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Abstract  
The most commonly used non-parametric tool for measuring the relative efficiency of Decision 

Making Units (DMU) is Data Envelopment Analysis (DEA). In this article, a method for measuring 

the efficiency level of a DMU when it is in an unfavourable situation as well as estimating the 

efficiency using uniform distribution is shown. The efficiency score from the traditional BCC-DEA 

model and the efficiency score in an unfavourable situation form an interval. This interval, known as 

interval efficiency, is used to estimate efficiency using uniform distribution. In an empirical example, a 

95% confidence interval (CI) is calculated for the efficiency score using a three-point estimation 

method. The analysis indicated that the efficiencies that were estimated from uniform distribution are 

all within the confidence interval. In addition, a statistical test shows that there is no significant 

different between the estimated efficiency and the efficiency from DEA. 

Keywords: Interval efficiency; Data Envelopment Analysis; Uniform distribution; Three-point 

estimation. 
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1 Introduction 

Data envelopment analysis (DEA) has found amazing development in theory and 

methodology and widespread applications in the world. Traditional CCR and BCC DEA 

models do not deal with noise data and are based on exact inputs and outputs. In practical 

situation, the issues of missing data and imprecise data often arise. Generally speaking, 

uncertain information can be expressed in interval numbers. Therefore, how to evaluate the 

performance of a DMU in its unfavourable situation through existing DEA models with 

uniform distribution is a worth-studying problem. This is the need of both the developments 

of DEA theory and methodology and its real applications. 

 
In 1957, Farrell [13] proposed some new ideas on relative efficiency. Based on these ideas, Charnes et 

al. [7] introduced the popular tool, Data Envelopment Analysis (DEA), for measuring the efficiency of 
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Decision Making Units (DMU). The CCR-DEA model [7] and the BCC-DEA model [5] are the basic 

models in DEA. These models are deterministic and they require that all inputs and outputs data are 

known with certainty. In practical situation, however, it is often impossible to obtain data with such 

consideration. The issues of missing data and imprecise data often arise. Fortunately, the DEA models 

have been extended to address these issues (see for example [2, 29]). Recently, the stochastic 

variations of the DEA models have received significant attention. Banker [4], for example, developed 

an approach of DEA with maximum likelihood methods to make inference in the presence of noise in 

data. Chance constrained programming [6, 8] was adopted in DEA by Land et al. [17, 18, 19]. Olesen 

and Petersen [21] modified the chance constrained DEA model to be used with stochastic multiple 

inputs and outputs. Fuzzy DEA [14], Bootstrap DEA [26, 27, 28], Imprecise DEA [9, 10, 11, 29] and 

Robust DEA [22, 23] are also developed to work with noise in data. In the presence of noise in data, 

efficiency is measured either from the optimistic viewpoint or pessimistic viewpoint [1]. Using the 

optimistic viewpoint and the pessimistic viewpoint, Entani et al. [12] introduced a method to measure 

interval efficiency. In the paper, influence of the environmental factors on the less efficient DMU is 

considered to measure the minimum efficiency of a DMU and to carry out interval efficiency. 

Simar and Vanhems [24] proposed the first method for statistical inference on efficiency using Free 

Disposal Hull (FDH) model. Later on, Simar et al. [25] added an assumption of convex production 

function to the Simar and Vanhems [24] model. They developed the method using consistent bootstrap 

procedures. However, the DEA Bootstrap is a nonparametric sampling method and is not suitable for 

small samples. The objective of this paper is to use the interval efficiency to infer the efficiency score 

of DEA. The proposed method is developed based on parametric sampling techniques (statistical 

distributions) and three-point-estimation method to overcome the limitation of Simar et al. [25].  

The rest of the paper is organized as follows. In Section 2, the proposed method of estimating 

efficiency using uniform distribution is described. An empirical example and the usage of the three 

point estimation method to calculate the 95% confidence interval of the efficiency score are given in 

Section 3. Finally, some concluding remark is given in Section 4. 
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2 Methodology 

The performance of a DMU in its unfavourable situation can be evaluated in two stages. In the first 

stage, the efficiency of a DMU is measured using the existing DEA model and in the second stage, a 

modified DEA model is used to measure the minimum efficiency. 

