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Abstract. We generalize the characterizations of the direct sum decomposition of a Hilbert

space in terms of the angle R, and, using this result, present another proof of the equality

concerning the norms of the projections P and I − P . As an application to abstract frame

theory, we show that the ranges of the analysis operators of oblique dual frame sequences

satisfy the the angle condition.

1. Introduction

Throughout this article M,N ,U and V denote closed subspaces of a Hilbert space H over

R or C. We let U + V denote the sum of U and V, and U u V the direct sum of U and

V, i.e., the sum of U and V with trivial intersection. If H = M u N , then PM,N denote

the projection (bounded idempotent) with ranPM,N = M and kerPM,N = N [7, Section

II.3]. We also let PM := PM,M⊥ be the orthogonal projection onto M. We first recall two

definitions of the angles between U and V. We define ([18, Eqs. (28) and (38)])

S(U ,V) :=

{
sup

{
∥PVu∥
∥u∥ : u ∈ U \ {0}

}
if U ̸= {0},

0 if U = {0},

R(U ,V) :=

{
inf
{

∥PVu∥
∥u∥ : u ∈ U \ {0}

}
if U ̸= {0},

1 if U = {0}.

The following is the definition of Dixmier angle ([9], [8, Definition 2]).

c0(U ,V) := sup {|⟨u, v⟩| : u ∈ U , ∥u∥ ≤ 1, v ∈ V, ∥v∥ ≤ 1} ,

where neither U nor V is assumed to be trivial. It is well-known and easy to see that c0 = S.

In particular, S(U ,V) = S(V,U). On the other hand, if U is a non-trivial proper closed

subspace of V, then R(U ,V) = 1 and R(V,U) = 0. See Section 2 for further facts on the

asymmetry of R.

There are vast literature and an interesting survey article ([8]) on S, whereas many known

facts on R are scattered throughout research papers [18, 17, 12, 3]. S can be used to charac-

terize when the sum of two closed subspaces is closed [8], whereas R can be used to construct

two biorthogonal wavelet frames or Riesz bases of L2(Rd) [1, 17, 12].
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The purpose of this article is to generalize [3, Proposition 3.3] and [17, Theorem 2.3], which

connect some properties of the angle R with those of projections (idempotents [7, Section

II.3]) in B(H) (Theorem 2.1). As an application of this generalization, we give another proof

of Theorem 3.1, which is the main focus of [16]. We also apply our results to abstract frame

theory (Proposition 3.2). Further remarks on R are also included.

2. Main result

In this section we prove the following theorem which generalizes [3, Proposition 3.3] which,

in turn, is a generalization of [17, Theorem 2.3].

Theorem 2.1. Let U and V be closed subspaces of H such that at least one of which is

non-trivial. Then the the following statements are equivalent:

(1) 0 < R(U ,V) and 0 < R(V,U);
(2) 0 < R(U ,V) = R(V,U);
(3) A := PV : U → V is invertible;

(4) B := PU : V → U is invertible;

(5) H = U u V⊥;

(6) H = V u U⊥;

(7) 0 < R(U⊥,V⊥) and 0 < R(V⊥,U⊥);

(8) 0 < R(U⊥,V⊥) = R(V⊥,U⊥);

(9) C := PV⊥ : U⊥ → V⊥ is invertible;

(10) D := PU⊥ : V⊥ → U⊥ is invertible;

(11) 0 < R(U ,V) = R(V,U) = R(U⊥,V⊥) = R(V⊥,U⊥);

(12) There is a projection P1 whose range is U such that P1 : V → U is invertible;

(13) There is a projection P2 whose range is V such that P2 : U → V is invertible;

(14) There is a projection P3 whose range is U⊥ such that P3 : V⊥ → U⊥ is invertible;

(15) There is a projection P4 whose range is V⊥ such that P4 : U⊥ → V⊥ is invertible.

