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Abstract

Let S be a semigroup and “ ∗ ” a unary operation on S which satisfies

the following identities

xx∗x = x, x∗xx∗ = x∗, x∗∗∗ = x∗, (xy∗)∗ = y∗∗x∗, (x∗y)∗ = y∗x∗∗.

Then S∗ = {x∗|x ∈ S} is called a regular ∗-transversal of S in the litera-

tures. Following Munn and Hall’s idea, in this paper we construct funda-

mental regular semigroups with quasi-ideal regular ∗-transversals by which

fundamental representations of regular semigroups with quasi-ideal regular

∗-transversals are obtained.
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1 Introduction

Let S be a semigroup. We denote the set of all idempotents of S by E(S) and

the set of all inverses of x ∈ S by V (x). Recall that

V (x) = {a ∈ S|xax = x, axa = a}

for all x ∈ S.

A semigroup S is called regular if V (x) ̸= ∅ for any x ∈ S, and a regular

semigroup S is called inverse if E(S) is a commutative subsemigroup of S, or

equivalently, the cardinal of V (x) is equal to 1 for all x ∈ S.
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Recall from Petrich-Reilly [14] that a unary semigroup is a (2,1)-algebra

(S, ·,∗ ) where (S, ·) is a semigroup and the mapping a 7→ a∗ is a unary oper-

ation on S. For brevity, we denote (S, ·,∗ ) by (S, ∗). It is well known that a

regular semigroup S is inverse if and only if there exists a unary operation “ ∗ ”
on S satisfying the following identities:

xx∗x = x, (x∗)∗ = x, (xy)∗ = y∗x∗, xx∗yy∗ = yy∗xx∗. (1.1)

Thus, inverse semigroups can be regarded as a class of unary semigroups.

Inspired the above identity (1.1), regular ∗-semigroups were introduced in

Nordahl-Scheiblich [13]. Recall that a unary semigroup (S, ∗) is called a regular

∗-semigroup if the following identities are satisfied:

xx∗x = x, (x∗)∗ = x, (xy)∗ = y∗x∗. (1.2)

Obviously, the class of regular ∗-semigroups forms a class of unary semigroups

and contains the class of inverse semigroups as a subclass. Regular ∗-semigroups

and their generalizations are investigated in many papers (see [6, 7, 8, 13, 21, 22]).

On the other hand, Blyth-McFadden [1] introduced the concept of inverse

transversals for regular semigroups. A subsemigroup S◦ of a semigroup S is

called an inverse transversal of S if V (x) ∩ S◦ contains one element exactly for

all x ∈ S. Clearly, in this case, S◦ is an inverse subsemigroup of S. From the

remarks following Theorem 2 in Tang [16] and Theorem 4.8 in Tang [17], we can

deduce easily that a regular semigroup S contains an inverse transversal if and

only if there exists a unary operation “∗” on S satisfying the following identities:

xx∗x = x, x∗xx∗ = x∗, x∗∗∗ = x∗, (x∗y)∗ = y∗x∗∗,

(xy∗)∗ = y∗∗x∗, x∗x∗∗y∗y∗∗ = y∗y∗∗x∗x∗∗.
(1.3)

In this case, S◦ = {x∗|x ∈ S} is an inverse transversal of S. Therefore, the class of

regular semigroups with inverse transversals is a class of unary semigroups which

also contains the class of inverse semigroups as a subclass. Inverse transversals of

regular semigroups are studied extensively (for example, see [1, 2, 3, 15, 16, 17]).

Now, let (S, ∗) be a unary semigroup and the unary operation “ ∗ ” satisfy

the following identities

xx∗x = x, x∗xx∗ = x∗, x∗∗∗ = x∗, (xy∗)∗ = y∗∗x∗, (x∗y)∗ = y∗x∗∗. (1.4)

Then S∗ = {x∗|x ∈ S} is called a regular ∗-transversal of S from Li [10]. Clearly,

(S∗, ∗) is a regular ∗-semigroup in this case. Moreover, combining the facts

(1.2) and (1.3), we can see that regular semigroups having regular ∗-transversals
are generalizations of regular ∗-semigroups and regular semigroups with inverse

transversals. In fact, there exists a regular semigroup with quasi-ideal regular ∗-
transversals which is neither a regular ∗-semigroup nor a regular semigroup with

inverse transversals (see Section 2 in [10]).
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Regular ∗-transversals also have received serious attention in the literatures,

see e.g. [9, 10, 11, 18]. Recently, the author considered algebraic structures

of regular semigroups with quasi-ideal regular ∗-transversals in [19] and gave a

classification of regular ∗-transversals in [20], respectively.

A semigroup S is fundamental if the maximum idempotent-separating congru-

ence µS on S is the identity congruence. Structure theorems for certain important

subclasses of the class of fundamental regular semigroups are already known. The

one initiating the work in this direction is due to Munn [12]. He proved that given

a semilattice E, the Munn semigroup TE of all isomorphisms of principal ideals

of E is “maximal” in the class of all fundamental inverse semigroups whose semi-

lattice of idempotents is E, that is, every semigroup belonging to this class is

isomorphic to a full inverse subsemigroup of TE. In [5] Hall introduced a fun-

damental regular semigroup HC for any regular semigroup C generated by the

set of idempotents E(C) which is called a Hall semigroup. Following these direc-

tions, fundamental regular ∗-semigroups are studied in the texts [6], [7] and [22],

and fundamental regular semigroups with inverse transversals are investigated in

Song-Zhu [15].

Inspired by the above works, in this paper we shall initiate the investigations of

regular semigroups with regular ∗-transversals by the above so-called fundamental

approach. After giving some necessary preliminaries in Section 2, we construct

fundamental regular semigroups with a quasi-ideal regular ∗-transversal in Section

3. Finally, fundamental representations of regular semigroups with quasi-ideal

regular ∗-transversals are obtained in section 4.

2 Preliminaries

This section will collect some useful results related to regular ∗-semigroups and

regular ∗-transversals which will used in the next sections. Let (S, ∗) be a regular

∗-semigroup. Then we write (S, ∗) ∈ r, F(S, ∗) = {e ∈ E(S)|e∗ = e} and call

F(S, ∗) the set of idempotent projections of (S, ∗). It is easy to see that

F(S, ∗) = {xx∗|x ∈ S} = {x∗x|x ∈ S}.