Stage 1: DEA Model  

DEA models are either input oriented or output oriented. We have chosen the output oriented DEA 

model of Banker et al. [5]. The linear programming (LP) expression of the model is as follows: 
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solved n times, which is equivalent to the number of DMU. 

Stage 2: Modified DEA Model  

Generally, production models can be classified as either neoclassical model or frontier model [15]. 

This classification depends on the interpretation of the deviation terms, i . The assumption of 

neoclassical model is that, all firms are efficient and the deviations i  are seen as random, 

uncorrelated noise terms that satisfy the Gauss-Markov assumptions. But, in the frontier models, all 

deviations from the frontier are attributed to inefficiency, which implies that, nii ,...,2,1,0   

[16]. A function  

ii gy  (.)                                                                             (2.2)  

is considered a frontier model if i  
are interpreted as composite error terms that include both the 

inefficiency and the noise components, where (.)g is the production frontier [3]. However, when the 

output is due to the environmental factor and the inefficiency 
i  is 0(.)  ii yg , it indicate that 

the frontier output is always greater than or equal to the observed output. Now to maximize the output 
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i , we use the output oriented DEA method. The method can be expressed as the following the linear 

programming problem: 
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where 
b

i  is a function of the environmental factor and inefficiency (
i ). Let us suppose that the 

maximized quantity of 
i  is 

max
i . Now, if we calculate the efficiency of the i-th firm using the worst 

output of its 
max

(.) ig  value, and observed the outputs of other firm, we will have the minimum 

efficiency level of the firm. This is under the consideration that the inputs are the same and all other 

factors that have effect on the output are constant.  This can be mathematically shown as:  
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where 
c

i  is the minimum efficiency level of the  i-th firm. 

Estimation of DEA Efficiency using Uniform Distribution: 

When an event is equally likely to happen, uniform distribution is frequently used to generate random 

number. Simar and Wilson [26] proposed a bootstrap procedure to estimate DEA efficiency. They 

used uniform distribution to generate sample. In this research, the equally likely to happen property 

and the usage of the bootstrap procedure warrants the use of uniform distribution to estimate DEA 

efficiency.  

Uniform distribution is a continuous distribution ranging from a to b. The probability density function 

of this distribution on the interval [a, b] is 
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and the cumulative distribution function is 
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We use the uniform distribution to estimate efficiency by assuming that the minimum efficiency 

)( c

i and highest efficiency (one) are the lower limit and the upper limit, respectively. The probability 

density function of the uniform distribution for efficiency is: 
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Hypothesis:  

To determine whether the estimated efficiency represents the efficiency from DEA or not, we use the 

following hypothesis.   

HA1:  There is a significant difference between efficiency from DEA and the estimated efficiency 

using uniform distribution.  

A summary of the values that were calculated while performing Stage 1 and Stage 2 of the proposed 

method is depicted in Table 1. The case study is on the efficiency analysis of rice production in 20 

districts. DMU 1, DMU 2, DMU 4, DMU 12, DMU 13 and DMU 20 are efficient DMUs since their 

efficiency level are 1. DMU 16 has the lowest efficiency score. The Gap between Observed and 

Frontier Output is the amount of output that is lost by a DMU because of inefficiency. Inefficiency is 

influenced by some unobserved factors. If a DMU can control these factors then it would become an 

efficient DMU. The Minimum Output of a DMU can be calculated as:  

)( OutputofLossMaximumOutputFrontierOutputMinimum           (3.1) 

The minimum output and the observed output are found to be the same for DMU 7 and DMU 16 since 

from the beginning these DMUs are in their worst position. When a DMU is faced with the same 

influence of the environmental as what is being faced by DMU 7 and/or DMU 16, its efficiency is in 
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the worst situation. Maximum Loss of Output is the gap between the frontier output and the output in 

the worst situation. The maximum loss of output of DMU 1 can be explained as: if all the 

environmental factors could influence DMU 1 as they did on DMU 7 and/or DMU 16, then there 

would be a shortage of 273 units from the frontier output.  