Moreover, if any one of the above conditions holds, then the following statement holds. The

bounded operators PU ,V⊥ : V → U , PV,U⊥ : U → V, PV⊥,U : U⊥ → V⊥, PU⊥,V : V⊥ → U⊥ are

invertible (hence the spaces are isomorphic), and

R(U ,V) =
∥∥A−1

∥∥−1
=
∥∥B−1

∥∥−1
=
∥∥C−1

∥∥−1
=
∥∥D−1

∥∥−1
(2.1)

=
∥∥PU ,V⊥

∥∥−1
=
∥∥PV,U⊥

∥∥−1
=
∥∥PV⊥,U

∥∥−1
=
∥∥PU⊥,V

∥∥−1
. (2.2)

We note that the equivalences of Items (1) to (6) are established in [3, Proposition 3.3] and

[17, Theorem 2.3]. Moreover, the first two equalities in (2.1) are proved in [3, Proposition

3.3]. We recall the following equations [18, p. 2922].

R(U ,V) =
√

1− S (U ,V⊥)
2

(2.3)

= R
(
V⊥,U⊥

)
. (2.4)
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(2.4) implies that Items (1) to (6) are equivalent to Items (7) to (11) and the equalities in

(2.1) hold. It is reported in [8, p. 119] that Ljance [15] showed that, if H = M u N , then

S(M,N )2 = 1− ∥PM,N ∥−2. By using (2.3) and (2.4), the first equality in (2.2) follows. We

derive the first equality in (2.2) by using the fact that PU ,V⊥ : V → U is invertible in Lemma

2.4.

Lemma 2.2. If H = U u V⊥, then PU ,V⊥ : V → U and PV,U⊥ : U → V are invertible.

Proof. Let u ∈ U be arbitrary. Define v := PVu ∈ V. Then

PU ,V⊥v = PU ,V⊥PVu = PU ,V⊥ (PVu+ PV⊥u) = PU ,V⊥u = u.

Hence PU ,V⊥ : V → U is onto. Suppose that v ∈ V and PU ,V⊥v = 0. Then v ∈ kerPU ,V⊥ = V⊥.

Hence v ∈ V ∩ V⊥ = {0}. Therefore PU ,V⊥ |V is one-to-one. By the open mapping theorem,

PU ,V⊥ : V → U is invertible. Similarly, PV,U⊥ : U → V is invertible. �

The converse of Lemma 2.2 holds.

Lemma 2.3. If there is a projection P such that ranP = U and P : V → U is invertible,

then H = U u V⊥.

Proof. Since P is a projection, P = PU ,W , where W := kerP . Of course, H = U uW. Since

Items (3) and (5) are equivalent, it suffices to show that PV : U → V is invertible. By our

assumption

PU ,W : V → U is invertible. (2.5)

Since (PU ,W)∗ = PW⊥,U⊥ , the adjoint of PU ,W as an element of B(U ,V) is PW⊥,U⊥ : U → V ,
which is also invertible. Hence V ⊂ ranPW⊥,U⊥ = W⊥. In particular, W ⊂ V⊥. Let v ∈ V
be arbitrary. Then,

v = PU ,Wv + (I − PU ,W) v = PU ,Wv + PW,Uv, i.e.,

v = PVv = PVPU ,Wv + PVPW,Uv = PVPU ,Wv

since PW,Uv ∈ W ⊂ V⊥. That is,

v = PVPU ,Wv ∀ v ∈ V. (2.6)

This shows that PV : U → V is onto since PU ,Wv ∈ U . Now, suppose that u ∈ U and

PVu = 0, i.e., u ∈ U ∩V⊥. By (2.5), there exists v ∈ V such that PU ,Wv = u. Then, by (2.6),

0 = PVu = PVPU ,Wv = v. Hence u = PU ,Wv = PU ,W0 = 0. This shows that PV : U → V is

one-to-one. Hence it is invertible by the open mapping theorem. �

Lemma 2.4. If H = U u V⊥ and U is not trivial, then

R(U ,V) =
∥∥PU ,V⊥

∥∥−1
. (2.7)
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Proof. By Lemma 2.2 PU ,V⊥ : V → U is invertible. Let v ∈ V . Since I − PU ,V⊥ = PV⊥,U ,

v = Iv = PU ,V⊥v + PV⊥,Uv. In particular,

v = PVv = PVPU ,V⊥v + PVPV⊥,Uv = PVPU ,V⊥v.