On regular ∗-semigroups, we have the following basic results.

Lemma 2.1 ([13],[21]). Let (S, ∗) ∈ r. Then

(1) (∀e, f ∈ F(S, ∗)) ef ∈ F(S, ∗) =⇒ ef = fe ∈ F(S, ∗);

(2) (∀x ∈ S) x ∈ E(S) ⇐⇒ x∗ ∈ E(S);

(3) (F(S, ∗))
2 ⊆ E(S) and xF(S, ∗)x

∗, x∗F(S, ∗)x ⊆ F(S, ∗) for all x ∈ S.
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Now, let (S, ∗) be a unary semigroup and S∗ be a regular ∗-transversal of S.
Then we write (S, ∗) ∈ rt. Thus, (S∗, ∗) ∈ r if (S, ∗) ∈ rt. In this case, we

denote F(S∗, ∗) by FS∗ for simplicity. For idempotent-separating congruences on

S with (S, ∗) ∈ rt, we have the following results by Proposition 4.8 and Exercise

15 of Chapter 2 in [4].

Lemma 2.2 ([4]). Let (S, ∗) ∈ rt, ⟨E(S)⟩ be the subsemigroup of S generated

by E(S) and ρ a congruence on S. Then

(1) ρ is idempotent-separating if and only if ρ ⊆ H.

(2) x ∈ ⟨E(S)⟩ if and only if x∗ ∈ ⟨E(S)⟩.

A quasi-ideal of a semigroup S is a subsemigroup T of S which satisfies that

TST ⊆ T . If (S, ∗) ∈ rt and S∗ is a quasi-ideal of S, then we denote (S, ∗) ∈
qit. In this case, we denote IS = {aa∗|a ∈ S},ΛS = {a∗a|a ∈ S}.

For (S, ∗) ∈ qit, we have the following important result.

Lemma 2.3 (Theorem 1 in [11]). Let (S, ∗) ∈ qit. Then (xy)∗ = y∗(x∗xyy∗)∗x∗

for all x, y ∈ S.

The following several results consider the sets IS and ΛS.

Lemma 2.4 (Lemmas 4.1 and 4.2 in [10]). Let (S, ∗) ∈ qit.

(1) IS = {e ∈ E(S)|eLe∗}, ΛS = {f ∈ E(S)|fRf ∗} and FS∗ = IS ∩ ΛS.

(2) g∗∗ = g∗ ∈ FS∗ for all g ∈ IS ∪ ΛS.

(3) fg ∈ S∗ and so fg = (fg)∗∗for all f ∈ ΛS and g ∈ IS.

Corollary 2.5. Let (S, ∗) ∈ qit. Then (xy)∗∗ = x∗∗x∗xyy∗y∗∗ for all x, y ∈ S.

Proof. This follows from Lemma 2.3 and Lemma 2.4 (3).

By Lemma 2.3 and Lemma 2.4, we can easily obtain the following results.

Lemma 2.6. Let (S, ∗) ∈ qit and e ∈ IS, f ∈ ΛS.

(1) (fe)∗ = e∗(fe)∗ = (fe)∗f∗ = e∗(fe)∗f ∗.

(2) e(fe)∗f ∈ E(S) and (e(fe)∗f)∗ = fe.

(3) fe(fe)∗f ∈ ΛS, e(fe)
∗fe ∈ IS.
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Proof. (1) This follows from the identity

(fe)∗ = e∗(f ∗fee∗)∗f ∗ = e∗(fe)∗f ∗

obtained by Lemma 2.3 and Lemma 2.4.

(2) Obviously, e(fe)∗f ∈ E(S). By Lemma 2.3 and Lemma 2.4, we have

(e(fe)∗f)∗ = f ∗((e(fe)∗)∗e(fe)∗ff ∗)∗(e(fe)∗)∗

= f ∗((fe)∗∗e∗e(fe)∗ff ∗)∗(fe)∗∗e∗

= f ∗((fe)e∗e(fe)∗ff ∗)∗fee∗

= f ∗(fe(fe)∗f ∗)∗fe

= f ∗(f ∗(fe)∗∗(fe)∗)fe

= f ∗fe(fe)∗fe = f ∗fe = fe.

(3) This follows from item (2).

Lemma 2.7. Let (S, ∗) ∈ qit and a, b ∈ S∗, x ∈ S. Then axb = ax∗∗b. In

particular, we have efg = ef∗g∗ (resp. efg = e∗f∗g) and (efg)∗ = g∗f ∗e∗ for

e, f, g ∈ IS (resp. e, f, g ∈ ΛS).

Proof. Since (S, ∗) ∈ qit, we have axb ∈ S∗. Observe that (S∗, ∗) ∈r, it follows
that a = a∗∗, b = b∗∗ and axb = (axb)∗∗. This implies that

axb = (axb)∗∗ = ((a∗∗xb∗∗)∗)∗ = (b∗∗∗(a∗∗x)∗)∗

= (b∗∗∗x∗a∗∗∗)∗ = (b∗x∗a∗)∗ = a∗∗x∗∗b∗∗ = ax∗∗b.

Now, let e, f, g ∈ IS. Then by Lemma 2.4, we have

efg = ee∗ff ∗gg∗ = ee∗f ∗f ∗g∗g∗ = ef∗g∗

whence (efg)∗ = (ef∗g∗)∗ = (f ∗g∗)∗e∗ = g∗f∗e∗. By symmetry, we can obtain

the corresponding result for ΛS.

Lemma 2.8 (Lemma 2.6 in [20]). Let (S, ∗) ∈ qit. Then IS is R-unipotent and

ΛS is L-unipotent, respectively.

As direct consequences of Lemma 2.2 (1) and Lemma 2.8, we have the corollary

below.

Corollary 2.9. Let (S, ∗) ∈ qit, a, b ∈ S and ρ be an idempotent-separating

congruence on S.

(1) aLb (reps. aRb) if and only if a∗a = b∗b (resp. aa∗ = bb∗).

