp is square-free, a
contradiction.

(2) G is isomorphic to G2.

Let P ∈ Sylp(G). We choose H = P = 〈a〉 and g = c1, then (a−1ac1)−1 = c−1
1 c2 ∈ 〈H, Hc1〉,

so (c−1
1 c2)

a = c−1
2 c3 ∈ 〈H, Hc1〉, thus c−1

1 c2c
−1
2 c3 = c−1

1 c3 belongs to 〈H, Hc1〉. Similarly, we have
c−1
1 c4, c

−1
1 c5, · · · c−1

1 cp belong to 〈H, Hc1〉. Then (c−1
1 cp)

a = c−1
2 ct

1 ∈ 〈H, Hc1〉, so c−1
1 c2c

−1
2 ct

1 =
ct−1
1 ∈ 〈H, Hc1〉. Since t(mod r)

′
s exponent is pα−1 and α ≥ 2, we get (t − 1, r) = 1, thus

c1 ∈ 〈H, Hc1〉. Hence a, c1, · · · , cp belong to 〈H, Hc1〉, 〈H, Hc1〉 = G. By the hypothesis,
|〈H, Hg〉 : H| = |G : H| = rp is square-free, a contradiction.

(3) G is isomorphic to G3.

We choose H = 〈a〉 and g = c1. Let T = 〈a, ac1〉. Then a−1ac1 = (c−1
1 )ac1 = c−1

2 c1 ∈ T ,
(c−1

2 c1)
a = c1c2 ∈ T , thus c−1

2 c1c1c2 = (c1)
2 ∈ T . Since (2, r) = 1, we have c1 ∈ T , then

{a, c1, c2} ⊂ T . So |T : H| = r2, contrary to the condition that |〈H, Hg〉 : H| = |T : H| is
square-free.

(4) G is isomorphic to Gt, where t ∈ {4, 5, 6}.
We choose H = 〈a〉 and g = c1. Let T = 〈a, ac1〉. Assume that p ≥ 3. Then a−1ac1 =

(c−1
1 )ac1 = c−1

2 c1 ∈ T , (c−1
2 c1)

a = c−1
3 c2 ∈ T , thus c−1

2 c1c
−1
3 c2 = c−1

3 c1 ∈ T . So 〈c−1
2 c1, c

−1
3 c1〉 ≤ T .

Obviously, 〈c−1
2 c1〉 ∩ 〈c−1

3 c1〉 = 1, then r2 | |〈c−1
2 c1, c

−1
3 c1〉|, hence r2 | |T : H|, contrary to the

condition that |〈H, Hg〉 : H| = |T : H| is square-free. Assume that p = 2 and α ≥ 2. We have
c1c

−1
2 ∈ T and (c1c

−1
2 )a = c2c

−t
1 ∈ T , so c1c

−1
2 c2c

−t
1 = c1−t

1 ∈ T . Since t(mod r)
′
s exponent is

pα−1 and α ≥ 2, we get r - t− 1, that is, (1− t, r) = 1, thus c1 ∈ T . Hence a, c1, c2 belong to T .
So |T : H| = r2, contrary to the condition that |〈H, Hg〉 : H| = |T : H| is square-free. Assume
that p = 2 and α = 1. We choose H = 〈b〉. Let g = c−1

1 c−1
2 and l = b−1bg.

Assume that G ∼= G4. Then l = cu1+pβ−1−1
1 cu1+2pβ−1−1

2 , lb = c
u1+pβ−1

(u1+pβ−1−1)
1 c

u1+2pβ−1
(u1+2pβ−1−1)

2

and the order of l is r. Suppose that lb ∈ 〈l〉. Then lb = lm, where 0 ≤ m ≤ r − 1, thus

c
u1+pβ−1

(u1+pβ−1−1)
1 c

u1+2pβ−1
(u1+2pβ−1−1)

2 = c
(u1+pβ−1−1)m
1 c

(u1+2pβ−1−1)m
2 ,

c
(u1+pβ−1−1)(u1+pβ−1−m)
1 = c

(u1+2pβ−1−1)(m−u1+2pβ−1
)

2 = 1.