Since PU ,V⊥ : V → U is invertible, we have

R(U ,V) = inf
u∈U\{0}

∥PVu∥
∥u∥

= inf
v∈V\{0}

∥∥PVPU ,V⊥v
∥∥∥∥PU ,V⊥v
∥∥ = inf

v∈V\{0}

∥v∥∥∥PU ,V⊥v
∥∥

=

(
sup

v∈V\{0}

∥∥PU ,V⊥v
∥∥

∥v∥

)−1

=
∥∥PU ,V⊥

∥∥−1
. �

Proof of Theorem 2.1. Lemmas 2.2 and 2.3 show that Items (5) and (12) are equivalent. The

remaining equivalences follow easily. Now, suppose that any of the Items holds. Then the

first equality in (2.2) holds by Lemma 2.4 (which was already observed by Ljance [15]). The

second equality in (2.2) holds by taking the adjoint of PU ,V⊥ . The remaining equalities in

(2.2) hold by Theorem 3.1 since its proof uses only Lemma 2.4. �

We see that R(U ,V) = R(V,U) if both of them are positive. On the other hand, we also

see that R(V,U) can be 0 while R(U ,V) = 1 if U is a non-trivial proper closed subspace of

V. It is shown in [3, Lemma 3.2] that if 0 = R(V,U) < R(U ,V), then V ⊖ U is not trivial.

Finally, [3, Lemma 3.1] shows that if U is not trivial, then

R(U ,V) =

0, if PV |U is not bounded below,∥∥(PV |U )†
∥∥−1

, if PV |U is bounded below,

where T † denotes the Moore-Penrose generalized inverse of a bounded operator T with closed

range.

3. Applications

As applications of Theorem 2.1, we first present yet another proof of the main result in

the survey article [16], which is used in the proof of the third equality in (2.2). Then we

show that the ranges of the analysis operators of two oblique dual frame sequences satisfy

the decomposition in Theorem 2.1. This recovers a result in [13] that the excesses of the

oblique dual frame sequences are the same.

Theorem 3.1 (Theorem 2.1 [16]). Let P be a projection in B(H) such that neither ranP

nor kerP is H. Then ∥P∥ = ∥I − P∥.

Proof. Since P is a projection, H = ranP u kerP . Moreover, I − P is also a projection

such that ran(I − P ) = kerP and ker(I − P ) = ranP . Let M := ranP and N := kerP .

Then P = PM,N and I − P = PN ,M. By our assumptions, neither M nor N is trivial and
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H = Mu (N⊥)⊥. Hence, by (2.7), ∥P∥ = ∥PM,N ∥ = R(M,N⊥)−1. On the other hand, by

(2.4), R(M,N⊥) = R(N ,M⊥). By (2.7),

∥I − P∥ = ∥PN ,M∥ =
∥∥∥PN ,(M⊥)⊥

∥∥∥ = R(N ,M⊥)−1 = R(M,N⊥)−1 = ∥P∥ . �

We now give an application of Theorem 2.1 to abstract frame theory. We refer to [4] for

the basic facts on frames and frame sequences. For a sequence X := {xn}n∈N ⊂ H, define

HX := spanX. X is said to be a Bessel sequence if there exists a positive constant βX

such that, for each h ∈ H,
∑

| ⟨h, xn⟩ |2 ≤ βX ∥h∥2. For a Bessel sequence X, define its

synthesis operator TX : ℓ2 → H by TXa :=
∑

a(n)xn. It is known that TX is a well-defined

bounded operator. Its adjoint T ∗
X is called the analysis operator of X and T ∗

Xh = (⟨h, xn⟩)n
for h ∈ H. The frame operator of X is defined to be SX := TXT ∗

X . X is said to be a

frame sequence if there exist positive constants αX and βX such that, for any h ∈ HX ,

αX ∥h∥2 ≤
∑

| ⟨h, xn⟩ |2 ≤ βX ∥h∥2. A frame sequence is a frame for H if HX = H. It is

known that a Bessel sequence is a frame sequence if and only if TX has closed range. In this

case, ranTX = HX and SX : HX → HX is invertible. Suppose that X is a frame sequence.