(2) If aρb, then a∗ρb∗.
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Proof. (1) If aLb, then a∗aLaLbLb∗b. Since a∗a, b∗b ∈ ΛS and ΛS is L-unipotent
by Lemma 2.8, we have a∗a = b∗b. The converse is clear.

(2) If aρb, then aHb by Lemma 2.2 (1). In view of item (1), we have aa∗ = bb∗

and a∗a = b∗b. This implies that

b∗ = b∗bb∗ = a∗ab∗ρa∗bb∗ = a∗aa∗ = a∗,

as required.

Now, let (S, ∗) ∈ qit. For e ∈ IS and f ∈ ΛS, denote

⟨e⟩ = eISe = {eie|i ∈ IS}, ⟨f⟩ = fΛSf = {fλf |λ ∈ ΛS}.

In the end of this section, we present some results on the sets ⟨e⟩ and ⟨f⟩.

Lemma 2.10. Let (S, ∗) ∈ qit, a ∈ S, e ∈ IS, f ∈ ΛS and p ∈ FS∗.

(1) ⟨e⟩ = eFS∗e∗ = {x ∈ IS|exe = x}.

(2) ⟨f⟩ = f ∗FS∗f = {x ∈ ΛS|fxf = x}.

(3) xyx ∈ ⟨e⟩ for all x, y ∈ ⟨e⟩.

(4) xyx ∈ ⟨f⟩ for all x, y ∈ ⟨f⟩.

(5) a∗xa ∈ ⟨a∗a⟩ for all x ∈ ⟨aa∗⟩.

(6) aya∗ ∈ ⟨aa∗⟩ for all y ∈ ⟨a∗a⟩.

(7) ⟨p⟩ ⊆ FS∗.

Proof. (1) If x = eie ∈ ⟨e⟩ for some i ∈ IS, then by Lemma 2.7, we have

x = eie = ei∗e∗ ∈ eFS∗e∗. Now, let x = ese∗ for some s ∈ FS∗ . Then s = s∗ and

so x = esse∗ = es(es)∗ ∈ IS. Moreover, exe = eese∗e = ese∗ = x. This shows

that eFS∗e∗ ⊆ {x ∈ IS|exe = x}. Obviously, {x ∈ IS|exe = x} ⊆ ⟨e⟩. Thus the

reslut holds.

(2) This is the dual of item (2).

(3) Since x, y ∈ ⟨e⟩ ⊆ IS, we have xyx = xy∗x∗ ∈ xFS∗x∗ by Lemma 2.7.

This implies that xyx ∈ ⟨x⟩ by item (1) in this lemma. Thus, xyx ∈ IS and

exyxe = xyx whence xyx ∈ ⟨e⟩ by item (1) in this lemma again.

(4) This is the dual of item (3).

(5) Let x ∈ ⟨aa∗⟩. Then x ∈ IS and so x = xx∗, x∗ = x∗∗ by Lemma 2.4. This

implies that

a∗xa = a∗xx∗a = a∗x∗∗x∗a = (x∗a)∗x∗a ∈ ΛS.

Since a∗a(a∗xa)a∗a = a∗xa, we have a∗xa ∈ ⟨a∗a⟩ by item (2).
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(6) This is the dual of (5).

(7) Since p ∈ FS∗ , we have ⟨p⟩ = pFS∗p∗ ⊆ FS∗ by item (1) and Lemma 2.1

(3).

3 Fundamental regular semigroups with a quasi-

ideal regular ∗-transversal

In this section, we shall construct fundamental regular semigroups with quasi-

ideal regular ∗-transversals by some kind of partial transformations. Recall that

a semi-band is a semigroup which is generated by its idempotents. Throughout

this section, we let C be a regular semi-band, (C, ∗) ∈qit and use I and Λ to

denote IC and ΛC , respectively. In view of Lemma 2.10, we have xyx ∈ ⟨e⟩ for

all x, y ∈ ⟨e⟩ and e ∈ I ∪ Λ.

Now, let e, f ∈ I ∪ Λ. A bijection α from ⟨e⟩ onto ⟨f⟩ is called a pre-

isomorphism if

(∀x, y ∈ ⟨e⟩) (xyx)α = (xα)(yα)(xα). (3.1)

Clearly, eα = f . Moreover, we say that ⟨e⟩ is pre-isomorphic to ⟨f⟩ if there exists
a pre-isomorphism from ⟨e⟩ onto ⟨f⟩. In this case, we write ⟨e⟩ ≃ ⟨f⟩ and denote

the set of all pre-isomorphisms from ⟨e⟩ onto ⟨f⟩ by Te,f .

The following result shows that pre-isomorphisms exist indeed. As usual, we

use ιM to denote the identity transformation on the non-empty set M .

Proposition 3.1. Let a ∈ C and

πa : ⟨aa∗⟩ → ⟨a∗a⟩, x 7→ a∗xa.

Then πa ∈ Taa∗,a∗a. Moreover, the inverse mapping of πa is

π−1
a : ⟨a∗a⟩ → ⟨aa∗⟩, y 7→ aya∗

and π−1
a ∈ Ta∗a,aa∗. In particular, we have πp = ι⟨p⟩ = π−1

p for any p ∈ FC∗.

Proof. The results can be checked by straight calculations by using Lemma 2.10.

On pre-isomorphisms in general, we have the following results.

Lemma 3.2. Let e ∈ I, f ∈ Λ, x ∈ ⟨e⟩, y ∈ ⟨f⟩ and α ∈ Te,f .

(1) α−1 ∈ Tf,e.

(2) ⟨x⟩α = ⟨xα⟩ and ⟨y⟩α−1 = ⟨yα−1⟩.
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(3) (xα)∗ = (xα)f∗, xα = (xα)∗f .

(4) (yα−1)∗ = e∗(yα−1), yα−1 = e(yα−1)∗.

Proof. (1) Obviously, α−1 is a bijection. Now, let x′, y′ ∈ ⟨f⟩. Then x′ = xα and

y′ = yα for some x, y ∈ ⟨e⟩. Since α ∈ Te,f , we have

(xyx)α = (xα)(yα)(xα)

whence

(x′α−1)(y′α−1)(x′α−1) = (x′y′x′)α−1.

This implies that α−1 ∈ Tf,e.

