On the permanental polynomials of matrices*

Wei Li ${ }^{a, b}$ and Heping Zhang ${ }^{a \dagger}$
${ }^{a}$ School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
${ }^{b}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
E-mail addresses: liw@nwpu.edu.cn, zhanghp@lzu.edu.cn

Abstract

An $m \times n\{0,1\}$-matrix A is said to be totally convertible if there exists a matrix B obtained from A by changing some 1's in A to -1 's such that for any submatrix A^{\prime} of A of order m, the corresponding submatrix B^{\prime} of B satisfies $\operatorname{per}\left(x I-A^{\prime}\right)=$ $\operatorname{det}\left(x I-B^{\prime}\right)$. In this paper, motivated by the well-known Pólya's problem, our object is to characterize those totally convertible matrices. Associate a matrix A with a bipartite graph G_{A}^{*}. We first prove that a square matrix A is totally convertible if and only if G_{A}^{*} is Pfaffian, and then we generalize this result to an $m \times n\{0,1\}$ matrix. Moreover, the characterization of a totally convertible matrix provides an equivalent condition to compute the permanental polynomial of a bipartite graph by the characteristic polynomial of the skew adjacency matrix of its orientation graph. As applications, we give some explicit expressions of the permanental polynomials of two totally convertible matrices by the technique of Pfaffian orientation.

Key Words: Permanent; Permanental polynomial; Pfaffian orientation; Determinant AMS 2010 subject classification: 05C31, 05C50, 05C75

1 Introduction

For a square matrix A of order n, the characteristic polynomial of A is defined as

$$
\operatorname{det}(x I-A)=\sum_{k=0}^{n} c_{k} x^{n-k},
$$

and the permanental polynomial of A, by definition, is

$$
\operatorname{per}(x I-A)=\sum_{k=0}^{n} b_{k} x^{n-k} .
$$

[^0]Here the permanent of a matrix $C=\left(c_{i j}\right)_{n \times n}$ is given as [15]

$$
\operatorname{per}(C)=\sum_{\sigma \in \Lambda_{n}} \prod_{i=1}^{n} c_{i \sigma(i)}
$$

with Λ_{n} denoting the set of all the permutations of $\{1,2, \cdots, n\}$. Let $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$ and $Q_{r, n}=\left\{\omega \mid 1 \leq \omega_{1}<\cdots<\omega_{r} \leq n\right\}$ the set of increasing sequence. Then [2, 15]

$$
\begin{equation*}
b_{k}=(-1)^{k} \sum_{\omega \in Q_{k, n}} \operatorname{per}(A[\omega]) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{k}=(-1)^{k} \sum_{\omega \in Q_{k, n}} \operatorname{det}(A[\omega]), \tag{2}
\end{equation*}
$$

where $A[\omega]$ denotes the $k \times k$ submatrix of A whose (i, j)-entry is $a_{\omega_{i}, \omega_{j}}$.
As is well known, computing the permanent of a matrix is a \#P-complete problem [20]. So far, few work on permanental polynomials has been reported [1, 3, 4, 8, 10, 14, 22]. This may be due to the difficulty to compute permanents and permanental polynomials. However, the determinant can be calculated efficiently using Gaussian elimination and the characteristic polynomial can also be evaluated efficiently [5, 18]. As early as in 1913, Pólya [16] proposed the following problem. If A is a square $\{0,1\}$-matrix, does there exist a matrix B obtained from A by changing some of the 1's to -1 's in such a way that the permanent of A equals the determinant of B ? (If the answer is "yes", then A is said to be convertible.) Sixty years later, Little answered Pólya's question by characterizing the convertible matrix in terms of Paffian bipartite graph [11]. Robertson et al. [17] and McCuaig [13] independently gave polynomial-time algorithms to determine whether a given bipartite graph has a Pfaffian orientation. Here we consider converting the computation of permanental polynomials into the computation of characteristic polynomials. Concretely, it is described as follows.

For an $m \times n\{0,1\}$-matrix $A(m \leq n)$, a signing of A is a $\{0,1,-1\}$-matrix obtained from A by replacing some 1's to -1 's. Our problem is whether there exists a signing B of A such that for any $\omega \in Q_{m, n}$,

$$
\begin{equation*}
\operatorname{per}(x I-A[\omega])=\operatorname{det}(x I-B[\omega]), \tag{3}
\end{equation*}
$$

where $A[\omega]$ denotes an $m \times m$ submatrix of A whose rows correspond to the rows of A and columns correspond to the columns of A with indexes in ω; If yes, we say that A is totally convertible. In this paper, we mainly characterize those totally convertible matrices. Our results are stated in terms of bipartite graphs and Pfaffian orientations.

