ANGLE R

YOO YOUNG KOO AND JAE KUN LIM

Abstract

We generalize the characterizations of the direct sum decomposition of a Hilbert space in terms of the angle R, and, using this result, present another proof of the equality concerning the norms of the projections P and $I-P$. As an application to abstract frame theory, we show that the ranges of the analysis operators of oblique dual frame sequences satisfy the the angle condition.

1. Introduction

Throughout this article $\mathcal{M}, \mathcal{N}, \mathcal{U}$ and \mathcal{V} denote closed subspaces of a Hilbert space \mathcal{H} over \mathbb{R} or \mathbb{C}. We let $\mathcal{U}+\mathcal{V}$ denote the sum of \mathcal{U} and \mathcal{V}, and $\mathcal{U}+\mathcal{V}$ the direct sum of \mathcal{U} and \mathcal{V}, i.e., the sum of \mathcal{U} and \mathcal{V} with trivial intersection. If $\mathcal{H}=\mathcal{M}+\mathcal{N}$, then $P_{\mathcal{M}, \mathcal{N}}$ denote the projection (bounded idempotent) with $\operatorname{ran} P_{\mathcal{M}, \mathcal{N}}=\mathcal{M}$ and $\operatorname{ker} P_{\mathcal{M}, \mathcal{N}}=\mathcal{N}$ [7, Section II.3]. We also let $P_{\mathcal{M}}:=P_{\mathcal{M}, \mathcal{M}^{\perp}}$ be the orthogonal projection onto \mathcal{M}. We first recall two definitions of the angles between \mathcal{U} and \mathcal{V}. We define ([18, Eqs. (28) and (38)])

$$
\begin{aligned}
& S(\mathcal{U}, \mathcal{V}):= \begin{cases}\sup \left\{\frac{\|P \mathcal{v} u\|}{\|u\|}: u \in \mathcal{U} \backslash\{0\}\right\} & \text { if } \mathcal{U} \neq\{0\}, \\
0 & \text { if } \mathcal{U}=\{0\},\end{cases} \\
& R(\mathcal{U}, \mathcal{V}):= \begin{cases}\inf \left\{\frac{\|P \mathcal{V} u\|}{\|u\|}: u \in \mathcal{U} \backslash\{0\}\right\} & \text { if } \mathcal{U} \neq\{0\}, \\
1 & \text { if } \mathcal{U}=\{0\}\end{cases}
\end{aligned}
$$

The following is the definition of Dixmier angle ([9], [8, Definition 2]).

$$
c_{0}(\mathcal{U}, \mathcal{V}):=\sup \{|\langle u, v\rangle|: u \in \mathcal{U},\|u\| \leq 1, v \in \mathcal{V},\|v\| \leq 1\},
$$

where neither \mathcal{U} nor \mathcal{V} is assumed to be trivial. It is well-known and easy to see that $c_{0}=S$. In particular, $S(\mathcal{U}, \mathcal{V})=S(\mathcal{V}, \mathcal{U})$. On the other hand, if \mathcal{U} is a non-trivial proper closed subspace of \mathcal{V}, then $R(\mathcal{U}, \mathcal{V})=1$ and $R(\mathcal{V}, \mathcal{U})=0$. See Section 2 for further facts on the asymmetry of R.

There are vast literature and an interesting survey article ([8]) on S, whereas many known facts on R are scattered throughout research papers $[18,17,12,3] . S$ can be used to characterize when the sum of two closed subspaces is closed [8], whereas R can be used to construct two biorthogonal wavelet frames or Riesz bases of $L^{2}\left(\mathbb{R}^{d}\right)[1,17,12]$.

[^0]The purpose of this article is to generalize [3, Proposition 3.3] and [17, Theorem 2.3], which connect some properties of the angle R with those of projections (idempotents [7, Section II.3]) in $\mathcal{B}(\mathcal{H})$ (Theorem 2.1). As an application of this generalization, we give another proof of Theorem 3.1, which is the main focus of [16]. We also apply our results to abstract frame theory (Proposition 3.2). Further remarks on R are also included.

2. Main Result

In this section we prove the following theorem which generalizes [3, Proposition 3.3] which, in turn, is a generalization of [17, Theorem 2.3].