(2) Obviously, ⟨x⟩ ⊆ ⟨e⟩ and xα ∈ ⟨f⟩. Let u ∈ ⟨x⟩. Then uα ∈ ⟨f⟩. Observe

that

(xα)(uα)(xα) = (xux)α = uα,

it follows that uα ∈ ⟨xα⟩ by Lemma 2.10. This shows that ⟨x⟩α ⊆ ⟨xα⟩. Con-

versely, let u′ ∈ ⟨xα⟩. Then u′ ∈ ⟨f⟩ and so u′ = uα for some u in ⟨e⟩ and

uα = u′ = (xα)u′(xα) = (xα)(uα)(xα) = (xux)α.

Since α is bijective, we have xux = u and so u ∈ ⟨x⟩ by Lemma 2.10. This implies

that ⟨xα⟩ ⊆ ⟨x⟩α. By similar method, we can prove the other identity.

(3) Since xα ∈ ⟨f⟩ ⊆ Λ, we have xα = f(xα)f = f ∗(xα)∗f and so (xα)∗ =

f∗(xα)∗∗f ∗ by Lemma 2.7. Observe that f ∗ ∈ S∗ and xα = f(xα)f , it follows

that

(xα)∗ = f∗(xα)∗∗f ∗ = f∗(xα)f ∗ = f∗f(xα)ff ∗ = f(xα)ff ∗ = (xα)f∗

by Lemma 2.7 and Lemma 2.4. This also implies that

(xα)∗f = (xα)f∗f = (xα)f = xα.

(4) This is the dual of (3).

Denote U = {(e, f) ∈ I × Λ|⟨e⟩ ≃ ⟨f⟩} and define a multiplication “ ◦ ” on

the set

TC =
∪

(e,f)∈U

Te,f

as follows: For α ∈ Te,f and β ∈ Tg,h,

α ◦ β = απ−1
g(fg)∗fβ,

where the composition is that in the symmetric inverse semigroup on the set I∪Λ.

8



Lemma 3.3. If α, β ∈ TC and α ∈ Te,f , β ∈ Tg,h, then α ◦ β ∈ Tj,k, where

j = (fg(fg)∗f)α−1, k = (g(fg)∗fg)β. As a consequence, the above “ ◦ ” is

well-defined.

Proof. By Lemma 2.6 (2), (g(fg)∗f)∗ = fg. This implies that ran(π−1
g(fg)∗f ) =

⟨g(fg)∗fg⟩ and so

dom(π−1
g(fg)∗fβ) = (⟨g(fg)∗fg⟩ ∩ ⟨g⟩)πg(fg)∗f = ⟨g(fg)∗fg⟩πg(fg)∗f = ⟨fg(fg)∗f⟩

by Lemma 3.2 (2). This implies that

dom(α ◦ β) = (dom(π−1
g(fg)∗fβ) ∩ ⟨f⟩)α−1 = ⟨fg(fg)∗f⟩α−1 = ⟨j⟩,

ran(α ◦ β) = (dom(π−1
g(fg)∗fβ) ∩ ⟨f⟩)π−1

g(fg)∗fβ = ⟨g(fg)∗fg⟩β = ⟨k⟩

by Lemma 3.2 (2) again. Since α, β, π−1
g(fg)∗f all satisfy the condition (3.1) by

Proposition 3.1, it follows that α ◦ β also satisfies this condition. This implies

that α ◦ β ∈ Tj,k.

Lemma 3.4. The multiplication “◦” is associative. Therefore, TC is a semigroup

with respect to “ ◦ ”.

Proof. Now, let α ∈ Te,f , β ∈ Tg,h, γ ∈ Ts,t and

α ◦ β ∈ Tj,k, (α ◦ β) ◦ γ ∈ Tm,n, β ◦ γ ∈ Tp,q, α ◦ (β ◦ γ) ∈ Ta,b,

where

j = (fg(fg)∗f)α−1, k = (g(fg)∗fg)β, p = (hs(hs)∗h)β−1, q = (s(hs)∗hs)γ,

m = (ks(ks)∗k)(α◦β)−1, n = (s(ks)∗ks)γ, a = (fp(fp)∗f)α−1, b = (p(fp)∗fp)(β◦γ).

On one hand, by Lemma 3.2 (3) and the fact that k ∈ ⟨h⟩, we have k = k∗h =

kh. Moreover, we can obtain that (hs)∗ = (hs)∗h∗ and (hs)∗h∗∗k∗ = (hs)∗hk∗ by

Lemma 2.6 (1) and Lemma 2.7, respectively. Thus,

(ks)(ks)∗k = (khs)(k∗hs)∗k (since k = k∗h = kh)

= k(hs)(hs)∗k∗∗k ( since (k∗hs)∗ = (hs)∗k∗∗)

= k(hs)(hs)∗h∗∗k∗k ( since (hs)∗ = (hs)∗h∗, h∗ = h∗∗, k∗∗ = k∗)

= k(hs)(hs)∗hk∗k ( since (hs)∗h∗∗k∗ = (hs)∗hk∗)

= k((hs)(hs)∗h)k ( since k∗k = k)

= k(pβ)k. ( since p = ((hs)(hs)∗h)β−1)

Since k = (g(fg)∗fg)β and β is a pre-isomorphism, we have

ks(ks)∗k = k(pβ)k = (g(fg)∗fg)β · pβ · (g(fg)∗fg)β = (g(fg)∗fgpg(fg)∗fg)β,
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whence

m = (ks(ks)∗k)(α ◦ β)−1 = (ks(ks)∗k)β−1πg(fg)∗fα
−1 = (fgpg(fg)∗f)α−1.

On the other hand, by Lemma 3.2 (4) and the fact that p ∈ ⟨g⟩, we have gp∗ = p =

gp. Moreover, we can obtain that (fg)∗ = g∗(fg)∗ and p∗g∗(fg)∗ = p∗g∗∗(fg)∗ =

p∗g(fg)∗ by Lemma 2.6 (1) and Lemma 2.7, respectively. Thus,

(fp)(fp)∗f = (fgp)(fgp∗)∗f (since gp = p = gp∗)

= fgpp∗∗(fg)∗f ( since (fgp∗)∗ = p∗∗(fg)∗)

= fgpp∗g∗(fg)∗f ( since (fg)∗ = g∗(fg)∗, p∗ = p∗∗)

= fgpp∗g(fg)∗f ( since p∗g∗(fg)∗ = p∗g(fg)∗)

= fgpg(fg)∗f. ( since pp∗ = p)

This implies that a = (fp(fp)∗f)α−1 = m. Dually, we can show that n = b.