Hence r | (u1+pβ−1 − 1)(u1+pβ−1 −m) and r | (u1+2pβ−1 − 1)(m − u1+2pβ−1
). Since u(mod r)

′
s

exponent is pβ, we have upβ ≡ 1( mod r) and r - u. Since β ≥ 2, we have 1 + pβ−1 < pβ, so

r - u1+pβ−1−1, thus r | u1+pβ−1−m. If r | u1+2pβ−1−1, then r | u1+pβ−upβ
, so r | u−1, contrary

to the condition that u(mod r)
′
s exponent is pβ. Thus r | m−u1+2pβ−1

, hence r | u1+pβ−u1+pβ−1
,

so r | upβ−1(p−1)−1, contrary to the condition that u(mod r)
′
s exponent is pβ. Hence 〈l〉b 6= 〈l〉,

〈l, lb〉=〈lb〉 × 〈l〉 ≤ 〈b, bg〉, we have r2 | |〈b, bg〉 : H|, contrary to the condition that |〈b, bg〉 : H|
is square-free.

Assume that G ∼= G5. Then l = cvup−1
1 cvup−1−1

2 , lb = c
vup(vup−1)
1 c

vup−1(vup−1−1)
2 , the order of l is

r. Suppose that lb ∈ 〈l〉. Then lb = lm, where 0 ≤ m ≤ r − 1, thus

c
vup(vup−1)
1 c

vup−1(vup−1−1)
2 = c

(vup−1)m
1 c

(vup−1−1)m
2 ,

c
(vup−1)(vup−m)
1 = c

(vup−1−1)(m−vup−1)
2 = 1.
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Hence r | (vup − 1)(vup −m) and r | (vup−1 − 1)(m − vup−1). Since v, u(mod r)
′
s exponent

are pβ and p respectively, we have vpβ ≡ 1( mod r) and up ≡ 1( mod r). If r | vup − 1, then
r | vup−1−(up−1), that is, r | up(v−1), so r | v−1, contrary to the condition that v(mod r)

′
s

exponent is pβ. So r | vup−m. If r | vup−1− 1, then r | up− 1− (vup−1− 1), that is, r | u− v,
so r | vp − 1, thus β = α = 1, we have the complement of Sylow r-subgroup in G is abelian, a
contradiction. Hence r | m − vup−1, thus r | vup − vup−1, so r | u − 1, again a contradiction.
Hence lb 6∈ 〈l〉, 〈l, lb〉=〈lb〉 × 〈l〉 ≤ 〈b, bg〉, we have r2 | |〈b, bg〉 : H|, contrary to the condition
that |〈b, bg〉 : H| is square-free.

Assume that G ∼= G6. Then l = cv−1
1 cvu−1

2 , lb = c
v(v−1)
1 c

vu(vu−1)
2 and the order of l is r. Suppose

that lb 6∈ 〈l〉. Then lb = lm, where 0 ≤ m ≤ r − 1, that is, c
v(v−1)
1 c

vu(vu−1)
2 = c

(v−1)m
1 c

(vu−1)m
2 ,

we have c
(v−1)(v−m)
1 = c

(vu−1)(m−vu)
2 = 1. Hence r | (v − 1)(v − m) and r | (vu − 1)(m − vu).

Since v(mod r)
′
s exponent is q, we have vq ≡ 1( mod r), r - v and r | v − m. If r | vu − 1,

then q | u, contrary to the condition that u(mod q)
′
s exponent is p. So r | vu − m, thus

r | vu − v and so r | (vu−1 − 1). As before, q | u − 1, again a contradiction. Hence lb 6∈ 〈l〉,
〈l, lb〉=〈lb〉×〈l〉 ≤ 〈b, bg〉. Therefore, r2 | |〈b, bg〉 : H|, contrary to the condition that |〈b, bg〉 : H|
is square-free.

These contradictions complete the proof of this theorem. 2
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