Theorem 2.1. Let \mathcal{U} and \mathcal{V} be closed subspaces of \mathcal{H} such that at least one of which is non-trivial. Then the the following statements are equivalent:
(1) $0<R(\mathcal{U}, \mathcal{V})$ and $0<R(\mathcal{V}, \mathcal{U})$;
(2) $0<R(\mathcal{U}, \mathcal{V})=R(\mathcal{V}, \mathcal{U})$;
(3) $A:=P_{\mathcal{V}}: \mathcal{U} \rightarrow \mathcal{V}$ is invertible;
(4) $B:=P_{\mathcal{U}}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible;
(5) $\mathcal{H}=\mathcal{U}+\mathcal{V}^{\perp}$;
(6) $\mathcal{H}=\mathcal{V}+\mathcal{U}^{\perp}$;
(7) $0<R\left(\mathcal{U}^{\perp}, \mathcal{V}^{\perp}\right)$ and $0<R\left(\mathcal{V}^{\perp}, \mathcal{U}^{\perp}\right)$;
(8) $0<R\left(\mathcal{U}^{\perp}, \mathcal{V}^{\perp}\right)=R\left(\mathcal{V}^{\perp}, \mathcal{U}^{\perp}\right)$;
(9) $C:=P_{\mathcal{V}^{\perp}}: \mathcal{U}^{\perp} \rightarrow \mathcal{V}^{\perp}$ is invertible;
(10) $D:=P_{\mathcal{U}^{\perp}}: \mathcal{V}^{\perp} \rightarrow \mathcal{U}^{\perp}$ is invertible;
(11) $0<R(\mathcal{U}, \mathcal{V})=R(\mathcal{V}, \mathcal{U})=R\left(\mathcal{U}^{\perp}, \mathcal{V}^{\perp}\right)=R\left(\mathcal{V}^{\perp}, \mathcal{U}^{\perp}\right)$;
(12) There is a projection P_{1} whose range is \mathcal{U} such that $P_{1}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible;
(13) There is a projection P_{2} whose range is \mathcal{V} such that $P_{2}: \mathcal{U} \rightarrow \mathcal{V}$ is invertible;
(14) There is a projection P_{3} whose range is \mathcal{U}^{\perp} such that $P_{3}: \mathcal{V}^{\perp} \rightarrow \mathcal{U}^{\perp}$ is invertible;
(15) There is a projection P_{4} whose range is \mathcal{V}^{\perp} such that $P_{4}: \mathcal{U}^{\perp} \rightarrow \mathcal{V}^{\perp}$ is invertible.

Moreover, if any one of the above conditions holds, then the following statement holds. The bounded operators $P_{\mathcal{U}, \mathcal{V} \perp}: \mathcal{V} \rightarrow \mathcal{U}, P_{\mathcal{V}, \mathcal{U} \perp}: \mathcal{U} \rightarrow \mathcal{V}, P_{\mathcal{V}^{\perp}, \mathcal{U}}: \mathcal{U}^{\perp} \rightarrow \mathcal{V}^{\perp}, P_{\mathcal{U},, \mathcal{V}}: \mathcal{V}^{\perp} \rightarrow \mathcal{U}^{\perp}$ are invertible (hence the spaces are isomorphic), and

$$
\begin{align*}
R(\mathcal{U}, \mathcal{V}) & =\left\|A^{-1}\right\|^{-1}=\left\|B^{-1}\right\|^{-1}=\left\|C^{-1}\right\|^{-1}=\left\|D^{-1}\right\|^{-1} \tag{2.1}\\
& =\left\|P_{\mathcal{U}, \mathcal{V}^{\perp}}\right\|^{-1}=\left\|P_{\mathcal{V}_{,} \mathcal{U}^{\perp}}\right\|^{-1}=\left\|P_{\mathcal{V}^{\perp}, \mathcal{U}}\right\|^{-1}=\left\|P_{\mathcal{U}^{\perp}, \mathcal{V}}\right\|^{-1} \tag{2.2}
\end{align*}
$$

We note that the equivalences of Items (1) to (6) are established in [3, Proposition 3.3] and [17, Theorem 2.3]. Moreover, the first two equalities in (2.1) are proved in [3, Proposition 3.3]. We recall the following equations [18, p. 2922].