Let x ∈ ⟨m⟩ and denote y = xα. On one hand, since k = kh = k∗h, we have

ks = k∗hs and

(ks)∗k = (k∗hs)∗k = (hs)∗k∗∗k = (hs)∗k∗k = (hs)∗k.

Observe that

k·(g(fg)∗fyfg)β·k = (g(fg)∗fg)β·(g(fg)∗fyfg)β·(g(fg)∗fg)β = (g(fg)∗fyfg)β,

it follows that

x[(α ◦ β) ◦ γ] = (s(ks)∗k · (g(fg)∗fyfg)β · ks)γ
= (s(hs)∗k · (g(fg)∗fyfg)β · khs)γ
= (s(hs)∗[k · (g(fg)∗fyfg)β · k]hs)γ
= (s(hs)∗ · (g(fg)∗fyfg)β · hs)γ.

On the other hand, since p = gp∗ = gp, we have

p(fp)∗f = p(fgp∗)∗f = pp∗∗(fg)∗f = pp∗g∗(fg)∗f = pp∗g(fg)∗f = pg(fg)∗f.

Observe that pβ = hs(hs)∗h and β is a pre-isomorphism, it follows that

x[α ◦ (β ◦ γ)] = (s(hs)∗h · (p(fp)∗fyfp)β · hs)γ
= (s(hs)∗h · (pg(fg)∗fyfgp)β · hs)γ
= (s(hs)∗h · pβ · (g(fg)∗fyfg)β · pβ · hs)γ
= ((s(hs)∗h · pβ) · (g(fg)∗fyfg)β · (pβ · hs))γ
= (s(hs)∗h · (g(fg)∗fyfg)β · hs)γ
= (s(hs)∗(h · (g(fg)∗fyfg)β) · hs)γ
= (s(hs)∗ · (g(fg)∗fyfg)β · hs)γ
= x[(α ◦ β) ◦ γ].

Thus, (α ◦β) ◦ γ = α ◦ (β ◦ γ). This implies that the operation “ ◦ ” is associative

and so (TC , ◦) is a semigroup.
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Theorem 3.5. Under the above notations, (TC ,
∗) ∈qit with respect to the unary

operation “ ∗ ” on TC defined by the rule:

(∀α ∈ Te,f ) α∗ = πfα
−1πe.

In this case, T ∗
C = {α ∈ TC |α ∈ Tp,q, p, q ∈ FC∗}.

Proof. By Lemma 3.3 and Lemma 3.4, (TC , ◦) is a semigroup. For any α ∈ Te,f ,

it is routine to check that α∗ is a bijection from ⟨f∗⟩ onto ⟨e∗⟩ and satisfies the

condition (3.1) and so α∗ ∈ Tf∗,e∗ . Thus, the unary operation “∗” is well-defined.

Now, let α ∈ Te,f , β ∈ Tg,h ∈ TC . Then we have the following facts:

(1) Since α∗ ∈ Tf∗,e∗ , we have

α ◦ α∗ = απ−1
f∗(ff∗)∗fα

∗ = απ−1
f πfα

−1πe = πe. (3.2)

By similar method, we can show that πe ◦ α = α and α∗ ◦ πe = α∗. This implies

that α ◦ α∗ ◦ α = α and α∗ ◦ α ◦ α∗ = α∗.

(2) Since α∗ = πfα
−1πe ∈ Tf∗,e∗ and πe∗ = ι⟨e∗⟩, πf∗ = ι⟨f∗⟩ by Lemma 2.4 and

Proposition 3.1, it follows that

α∗∗ = πe∗(α
∗)−1πf∗ = πe∗π

−1
e απ−1

f πf∗ = π−1
e απ−1

f ∈ Te∗,f∗ . (3.3)

This implies that

α∗∗∗ = πf∗πfα
−1πeπe∗ = πfα

−1πe = α∗.

(3) Since α∗ ∈ Tf∗,e∗ , β
∗ ∈ Th∗,g∗and

fh∗(fh∗)∗f = fh∗f∗f = fh∗f, h∗(fh∗)∗(fh∗) = h∗h∗f ∗fh∗ = h∗fh∗ = h∗f ∗h∗

by Lemma 2.7, we have α ◦ β∗ ∈ T(fh∗f)α−1,(h∗f∗h∗)β∗ by Lemma 3.3. Since

(h∗f ∗h∗)β∗ ∈ ⟨g∗⟩ and g∗ ∈ FC∗ , it follows that (h∗f∗h∗)β∗ ∈ FC∗ by Lemma

2.10, and so ((h∗f∗h∗)β∗)∗ = (h∗f ∗h∗)β∗. Moreover, by Lemma 3.2 and Lemma

2.7, we have

((fh∗f)α−1)∗ = e∗[(fh∗f)α−1] = e∗(f ∗fh∗f)α−1 = e∗(f∗f∗∗h∗f)α−1 = e∗(f ∗h∗f)α−1.

(3.4)

This yields that

(α ◦ β∗)∗ ∈ T(h∗f∗h∗)β∗,e∗(f∗h∗f)α−1 .

On the other hand, since β∗∗ ∈ Tg∗,h∗ and

(β∗∗)−1 = (π−1
g βπ−1

h )−1 = πhβ
−1πg = β∗,

it follows that

(h∗f∗(h∗f∗)∗h∗)(β∗∗)−1 = (h∗f ∗h∗)(β∗∗)−1 = (h∗f∗h∗)β∗.
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Moreover,

(f ∗(h∗f ∗)∗h∗f∗)α∗ = (f ∗h∗f ∗)α∗ = (f ∗h∗f ∗)πfα
−1πe

= e∗ · (f ∗f ∗h∗f ∗f)α−1 · e = e∗ · (f ∗h∗f)α−1.

This implies that β∗∗ ◦ α∗ ∈ T(h∗f∗h∗)β∗,e∗(f∗h∗f)α−1 .