Then T †
X and (T ∗

X)† are bounded since TX and T ∗
X have closed range. We recall that [6]

(T ∗
X)† = (T †

X)∗ and (TXT ∗
X)† = (T ∗

X)†T †
X . (3.1)

For a frame sequence X, a Bessel sequence Y := {yn}n∈N is said to be a dual of X if

TXT ∗
Y |HX

= I|HX
. Two Bessel sequences are said to be oblique duals of each other if they

are both frame sequences and they are duals of each other [10]. In this case, the following

equations hold [10]:

TXT ∗
Y = PHX ,H⊥

Y
and TY T

∗
X = PHY ,H⊥

X
. (3.2)

In particular, H = HX u H⊥
Y . The following proposition, which is a generalization of

[5, Proposition 7.2], shows that if X and Y are oblique duals of each other, then ℓ2 =

ranT ∗
X u (ranT ∗

Y )
⊥. Hence, by Theorem 2.1, kerTX = (ranT ∗

X)⊥ and kerTY = (ranT ∗
Y )

⊥

are isomorphic. For a frame sequence dimkerTX is called the excess of X and it is equal

to the following quantity [11, 2]: sup{cardX ′ : X ′ ⊂ X,HX\X′ = HX}. In a sense, the

excess of X measures the redundancy of X. The following proposition implies that if

X and Y are oblique dual frames of each other, then ℓ2 = ranT ∗
X u (ranT ∗

Y )
⊥. Hence

dimkerTX = dim(ranT ∗
X)⊥ = dim(ranT ∗

Y )
⊥ = dimkerTY by Theorem 2.1. Therefore X

and Y have the same excesses. This result on the excess of oblique duals is also proved in

[13] using different method.

Proposition 3.2. Let X and Y be oblique dual frame sequences and P := PranT ∗
X

and

Q := PranT ∗
Y
. The the following hold:

(1) P = T ∗
XS†

XTX ;

(2) PT ∗
Y = T †

XPHX ,H⊥
Y
.

Moreover, ranT ∗
X and ranT ∗

Y satisfy the angle condition in Theorem 2.1. In particular,

ℓ2 = ranT ∗
X u (ranT ∗

Y )
⊥.
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Proof. Since X and Y are oblique dual frame sequences, (3.2) hold. Since SX : HX → HX is

invertible, kerS†
X = H⊥

X and ranS†
X = HX .

(1): We have, by (3.1) and the properties of Moore-Penrose generalized inverses,

T ∗
XS†

XTX = T ∗
X(TXT ∗

X)†TX =
(
T ∗
X(T ∗

X)†
)(

T †
XTX

)
= PranT ∗

X
PranT ∗

X
= PranT ∗

X
= P.

(2): (1), (3.2) and the properties of Moore-Penrose generalized inverses imply that

PT ∗
Y =

(
T ∗
XS†

XTX

)
T ∗
Y = T ∗

X(TXT ∗
X)† (TXT ∗

Y ) =
(
T ∗
X(T ∗

X)†
)
T †
XPHX ,H⊥

Y

= PranT ∗
X
T †
XPHX ,H⊥

Y
= T †

XPHX ,H⊥
Y
.

By Theorem 2.1, to show that ranT ∗
X and ranT ∗

Y satisfy the angle condition, it suffices to

show that P : ranT ∗
Y → ranT ∗

X is invertible. It is elementary to see that T †
X : HX → ranT ∗

X

is invertible (see, for example, [14]). Hence, by (2),

ranT ∗
X = T †

X (HX) ⊂ ranT †
XPHX ,H⊥

Y
= ranPT ∗

Y ⊂ P (ranT ∗
Y ) ⊂ ranP = ranT ∗

X .

In particular, P (ranT ∗
Y ) = ranT ∗

X . Now, suppose that a ∈ ranT ∗
Y and Pa = 0. Then, there

exists h ∈ H such that a = T ∗
Y h and PT ∗

Y h = 0. We may assume that h ∈ (kerT ∗
Y )

⊥ =

ranTY = HY . By (2), 0 = PT ∗
Y h = T †

XPHX ,H⊥
Y
h. Since kerT †

X = kerT ∗
X ,

ranTX ∋ PHX ,H⊥
Y
h ∈ kerT †

X = kerT ∗
X = (ranTX)⊥,

i.e., PHX ,H⊥
Y
h = 0. Therefore HY ∋ h ∈ kerPHX ,H⊥

Y
= H⊥

Y . Hence h = 0. Therefore,

a = T ∗
Y h = 0. This shows that P : ranT ∗

Y → ranT ∗
X is invertible by the open mapping

theorem. �
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