$$
\begin{align*}
R(\mathcal{U}, \mathcal{V}) & =\sqrt{1-S\left(\mathcal{U}, \mathcal{V}^{\perp}\right)^{2}} \tag{2.3}\\
& =R\left(\mathcal{V}^{\perp}, \mathcal{U}^{\perp}\right) \tag{2.4}
\end{align*}
$$

(2.4) implies that Items (1) to (6) are equivalent to Items (7) to (11) and the equalities in (2.1) hold. It is reported in [8, p. 119] that Ljance [15] showed that, if $\mathcal{H}=\mathcal{M}+\mathcal{N}$, then $S(\mathcal{M}, \mathcal{N})^{2}=1-\left\|P_{\mathcal{M}, \mathcal{N}}\right\|^{-2}$. By using (2.3) and (2.4), the first equality in (2.2) follows. We derive the first equality in (2.2) by using the fact that $P_{\mathcal{U}, \mathcal{V}^{\perp}}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible in Lemma 2.4 .

Lemma 2.2. If $\mathcal{H}=\mathcal{U} \dot{+} \mathcal{V}^{\perp}$, then $P_{\mathcal{U}, \mathcal{V} \perp}: \mathcal{V} \rightarrow \mathcal{U}$ and $P_{\mathcal{V}, \mathcal{U} \perp}: \mathcal{U} \rightarrow \mathcal{V}$ are invertible.
Proof. Let $u \in \mathcal{U}$ be arbitrary. Define $v:=P_{\mathcal{V}} u \in \mathcal{V}$. Then

$$
P_{\mathcal{U}, \mathcal{V}^{\perp} v}=P_{\mathcal{U}, \mathcal{V}^{\perp}} P_{\mathcal{V}} u=P_{\mathcal{U}_{, \mathcal{V}^{\perp}}}\left(P_{\mathcal{V}} u+P_{\mathcal{V}^{\perp}} u\right)=P_{\mathcal{U}, \mathcal{V}^{\perp}} u=u .
$$

Hence $P_{\mathcal{U}, \mathcal{V}^{\perp}}: \mathcal{V} \rightarrow \mathcal{U}$ is onto. Suppose that $v \in \mathcal{V}$ and $P_{\mathcal{U}, \mathcal{V}^{\perp}} v=0$. Then $v \in \operatorname{ker} P_{\mathcal{U}, \mathcal{V}^{\perp}}=\mathcal{V}^{\perp}$. Hence $v \in \mathcal{V} \cap \mathcal{V}^{\perp}=\{0\}$. Therefore $P_{\mathcal{U}, \mathcal{V} \perp} \mid \mathcal{V}$ is one-to-one. By the open mapping theorem, $P_{\mathcal{U}, \mathcal{V}^{\perp}}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible. Similarly, $P_{\mathcal{V}, \mathcal{U}^{\perp}}: \mathcal{U} \rightarrow \mathcal{V}$ is invertible.

The converse of Lemma 2.2 holds.
Lemma 2.3. If there is a projection P such that $\operatorname{ran} P=\mathcal{U}$ and $P: \mathcal{V} \rightarrow \mathcal{U}$ is invertible, then $\mathcal{H}=\mathcal{U} \dot{+} \mathcal{V}^{\perp}$.

Proof. Since P is a projection, $P=P_{\mathcal{U}, \mathcal{W}}$, where $\mathcal{W}:=$ ker P. Of course, $\mathcal{H}=\mathcal{U} \dot{+} \mathcal{W}$. Since Items (3) and (5) are equivalent, it suffices to show that $P_{\mathcal{V}}: \mathcal{U} \rightarrow \mathcal{V}$ is invertible. By our assumption

$$
\begin{equation*}
P_{\mathcal{U}, \mathcal{W}}: \mathcal{V} \rightarrow \mathcal{U} \quad \text { is invertible. } \tag{2.5}
\end{equation*}
$$