Now, let x ∈ ⟨(h∗f ∗h∗)β∗⟩. Since

α ◦ β∗ = απ−1
h∗(fh∗)∗fβ

∗ = απ−1
h∗f (πhβ

−1πg) ∈ T(fh∗f)α−1,(h∗f∗h∗)β∗ ,

we have

(α ◦ β∗)∗ = π(h∗f∗h∗)β∗(α ◦ β∗)−1π(fh∗f)α−1 = π(h∗f∗h∗)β∗π−1
g βπ−1

h πh∗fα
−1π(fh∗f)α−1 .

Since (h∗f∗h∗)β∗ ∈ FC∗ , we have π(h∗f∗h∗)β∗ = ι⟨(h∗f∗h∗)β∗⟩. By the identity (3.4),

it follows that ((fh∗f)α−1)∗ = e∗(f ∗h∗f)α−1. Since

f∗h∗ff ∗h∗h = f∗h∗f∗h∗h = f ∗h, h∗h∗ffh∗f = h∗fh∗f = h∗f∗h∗f ∗f = h∗f∗f = h∗f

by Lemma 2.1, Lemma 2.4 and Lemma 2.7, we have

x(α ◦ β∗)∗ = ((fh∗f)α−1)∗ · (f ∗h∗h((gxg∗)β)h∗h∗f)α−1 · (fh∗f)α−1

= e∗(f ∗h∗f)α−1 · (f∗h∗h((gxg∗)β)h∗h∗f)α−1 · (fh∗f)α−1

= e∗ · (f ∗h · (gxg∗)β · h∗f)α−1.

Observe that

β∗∗ ◦ α∗ = β∗∗π−1
f∗(h∗f∗)∗h∗α

∗ = β∗∗π−1
f∗h∗α

∗ = π−1
g βπ−1

h π−1
f∗h∗πfα

−1πe,

it follows that

x(β∗∗ ◦α∗) = e∗ · (f ∗f ∗h∗h((gxg∗)β)h∗h∗f ∗f)α−1 ·e = e∗ · (f∗h · (gxg∗)β ·h∗f)α−1.

This implies that x(α ◦ β∗)∗ = x(β∗∗ ◦ α∗). Thus, (α ◦ β∗)∗ = β∗∗ ◦ α∗. Similarly,

we can see that (α∗ ◦ β)∗ = β∗ ◦ α∗∗.

(4) From items (1), (2) and (3), we obtain that (TC ,
∗) ∈ rt. Now, we first

assert that T ∗
C = {α|α ∈ Tp,q, p, q ∈ FC∗}. Obviously, T ∗

C ⊆ {α|α ∈ Tp,q, p, q ∈
FC∗}. Conversely, if α ∈ Tp,q, p, q ∈ FC∗ , then π−1

p = ι⟨p⟩, π
−1
q = ι⟨q⟩ and so

α∗∗ = π−1
p απ−1

q = α ∈ T ∗
C . This implies that {α|α ∈ Tp,q, p, q ∈ FC∗} ⊆ T ∗

C .

Now, let α ∈ Tp,q, γ ∈ Ts,t for some p, q, s, t ∈ FC∗ and β ∈ Tg,h for g ∈ I

and h ∈ Λ. Then ⟨p⟩, ⟨q⟩, ⟨s⟩, ⟨t⟩ ⊆ FC∗ by Lemma 2.10 (7). By the proof

of Lemma 3.4, α ◦ β ◦ γ ∈ Ta,b for some a ∈ ran(α−1) and b ∈ ran(γ). Since

ran(α−1) = ⟨p⟩ ⊆ FC∗ and ran(γ) = ⟨t⟩ ⊆ FC∗ , we have α ◦ β ◦ γ ∈ T ∗
C . This

shows that T ∗
C is a quasi-ideal of TC . Thus, (TC ,

∗) ∈ qit.

The following examples illustrate the above Theorem 3.5.
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Example 3.6. Let C = E be a semilattice. Then (C, ∗) ∈ qit with respect to

the operation “ ∗ ” defined by u∗ = u for all u in C. Obviously,

I = Λ = E = FC = C = C∗ = FC∗

and ⟨e⟩ = eE is a subsemilattice of E for all e ∈ C. Now, let e, f, g, h,∈ E and

α ∈ Te,f , β ∈ Tg,h. Since gf ∈ FC∗ , we have π−1
g(fg)∗f = π−1

gf = ι⟨gf⟩ by Proposition

3.1, this implies α ◦ β = αι⟨gf⟩β = αβ. Observe the condition (3.1), it follows

that the pre-isomorphisms between ⟨e⟩ and ⟨f⟩ are exactly isomorphisms between

them for all e, f ∈ E. Thus, TC is exactly the well-known Munn semigroup

determined by the semilattice E.

Example 3.7. Let C be a rectangular band. Then (C, ∗) ∈ qit with respect to

the operation “ ∗ ” defined by u∗ = e◦ for all u ∈ C where e◦ is a fixed element in

C and thus C∗ = {e◦}. By Lemma 2.4, I = {e ∈ C|eLe◦},Λ = {f ∈ C|fRe◦} in

the case. Moreover, for any e ∈ I and f ∈ Λ, we have ⟨e⟩ = {e} and ⟨f⟩ = {f}.
Denote

σe,f : ⟨e⟩ → ⟨f⟩, e 7→ f.

Then TC = {σe,f |e ∈ I, f ∈ Λ} and

σe,f ◦ σg,h ∈ T(fg(fg)∗f)α−1,(g(fg)∗fg)β = Tfα−1,gβ = Te,h

for any σe,f , σg,h ∈ TC by Lemma 3.3 and the fact that C is a rectangular band.

This implies that σe,f ◦ σg,h = σe,h. Thus, TC is isomorphic to the rectangular

band I × Λ and T ∗
C = {ι{e◦}}. In fact, TC is isomorphic to C.

Example 3.8. Let C = {e, f, p, q} be a rectangular band with pReLqRfLp.
Then (S, ∗) ∈ qit with the respect to the unary operation p∗ = p, q∗ = q, e∗ =

f, f ∗ = e. It is routine to check that C = C∗ and I = Λ = FC∗ = {p, q}. More-

over, we have ⟨p⟩ = {p} and ⟨q⟩ = {q}. Thus, TC = T ∗
C = {ι{p}, ι{q}, σp,q, σq,p}.