The efficiency of a DMU in its worst situation is calculated by considering the minimum output and 

the observed input of the DMU together with the observed output and input of the other DMUs. For 

example, to evaluate the efficiency of DMU 1 in its worst situation, the minimum output (2202 units) 

and the observed inputs of DMU 1 together with the observed inputs-output of DMU 2 to DMU 20 are 

used. The efficiency score from the BCC model of DMU16 (0.823) is the lowest. In the worst 

situation, DMUs 18 and 19 would also obtain the same lowest efficiency score. 

 

Table 1: Efficiency level and projected output using observed inputs and output 

DMU 
Observed 

Output 

Frontier 

Output 

*Gap between 

Observed and 

Frontier Output 

Efficiency 

from BCC 

model 

Maximum 

Loss of 

Output 

Minimum 

Output 

Efficiency 

in Worst 

situation 

1 2475 2475 1 1 273 2202.00 0.968 

2 2261 2261 1 1 271.40 1989.60 0.928 

3 2179 2235.66 56.66 0.975 293.84 1941.82 0.869 

4 2075 2075 1 1 288.56 1786.44 0.905 

5 1850.2 1925.35 75.15 0.961 267.71 1657.65 0.861 

6 1790.7 1993.6 202.9 0.898 276.31 1717.29 0.861 

7 1676 1994.42 318.42 0.840 318.42 1676.00 0.840 

8 1870 1903.32 33.32 0.982 251.11 1652.21 0.868 

9 1874.6 1999.12 124.52 0.938 285.71 1713.41 0.857 

10 1616.9 1892.05 275.15 0.855 299.99 1592.06 0.841 

11 1734 1939.21 205.21 0.894 249.59 1689.62 0.871 

12 1916 1916 1 1 167.91 1748.09 0.983 

13 1808 1808 1 1 156.56 1651.44 0.924 

14 1850.7 1917.41 66.71 0.965 229.17 1688.24 0.880 

15 1831.8 1921.06 89.26 0.954 259.28 1661.78 0.865 

16 1500 1821.97 321.97 0.823 321.97 1500.00 0.823 

17 1745 1839.02 94.02 0.949 318.91 1520.11 0.827 

18 1512.33 1610.94 98.62 0.939 284.68 1326.26 0.823 

19 1506.85 1633.42 126.57 0.923 288.65 1344.77 0.823 

20 1894.56 1894.56 1 1 298 1596.56 0.948 
*We use one instead of zero in Gap between Observed and Frontier Output which do not influence the result.  
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The Three-Point Estimate was developed as part of the Program Evaluation and Review Technique 

(PERT) which is used in project management. The method estimates the expected case )( iE  based on 

three estimates [20]:  

1) The Most Likely case )( iO   

2) The Optimistic case )( iH  

3) The Pessimistic case )( iW  

Then, the expected case )( iE  from the 
iii WandHO ,  is calculated as follows: 

6

4 iii
i

WOH
E


                                                                  (3.2) 

The 95% confidence interval for the estimated efficiency can be expressed as: 

ii SDECI *2*                                                                    (3.3) 

where 
iSD is the standard deviation. 

In this study, the following assumptions are made to estimate the expected case. (1) The efficiency 

score from the BCC model is considered as the most likely case )( iO , (2) the value of the optimistic 

case )( iH  is one, which is the highest efficiency score that can be obtained and (3) the efficiency 

score of the worst situation is considered as the pessimistic case )( iW .   

Definition 1 Efficiency is the ratio of weighted outputs and weighted inputs. Inputs and outputs values 

are non-negative i.e. 0)(0)(,0)(  iii weightandyoutputxinput  . Thus, the efficiency 

score of all DMUs are greater than or equal to zero and the expression of the efficiency score is 

0 .   