Since $\left(P_{\mathcal{U}, \mathcal{W}}\right)^{*}=P_{\mathcal{W}^{\perp}, \mathcal{U}}$, the adjoint of $P_{\mathcal{U}, \mathcal{W}}$ as an element of $\mathcal{B}(\mathcal{U}, \mathcal{V})$ is $P_{\mathcal{W}^{\perp}, \mathcal{U}}: \mathcal{U} \rightarrow \mathcal{V}$, which is also invertible. Hence $\mathcal{V} \subset \operatorname{ran} P_{\mathcal{W}^{\perp}, \mathcal{U}^{\perp}}=\mathcal{W}^{\perp}$. In particular, $\mathcal{W} \subset \mathcal{V}^{\perp}$. Let $v \in \mathcal{V}$ be arbitrary. Then,

$$
\begin{aligned}
& v=P_{\mathcal{U}, \mathcal{W}} v+\left(I-P_{\mathcal{U}, \mathcal{W}}\right) v=P_{\mathcal{U}, \mathcal{W}} v+P_{\mathcal{W}, \mathcal{U}} v, \\
& v=P_{\mathcal{V}} v=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{W}} v+P_{\mathcal{V}} P_{\mathcal{W}, \mathcal{U}} v=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{W}} v
\end{aligned}
$$

since $P_{\mathcal{W}, \mathcal{U}} v \in \mathcal{W} \subset \mathcal{V}^{\perp}$. That is,

$$
\begin{equation*}
v=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{W} v} \quad \forall v \in \mathcal{V} \tag{2.6}
\end{equation*}
$$

This shows that $P_{\mathcal{V}}: \mathcal{U} \rightarrow \mathcal{V}$ is onto since $P_{\mathcal{U}, \mathcal{W} v} \in \mathcal{U}$. Now, suppose that $u \in \mathcal{U}$ and $P_{\mathcal{V}} u=0$, i.e., $u \in \mathcal{U} \cap \mathcal{V}^{\perp}$. By (2.5), there exists $v \in \mathcal{V}$ such that $P_{\mathcal{U}, \mathcal{W}} v=u$. Then, by (2.6), $0=P_{\mathcal{V}} u=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{W} v} v=v$. Hence $u=P_{\mathcal{U}, \mathcal{W} v}=P_{\mathcal{U}, \mathcal{W} 0} 0=0$. This shows that $P_{\mathcal{V}}: \mathcal{U} \rightarrow \mathcal{V}$ is one-to-one. Hence it is invertible by the open mapping theorem.

Lemma 2.4. If $\mathcal{H}=\mathcal{U} \dot{+} \mathcal{V}^{\perp}$ and \mathcal{U} is not trivial, then

$$
\begin{equation*}
R(\mathcal{U}, \mathcal{V})=\left\|P_{\mathcal{U}, \mathcal{V}^{\perp}}\right\|^{-1} \tag{2.7}
\end{equation*}
$$

Proof. By Lemma $2.2 P_{\mathcal{U}, \mathcal{V}^{\perp}}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible. Let $v \in \mathcal{V}$. Since $I-P_{\mathcal{U}, \mathcal{V}^{\perp}}=P_{\mathcal{V}^{\perp}, \mathcal{U}}$, $v=I v=P_{\mathcal{U}, \mathcal{V}^{\perp} v}+P_{\mathcal{V}^{\perp}, \mathcal{U}} v$. In particular,

$$
v=P_{\mathcal{V}} v=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{V}} \perp v+P_{\mathcal{V}} P_{\mathcal{V} \perp, \mathcal{U}} v=P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{V} \perp} v
$$

Since $P_{\mathcal{U}, \mathcal{V}^{\perp}}: \mathcal{V} \rightarrow \mathcal{U}$ is invertible, we have

$$
\begin{aligned}
R(\mathcal{U}, \mathcal{V}) & =\inf _{u \in \mathcal{U} \backslash\{0\}} \frac{\left\|P_{\mathcal{V}} u\right\|}{\|u\|}=\inf _{v \in \mathcal{V} \backslash\{0\}} \frac{\| P_{\mathcal{V}} P_{\mathcal{U}, \mathcal{V}^{\perp} v \|}}{\left\|P_{\mathcal{U}, \mathcal{V}^{\perp}} v\right\|}=\inf _{v \in \mathcal{V} \backslash\{0\}} \frac{\|v\|}{\left\|P_{\mathcal{U}, \mathcal{V}^{\perp}}\right\|} \\
& =\left(\sup _{v \in \mathcal{V} \backslash\{0\}} \frac{\left\|P_{\mathcal{U}, \mathcal{V}^{\perp} v}\right\|}{\|v\|}\right)^{-1}=\left\|P_{\mathcal{U}, \mathcal{V}^{\perp}}\right\|^{-1} .
\end{aligned}
$$