In fact, TC is also isomorphic to C.

By the proof of Theorem 3.5, we have some information on the semigroup TC .

Corollary 3.9. Let α ∈ Te,f , β ∈ Tg,h.

(1) α∗ ∈ Tf∗,e∗, α
∗∗ ∈ Te∗,f∗.

(2) α ◦ α∗ = πe, α
∗ ◦ α = πf and so ITC

= {πe|e ∈ I} and ΛTC
= {πf |f ∈ Λ}.

(3) α ◦ α∗ = ι⟨e⟩, α
∗ ◦ α = ι⟨f⟩ if e, f ∈ FC∗ and so FT ∗

C
= {ι⟨c⟩|c ∈ FC∗}.

(4) αRTCβ (resp. αLTCβ) if and only if e = g (resp. f = h).

Proof. Items (1-3) can be obtained by the proof of Theorem 3.5 and Proposition

3.1 directly. Item (4) follows from item (2) and Corollary 2.9 (1).
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The following theorem shows that the above TC is fundamental.

Theorem 3.10. Let U be a subsemigroup of (TC ,
∗) and (U, ∗) ∈ qit such that

FU∗ = FT ∗
C
. Then U is fundamental. In particular, TC itself is fundamental.

Proof. By Corollary 3.9 (3), FT ∗
C
= {ι⟨c⟩|c ∈ FC∗} = FU∗ . Now, let α, β ∈ U and

α ∈ Te,f , β ∈ Tg,h with αµUβ. Then αHUβ by Lemma 2.2 (1). This implies that

e = g and f = h by Corollary 3.9 (4). Thus, α∗∗, β∗∗ ∈ Te∗,f∗ by Corollary 3.9

(1).

On the other hand, it follows that α∗µUβ
∗ and α∗∗µUβ

∗∗ by Corollary 2.9 (2).

Let c ∈ FC∗ . Then α∗◦ι⟨c⟩◦α∗∗µUβ
∗◦ι⟨c⟩◦β∗∗. Since µU is idempotent-separating

and

α∗ ◦ ι⟨c⟩ ◦ α∗∗, β∗ ◦ ι⟨c⟩ ◦ β∗∗ ∈ E(U∗)

by Lemma 2.1, we obtain that

α∗ ◦ ι⟨c⟩ ◦ α∗∗ = β∗ ◦ ι⟨c⟩ ◦ β∗∗.

Observe that

⟨(e∗ce∗)α∗∗⟩ = ran(α∗ ◦ ι⟨c⟩ ◦ α∗∗) = ran(β∗ ◦ ι⟨c⟩ ◦ β∗∗) = ⟨(e∗ce∗)β∗∗⟩

by Lemma 3.4, it follows that (e∗ce∗)α∗∗ = (e∗ce∗)β∗∗. Since c is arbitrary, this

implies that α∗∗ = β∗∗ and so α∗ = β∗. Since αHUβ and α∗ = β∗ ∈ V (α)∩V (β),

we have α = β. We have shown that µU is the identity relation on U and so U is

fundamental.

4 Fundamental representations of regular semi-

groups with quasi-ideal regular ∗-transversals

Throughout this section, we let (S, ∗) ∈qit and C be the semi-band generated

by E(S). The aim of this section is to give a fundamental representation of S.

We first give the following

Lemma 4.1. Let (S, ∗) ∈qit. Then (C, ∗) ∈ qit. In this case, C∗ = C ∩ S∗,

IS = IC, ΛS = ΛC and FS∗ = FC∗.

Proof. This can be proved easily by using Lemma 2.2 (2) and Lemma 2.4.

For simplicity, we let I = IC and Λ = ΛC . By Theorem 3.5, we have a

fundamental regular semigroup TC with a quasi-ideal regular ∗-transversal T ∗
C .

Let a ∈ S. Define

ρa : ⟨aa∗⟩ → ⟨a∗a⟩, x 7→ a∗xa.
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Then

ρ−1
a : ⟨a∗a⟩ → ⟨aa∗⟩, y 7→ aya∗.

Observe that ρa = πa for every a ∈ C where πa is defined as in Proposition 3.1.

Moreover, we can prove the following

Lemma 4.2. Let a, b ∈ S. Then ρa ∈ Taa∗,a∗a and ρ−1
a ∈ Ta∗a,aa∗. Moreover,

ρa ◦ ρb = ρab.

Proof. It is routine to check that ρa ∈ Taa∗,a∗a and ρ−1
a ∈ Ta∗a,aa∗ by Lemma 2.10.

Obviously, ρab ∈ Tab(ab)∗,(ab)∗ab. By Lemma 3.3, ρa ◦ ρb ∈ Tj,k where

j = (a∗abb∗(a∗abb∗)∗a∗a)ρ−1
a = a(a∗abb∗(a∗abb∗)∗a∗a)a∗ = ab(b∗(a∗abb∗)∗a∗) = ab(ab)∗

and

k = (bb∗(a∗abb∗)∗a∗abb∗)ρb = b∗(bb∗(a∗abb∗)∗a∗abb∗)b = b∗(a∗abb∗)∗a∗ab = (ab)∗ab

by Lemma 2.3. This implies that ρab and ρa ◦ ρb have the same domains and

ranges. Now, let x ∈ domρab. Then we have xρab = (ab)∗xab and

x[ρa ◦ ρb] = xρaπ
−1
bb∗(a∗abb∗)∗a∗aρb

= b∗(bb∗(a∗abb∗)∗a∗a)a∗xa(bb∗(a∗abb∗)∗a∗a)∗b

= (ab)∗xa(bb∗(a∗abb∗)∗a∗a)∗b

= (ab)∗xa(a∗abb∗)b

= (ab)∗xab

by Lemma 2.3 and Lemma 2.6 (2). Thus, ρa ◦ ρb = ρab.

Let (U, ∗) and (V, ◦) be two unary semigroups. A mapping (resp. a bijective

mapping) ψ from U to V is called a unary homomorphism (resp. a unary iso-

morphism) if (ab)ψ = (aψ)(bψ) and (a∗ψ) = (aψ)◦ for all a, b in U . We say that

(U, ∗) is unary isomorphic to (V, ◦) if there exists a unary isomorphism from U

onto V . The following result provides a fundamental representation of S.