Definition 2 Efficiency is measured with the constrain that it cannot exceed the value 1, that is 1 . 

If 1 , then the DMU is efficient and if 1 , then the DMU is inefficient. 

Based on Definition 1 and Definition 2, the confidence interval of efficiency score is defined as: 
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The expected efficiency and confidence interval that were calculated using Equations 3.2, 3.3 and 3.4 

are presented in Table 2. The estimated efficiency is the mean of 1000 random values that were 

generated from uniform distribution in the interval of ],[ ii HW . 12 DMUs have upper limit of less 

than 1. All the estimated efficiencies from the uniform distribution lie in the 95% confidence interval.  

 

Table 2: Inferential statistics of efficiency scores 

DMU Efficiency 

From BCC 

Model 

)( iO  

Efficiency 

in Worst 

Situation 

)( iW  

Estimated 

efficiency 

from uniform 

)( iU  

Biasness between 

Observed and 

Uniform 

Estimation 

Expected 

efficiency 

)( iE  

Standard 

deviation 

)( iSD  

95% CI 

Lower 

limit 

Upper 

Limit 

1 1 0.968 0.984 0.016 0.995 0.005 0.985 1 

2 1 0.928 0.963 0.037 0.988 0.012 0.964 1 

3 0.975 0.869 0.934 0.041 0.962 0.022 0.918 1 

4 1 0.905 0.952 0.048 0.984 0.016 0.952 1 

5 0.961 0.861 0.93 0.031 0.951 0.023 0.905 0.997 

6 0.898 0.861 0.931 -0.033 0.909 0.023 0.863 0.955 

7 0.84 0.84 0.919 -0.079 0.867 0.027 0.813 0.921 

8 0.982 0.868 0.936 0.046 0.966 0.022 0.922 1 

9 0.938 0.857 0.928 0.01 0.935 0.023 0.889 0.981 

10 0.855 0.841 0.92 -0.065 0.877 0.027 0.823 0.931 

11 0.894 0.871 0.933 -0.039 0.908 0.022 0.864 0.952 

12 1 0.983 0.991 0.009 0.997 0.003 0.991 1 

13 1 0.924 0.962 0.038 0.987 0.013 0.961 1 

14 0.965 0.88 0.94 0.025 0.957 0.02 0.917 0.997 

15 0.954 0.865 0.931 0.023 0.947 0.023 0.901 0.993 

16 0.823 0.823 0.912 -0.089 0.853 0.03 0.793 0.913 

17 0.949 0.827 0.914 0.035 0.937 0.029 0.879 0.995 

18 0.939 0.823 0.911 0.028 0.93 0.03 0.87 0.99 

19 0.923 0.823 0.912 0.011 0.919 0.03 0.859 0.979 

20 1 0.948 0.974 0.026 0.991 0.009 0.973 1 

 

Based on the result in Table 3, hypothesis HA1 is rejected, meaning that there is no different between 

the estimated efficiency and the efficiency from DEA. 

 

Table 3: Comparison between efficiency from DEA and the estimated Efficiency 
Mean 

Difference  

Standard. 

Deviation 

95% CI Calculated  

t-score 

Degree of 

freedom 

p-value 

Lower Upper 

0.00595 0.04265 -0.01401 0.02591 0.624 19 0.540 
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In Figure 1, all the observed and the estimated efficiencies lie in the 95% CI of the uniform 

distribution. The upper limit values of 12 DMUs are less than one. If the confidence interval is 

considered as interval efficiency, then DMU 16 is the dominated DMU.  

 

Figure 1. Confidence interval of DEA efficiency  

4 Conclusion 

In this article, an approach to estimate DEA efficiency using uniform distribution is presented. In an 

empirical example, the estimated efficiency score and the efficiency score from the BCC model is 

compared and no significant different between them were found. Confidence interval is estimated with 

three-point estimate method. All of the estimated efficiencies from uniform distribution are in the 

interval. This approach will help managers to determine the optimal size of inventory for their DMUs 

and researchers to estimate the statistical properties of efficiency score from DEA.  
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