Proof of Theorem 2.1. Lemmas 2.2 and 2.3 show that Items (5) and (12) are equivalent. The remaining equivalences follow easily. Now, suppose that any of the Items holds. Then the first equality in (2.2) holds by Lemma 2.4 (which was already observed by Ljance [15]). The second equality in (2.2) holds by taking the adjoint of $P_{\mathcal{U}, \mathcal{V}^{\perp}}$. The remaining equalities in (2.2) hold by Theorem 3.1 since its proof uses only Lemma 2.4.

We see that $R(\mathcal{U}, \mathcal{V})=R(\mathcal{V}, \mathcal{U})$ if both of them are positive. On the other hand, we also see that $R(\mathcal{V}, \mathcal{U})$ can be 0 while $R(\mathcal{U}, \mathcal{V})=1$ if \mathcal{U} is a non-trivial proper closed subspace of \mathcal{V}. It is shown in [3, Lemma 3.2] that if $0=R(\mathcal{V}, \mathcal{U})<R(\mathcal{U}, \mathcal{V})$, then $\mathcal{V} \ominus \mathcal{U}$ is not trivial. Finally, [3, Lemma 3.1] shows that if \mathcal{U} is not trivial, then

$$
R(\mathcal{U}, \mathcal{V})= \begin{cases}0, & \text { if }\left.P \mathcal{V}\right|_{\mathcal{U}} \text { is not bounded below } \\ \left\|\left(P_{\mathcal{V}} \mid \mathcal{U}\right)^{\dagger}\right\|^{-1}, & \text { if }\left.P_{\mathcal{V}}\right|_{\mathcal{U}} \text { is bounded below }\end{cases}
$$

where T^{\dagger} denotes the Moore-Penrose generalized inverse of a bounded operator T with closed range.

3. Applications

As applications of Theorem 2.1, we first present yet another proof of the main result in the survey article [16], which is used in the proof of the third equality in (2.2). Then we show that the ranges of the analysis operators of two oblique dual frame sequences satisfy the decomposition in Theorem 2.1. This recovers a result in [13] that the excesses of the oblique dual frame sequences are the same.

Theorem 3.1 (Theorem $2.1[16])$. Let P be a projection in $\mathcal{B}(\mathcal{H})$ such that neither ran P nor $\operatorname{ker} P$ is \mathcal{H}. Then $\|P\|=\|I-P\|$.

Proof. Since P is a projection, $\mathcal{H}=\operatorname{ran} P \dot{+} \operatorname{ker} P$. Moreover, $I-P$ is also a projection such that $\operatorname{ran}(I-P)=\operatorname{ker} P$ and $\operatorname{ker}(I-P)=\operatorname{ran} P$. Let $\mathcal{M}:=\operatorname{ran} P$ and $\mathcal{N}:=\operatorname{ker} P$. Then $P=P_{\mathcal{M}, \mathcal{N}}$ and $I-P=P_{\mathcal{N}, \mathcal{M}}$. By our assumptions, neither \mathcal{M} nor \mathcal{N} is trivial and
$\mathcal{H}=\mathcal{M} \dot{+}\left(\mathcal{N}^{\perp}\right)^{\perp}$. Hence, by $(2.7),\|P\|=\left\|P_{\mathcal{M}, \mathcal{N}}\right\|=R\left(\mathcal{M}, \mathcal{N}^{\perp}\right)^{-1}$. On the other hand, by (2.4), $R\left(\mathcal{M}, \mathcal{N}^{\perp}\right)=R\left(\mathcal{N}, \mathcal{M}^{\perp}\right)$. By (2.7),

$$
\|I-P\|=\left\|P_{\mathcal{N}, \mathcal{M}}\right\|=\left\|P_{\mathcal{N},\left(\mathcal{M}^{\perp}\right)^{\perp}}\right\|=R\left(\mathcal{N}, \mathcal{M}^{\perp}\right)^{-1}=R\left(\mathcal{M}, \mathcal{N}^{\perp}\right)^{-1}=\|P\| .
$$