Theorem 4.3. Define ρ : S → TC , a 7→ ρa. Then ρ is a unary homomorphism

from (S, ∗) to (TC ,
∗) such that ker ρ is the maximum idempotent-separating

congruence of S. Moreover, ρ satisfies the following conditions:

(1) ρ|E(S) is a bijection from E(S) onto E(TC).

(2) S∗ρ ⊆ T ∗
C and ρ|FS∗ is a bijection from FS∗ onto FT ∗

C
.

(3) ρ|C is a unary homomorphism from (C, ∗) onto (⟨E(TC)⟩, ∗).

(4) ρ|I (resp. ρ|Λ) is a bijection from I onto ITC
(resp. ΛTC

).
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Proof. By Lemma 4.2, ρa ∈ Taa∗,a∗a ⊆ TC . This shows that ρ is well-defined.

According to Lemma 4.2 again, we have (ab)ρ = ρab = ρa ◦ ρb and so ρ is a

homomorphism. Moreover, by Corollary 3.9 (1), we have

(ρa)
∗ ∈ T(a∗a)∗,(aa∗)∗ = Ta∗a∗∗,a∗∗a∗ ∋ ρa∗ .

Observe that (ρa)
∗ = πa∗aρ

−1
a πaa∗ , it follows that

x(ρa)
∗ = xπa∗aρ

−1
a πaa∗ = (aa∗)∗a(a∗a)∗xa∗aa∗aa∗ = a∗∗xa∗ = xρa∗

for all x ∈ domρa∗ . This implies that (ρa)
∗ = ρa∗ . Thus, ρ preserves the unary

operation “ ∗ ”.

On the other hand, we have

ker ρ = {(a, b) ∈ S × S|ρa = ρb}.

If ρa = ρb, then ⟨aa∗⟩ = domρa = domρb = ⟨bb∗⟩ and ⟨a∗a⟩ = ranρa = ranρb =

⟨b∗b⟩, this implies that aa∗ = bb∗ and a∗a = b∗b. This shows that aHb by Corollary
2.9 (1). Thus ker ρ ⊆ H and so ker ρ is idempotent-separating by Lemma 2.2.

Now, let σ be an idempotent-separating congruence on S and aσb. Since σ is

idempotent-separating, we have a∗σb∗ by Corollary 2.9 (2). This implies that

aa∗σbb∗ and a∗aρb∗b whence aa∗ = bb∗ and a∗a = b∗b. Therefore, domρa = domρb
and ranρa = ranρb. Moreover, for any x ∈ domρa, we have xρa = a∗xa ∈ E(S)

and xρb = b∗xb ∈ E(S). Observe that a∗xaσb∗xb, it follows that a∗xa = b∗xb

since σ is idempotent-separating. This implies that ρa = ρb and so σ ⊆ ker ρ.

Thus, ker ρ is the maximum idempotent-separating congruence.

(1) Obviously, E(S)ρ ⊆ E(TC). Since ker ρ is idempotent-separating, ρ|E(S)

is injective. If α ∈ Te,f and α ∈ E(TC), then α = α ◦ α = απ−1
e(fe)∗fα. By Lemma

3.3, α ◦ α ∈ Tj,k where j = (fe(fe)∗f)α−1 and k = (e(fe)∗fe)α. This implies

that j = e and k = f and so e = e(fe)∗fe, f = fe(fe)∗f . Since (e(fe)∗f)∗ = fe

by Lemma 2.6, it follows that

ρe(fe)∗f ∈ Te(fe)∗fe,fe(fe)∗f = Te,f ∋ α.

Now, for any x ∈ ⟨e⟩, we have

xα = xα ◦ α = xαπ−1
e(fe)∗fα = (e(fe)∗f(xα)(e(fe)∗f)∗)α = (e(fe)∗f(xα)fe)α.

Since α is bijective, we have x = e(fe)∗f(xα)fe. This implies that

xρe(fe)∗f = (fe)x(e(fe)∗f) = fe(e(fe)∗f(xα)fe)e(fe)∗f = f(xα)f = xα

by the facts (e(fe)∗f)∗ = fe, fe(fe)∗f = f and xα ∈ ⟨f⟩. Thus, α = ρe(fe)∗f .

Since e(fe)∗f ∈ E(S) by Lemma 2.6,

α = ρe(fe)∗f = (e(fe)∗f)ρ ∈ E(S)ρ.
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This shows that ρ|E(S) is surjective.

(2) If a ∈ S∗, then aa∗, a∗a ∈ FC∗ and ρa ∈ Taa∗,a∗a. This implies that

aρ = ρa ∈ T ∗
C . Moreover, by Proposition 3.1 and Corollary 3.9 (3), the mapping

ρ|FS∗ : FS∗ → FT ∗
C
, c 7→ ρc = πc = ι⟨c⟩

is a bijection.

(3) This follows from item (1).

(4) This follows from Corollary 3.9 (2).

Corollary 4.4. Let C be a semi-band and (C, ∗) ∈ qit. Assume that (S, ∗) ∈
qit and (⟨E(S)⟩, ∗) is unary isomorphic to (C, ∗). Then S is fundamental if

and only if (S, ∗) is unary isomorphic to a subsemigroup (or a (2,1) subalgebra)

(U, ∗) of TC with FU∗ = FT ∗
C
.

Proof. If S is fundamental, then ker ρ in the above Theorem 4.3 is the identity

congruence on S and so ρ is injective. Moreover, ρ is a unary isomorphism from

(S, ∗) onto the subsemigroup (or a (2,1) subalgebra) (U, ∗) = (Sρ, ∗) of (TC ,
∗).

Obviously, FU∗ = FT ∗
C
by (2) of Theorem 4.3.

Conversely, let (S, ∗) be unary isomorphic to a subsemigroup (or a (2,1)

subalgebra) (U, ∗) of TC with FU∗ = FT ∗
C
. Since (S, ∗) ∈ qit, it follows that

(U, ∗) ∈ qit. By Theorem 3.10, (U, ∗) is fundamental. This implies that S is

also fundamental.
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