We now give an application of Theorem 2.1 to abstract frame theory. We refer to [4] for the basic facts on frames and frame sequences. For a sequence $X:=\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{H}$, define $\mathcal{H}_{X}:=\overline{\operatorname{span}} X . \quad X$ is said to be a Bessel sequence if there exists a positive constant β_{X} such that, for each $h \in \mathcal{H}, \sum\left|\left\langle h, x_{n}\right\rangle\right|^{2} \leq \beta_{X}\|h\|^{2}$. For a Bessel sequence X, define its synthesis operator $T_{X}: \ell^{2} \rightarrow \mathcal{H}$ by $T_{X} a:=\sum a(n) x_{n}$. It is known that T_{X} is a well-defined bounded operator. Its adjoint T_{X}^{*} is called the analysis operator of X and $T_{X}^{*} h=\left(\left\langle h, x_{n}\right\rangle\right)_{n}$ for $h \in \mathcal{H}$. The frame operator of X is defined to be $S_{X}:=T_{X} T_{X}^{*} . X$ is said to be a frame sequence if there exist positive constants α_{X} and β_{X} such that, for any $h \in \mathcal{H}_{X}$, $\alpha_{X}\|h\|^{2} \leq \sum\left|\left\langle h, x_{n}\right\rangle\right|^{2} \leq \beta_{X}\|h\|^{2}$. A frame sequence is a frame for \mathcal{H} if $\mathcal{H}_{X}=\mathcal{H}$. It is known that a Bessel sequence is a frame sequence if and only if T_{X} has closed range. In this case, $\operatorname{ran} T_{X}=\mathcal{H}_{X}$ and $S_{X}: \mathcal{H}_{X} \rightarrow \mathcal{H}_{X}$ is invertible. Suppose that X is a frame sequence. Then T_{X}^{\dagger} and $\left(T_{X}^{*}\right)^{\dagger}$ are bounded since T_{X} and T_{X}^{*} have closed range. We recall that [6]

$$
\begin{equation*}
\left(T_{X}^{*}\right)^{\dagger}=\left(T_{X}^{\dagger}\right)^{*} \quad \text { and } \quad\left(T_{X} T_{X}^{*}\right)^{\dagger}=\left(T_{X}^{*}\right)^{\dagger} T_{X}^{\dagger} \tag{3.1}
\end{equation*}
$$

For a frame sequence X, a Bessel sequence $Y:=\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is said to be a dual of X if $\left.T_{X} T_{Y}^{*}\right|_{\mathcal{H}_{X}}=\left.I\right|_{\mathcal{H}_{X}}$. Two Bessel sequences are said to be oblique duals of each other if they are both frame sequences and they are duals of each other [10]. In this case, the following equations hold [10]:

$$
\begin{equation*}
T_{X} T_{Y}^{*}=P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\prime}} \quad \text { and } \quad T_{Y} T_{X}^{*}=P_{\mathcal{H}_{Y}, \mathcal{H}_{X}^{\prime}} . \tag{3.2}
\end{equation*}
$$

In particular, $\mathcal{H}=\mathcal{H}_{X}+\mathcal{H}_{Y}^{\perp}$. The following proposition, which is a generalization of [5, Proposition 7.2], shows that if X and Y are oblique duals of each other, then $\ell^{2}=$ $\operatorname{ran} T_{X}^{*}+\left(\operatorname{ran} T_{Y}^{*}\right)^{\perp}$. Hence, by Theorem 2.1, $\operatorname{ker} T_{X}=\left(\operatorname{ran} T_{X}^{*}\right)^{\perp}$ and $\operatorname{ker} T_{Y}=\left(\operatorname{ran} T_{Y}^{*}\right)^{\perp}$ are isomorphic. For a frame sequence $\operatorname{dim} \operatorname{ker} T_{X}$ is called the excess of X and it is equal to the following quantity $[11,2]: \sup \left\{\operatorname{card} X^{\prime}: X^{\prime} \subset X, \mathcal{H}_{X \backslash X^{\prime}}=\mathcal{H}_{X}\right\}$. In a sense, the excess of X measures the redundancy of X. The following proposition implies that if X and Y are oblique dual frames of each other, then $\ell^{2}=\operatorname{ran} T_{X}^{*} \dot{+}\left(\operatorname{ran} T_{Y}^{*}\right)^{\perp}$. Hence $\operatorname{dim} \operatorname{ker} T_{X}=\operatorname{dim}\left(\operatorname{ran} T_{X}^{*}\right)^{\perp}=\operatorname{dim}\left(\operatorname{ran} T_{Y}^{*}\right)^{\perp}=\operatorname{dim} \operatorname{ker} T_{Y}$ by Theorem 2.1. Therefore X and Y have the same excesses. This result on the excess of oblique duals is also proved in [13] using different method.

Proposition 3.2. Let X and Y be oblique dual frame sequences and $P:=P_{\operatorname{ran} T_{X}^{*}}$ and $Q:=P_{\operatorname{ran} T_{Y}^{*}}$. The the following hold:
(1) $P=T_{X}^{*} S_{X}^{\dagger} T_{X}$;
(2) $P T_{Y}^{*}=T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{+}}$.

Moreover, $\operatorname{ran} T_{X}^{*}$ and $\operatorname{ran} T_{Y}^{*}$ satisfy the angle condition in Theorem 2.1. In particular, $\ell^{2}=\operatorname{ran} T_{X}^{*} \dot{+}\left(\operatorname{ran} T_{Y}^{*}\right)^{\perp}$.

Proof. Since X and Y are oblique dual frame sequences, (3.2) hold. Since $S_{X}: \mathcal{H}_{X} \rightarrow \mathcal{H}_{X}$ is invertible, $\operatorname{ker} S_{X}^{\dagger}=\mathcal{H}_{X}^{\perp}$ and $\operatorname{ran} S_{X}^{\dagger}=\mathcal{H}_{X}$.
(1): We have, by (3.1) and the properties of Moore-Penrose generalized inverses,

$$
\begin{aligned}
T_{X}^{*} S_{X}^{\dagger} T_{X} & =T_{X}^{*}\left(T_{X} T_{X}^{*}\right)^{\dagger} T_{X}=\left(T_{X}^{*}\left(T_{X}^{*}\right)^{\dagger}\right)\left(T_{X}^{\dagger} T_{X}\right) \\
& =P_{\operatorname{ran} T_{X}^{*}} P_{\operatorname{ran} T_{X}^{*}}=P_{\operatorname{ran} T_{X}^{*}}=P
\end{aligned}
$$

(2): (1), (3.2) and the properties of Moore-Penrose generalized inverses imply that

$$
\begin{aligned}
P T_{Y}^{*} & =\left(T_{X}^{*} S_{X}^{\dagger} T_{X}\right) T_{Y}^{*}=T_{X}^{*}\left(T_{X} T_{X}^{*}\right)^{\dagger}\left(T_{X} T_{Y}^{*}\right)=\left(T_{X}^{*}\left(T_{X}^{*}\right)^{\dagger}\right) T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}} \\
& =P_{\operatorname{ran} T_{X}^{*}} T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\perp}}=T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\perp}}
\end{aligned}
$$

By Theorem 2.1, to show that $\operatorname{ran} T_{X}^{*}$ and $\operatorname{ran} T_{Y}^{*}$ satisfy the angle condition, it suffices to show that $P: \operatorname{ran} T_{Y}^{*} \rightarrow \operatorname{ran} T_{X}^{*}$ is invertible. It is elementary to see that $T_{X}^{\dagger}: \mathcal{H}_{X} \rightarrow \operatorname{ran} T_{X}^{*}$ is invertible (see, for example, [14]). Hence, by (2),

$$
\operatorname{ran} T_{X}^{*}=T_{X}^{\dagger}\left(\mathcal{H}_{X}\right) \subset \operatorname{ran} T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\perp}}=\operatorname{ran} P T_{Y}^{*} \subset P\left(\operatorname{ran} T_{Y}^{*}\right) \subset \operatorname{ran} P=\operatorname{ran} T_{X}^{*}
$$

In particular, $P\left(\operatorname{ran} T_{Y}^{*}\right)=\operatorname{ran} T_{X}^{*}$. Now, suppose that $a \in \operatorname{ran} T_{Y}^{*}$ and $P a=0$. Then, there exists $h \in \mathcal{H}$ such that $a=T_{Y}^{*} h$ and $P T_{Y}^{*} h=0$. We may assume that $h \in\left(\operatorname{ker} T_{Y}^{*}\right)^{\perp}=$ $\operatorname{ran} T_{Y}=\mathcal{H}_{Y}$. By $(2), 0=P T_{Y}^{*} h=T_{X}^{\dagger} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\perp}} h$. Since $\operatorname{ker} T_{X}^{\dagger}=\operatorname{ker} T_{X}^{*}$,

$$
\operatorname{ran} T_{X} \ni P_{\mathcal{H}_{X}, \mathcal{H}_{\frac{1}{Y}}} h \in \operatorname{ker} T_{X}^{\dagger}=\operatorname{ker} T_{X}^{*}=\left(\operatorname{ran} T_{X}\right)^{\perp}
$$

i.e., $P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\prime}} h=0$. Therefore $\mathcal{H}_{Y} \ni h \in \operatorname{ker} P_{\mathcal{H}_{X}, \mathcal{H}_{Y}^{\perp}}=\mathcal{H}_{Y}^{\perp}$. Hence $h=0$. Therefore, $a=T_{Y}^{*} h=0$. This shows that $P: \operatorname{ran} T_{Y}^{*} \rightarrow \operatorname{ran} T_{X}^{*}$ is invertible by the open mapping theorem.

Acknowledgments

The authors thank the anonymous referees for their helpful suggestions which helped them to improve this article. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0008917).

References

[1] A. Aldroubi, Oblique projections in atomic spaces, Proc. Amer. Math. Soc. 124 (1996) 2051-2060.
[2] R. Balan, P.G. Casazza, C. Heil, Z. Landau, Deficits and excesses of frames, Adv. Comput. Math. 18 (2003) 93-116
[3] S. Bishop, C. Heil, Y.Y. Koo, J.K. Lim, Invariances of frame sequences under perturbations, Linear Algebra Appl. 432 (2010) 1501-1514.
[4] P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000) 129-201.
[5] P. Casazza, D. Han, D.R. Larson, Frames for Banach spaces, Contemp. Math. 247 (1999) 149-182.
[6] O. Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. 195 (1995), 401-414.
[7] J.B. Conway, A Course in Functional Analysis, Second Ed., Springer, New York, 1990.
[8] F. Deutsch, The angle between subspaces in Hilbert spaces, in: S.P. Singh (Ed.), Approximation Theory, Wavelets and Applications, Kluwer, Dordrecht, 1995, pp. 107-130.
[9] J. Dixmier, Étude sur les variétés et les opérateurs de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949) 11-101.
[10] C. Heil, Y.Y. Koo, J.K. Lim, Duals of frame sequences, Acta Appl. Math. 107 (2009) 75 - 90.
[11] J.R. Holub, Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.
[12] H.O. Kim, R.Y. Kim, J.K. Lim, The infimum cosine angle between two fintely generated shift-invariant spaces and its applications, Appl. Comput. Harmon. Anal. 19 (2005) 253-281.
[13] H. Kim, Y.Y. Koo, J.K. Lim, Applications of parameterizations of oblique duals of a frame sequence, submitted.
[14] Y.Y. Koo, J.K. Lim, Sum and direct sum of frame sequences, to appear in Linear Multilinear Algebra.
[15] V.È. Ljance, Certain properties of idempotent operators (in Russian), Teoret. Prikl. Mat. Vyp. 1 (1958) 16-22.
[16] D.B. Szyld, The many proofs of an indentity on the norm of oblique projections, Numer. Algorithms 42 (2006) 309-323.
[17] W.-S. Tang, Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces, Proc. Amer. Math. Soc. 128 (1999) 463-473.
[18] M. Unser, A. Aldroubi, A general sampling theory for non-ideal acquisition devices, IEEE Trans. Signal Process. 42 (1994) 2915-2925.
(Y. Y. Koo) University College, Yonsei University, Seoul 120-749, Republic of Korea E-mail address: yykoo@yonsei.ac.kr
(J. K. Lim) Department of Applied Mathematics, Hankyong National University, Anseongsi, Gyeonggido, 456-749, Republic of Korea

E-mail address: jaekun@hknu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 46C05; Secondary 15A24 .
 Key words and phrases. Angle, Dixmier Angle, Projection, Frame, Frame sequence.