By a graph G on p vertices we mean a finite simple graph with vertex-set $\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$. A perfect matching of G is a set of edges of G covering every vertex exactly once. We use $\phi(G)$ to denote the number of perfect matchings of G. A graph G is bipartite if its vertex-set can be partitioned into two sets U and W in such a way that every edge has one endvertex in U and the other one in W, denoted by $G=(U, W ; E)$. An orientation \vec{G} of a graph G
is an assignment of direction to each edge of G. The skew adjacency matrix $A_{s}(\vec{G})$ of an orientation \vec{G} is the matrix with entry 1 (resp. -1) in row i and column j if an edge is directed from v_{i} to v_{j} (resp. from v_{j} to v_{i}) in \vec{G}, and 0 otherwise. We can see that the skew adjacency matrix of a directed graph is skew symmetric. In particular, the skew adjacency matrix of a bipartite directed graph \vec{G} takes on the form

$$
A_{s}(\vec{G})=\left(\begin{array}{cc}
0 & D_{s} \\
-D_{s}^{T} & 0
\end{array}\right)
$$

where D_{s} is the skew biadjacency matrix of \vec{G} with rows and columns indexed by vertices in U and W, respectively, such that the $i j$-entry is 1 if the edge $u_{i} w_{j}$ is directed from u_{i} to w_{j}, -1 if the edge $u_{i} w_{j}$ is directed from w_{j} to u_{i} and 0 otherwise.

Let us now assume that $A=\left(a_{i j}\right)_{n \times n}$ (n is even) is a skew symmetric matrix. Denote by \mathscr{P}_{n} the set of all partitions of $\{1,2, \cdots, n-1, n\}$ into pairs. For each partition $P=$ $\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{3}, i_{4}\right\}, \cdots,\left\{i_{n-1}, i_{n}\right\}\right\}$, let

$$
a_{P}:=\operatorname{sgn}\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
i_{1} & i_{2} & \cdots & i_{n-1} & i_{n}
\end{array}\right) a_{i_{1} i_{2}} a_{i_{3} i_{4}} \cdots a_{i_{n-1} i_{n}} .
$$

The Pfaffian of A is defined as

$$
\operatorname{Pf}(A):=\sum_{P \in \mathscr{P}_{n}} a_{P}
$$

For an orientation \vec{G} of G, it always holds that

$$
\left|\operatorname{Pf}\left(A_{s}(\vec{G})\right)\right| \leq \phi(G)
$$

If equality holds, we call \vec{G} a Pfaffian orientation of G [12]. A graph is said to be Pfaffian if it admits a Pfaffian orientation.

For a $\{0,1\}$-matrix A, we define a bipartite graph G_{A}^{*} in Section 2, and prove that a square $\{0,1\}$-matrix A is totally convertible if and only if G_{A}^{*} is Pfaffian. Further, if G_{A}^{*} is Pfaffian, a signing B of A such that $\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$ can be obtained by assigning a Pfaffian orientation of G_{A}^{*}; if G_{A}^{*} is not Pfaffian, then A is not totally convertible. According to $[13,17]$, the problem of determining a square matrix is totally convertible or not can be settled by a polynomial-time algorithm. More generally, we consider totally convertible $m \times n$ matrix ($m \leq n$) in Section 3. We prove that an $m \times n\{0,1\}$-matrix A is totally convertible if and only if G_{A}^{*} admits a normal orientation such that each left-central (*) cycle is oddly oriented. In Section 4 we show that the result on totally convertible matrix provides another characterization of the bipartite graph whose permanental polynomial can be computed by the characteristic polynomial of the skew adjacency matrix of its orientation graph. As applications, in the last section we deduce explicit formulas of the permanental polynomials of two totally convertible matrices.

2 Totally convertible square $\{0,1\}$-matrices

Little [11] gave an elegant characterization of a convertible matrix in terms of excluded minors (see Proposition 2.2). Following Little's result, in this section we characterize a totally convertible square $\{0,1\}$-matrix.

For convenience, we first introduce some notations and definitions.
For a $\{0,1\}$-matrix $A=\left(a_{i j}\right)_{m \times n}(m \leq n)$, we associate a bipartite graph $G_{A}=(U, W ; E)$ with $U=\left\{u_{1}, u_{2}, \cdots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ whose edges are those pairs $\left\{u_{i}, w_{j}\right\}$ for which $a_{i j} \neq 0$. We can see that A is the biadjacency matrix of G_{A}, and the constant term b_{n} of polynomial $\operatorname{per}(x I-A)$ satisfies [12]

$$
\begin{equation*}
b_{n}=(-1)^{n} \operatorname{per}(A)=(-1)^{n} \phi\left(G_{A}\right) \tag{4}
\end{equation*}
$$

If $u_{i} \in U$ and $w_{j} \in W$ are not adjacent in the associated graph G_{A} and $i \leq j \leq i+n-m$, we call $u_{i} w_{j}$ an auxiliary edge relative to G_{A}. The associated (*) bipartite graph G_{A}^{*} is the one obtained from G_{A} by adding all the auxiliary edges relative to G_{A}. The auxiliary edges are also said to be the auxiliary edges of G_{A}^{*}. For example, see Figure 2(a) (The dashed lines stand for the auxiliary edges). In fact, u_{i} and $w_{j}, i \leq j \leq i+n-m$, are always adjacent in G_{A}^{*}.

Remark 2.1. For a square matrix A, G_{A}^{*} is obtained from G_{A} by adding an edge $u_{i} w_{i}$ for each i such that G_{A} does not have $u_{i} w_{i}$.

Let $B=\left(b_{i j}\right)_{m \times n}$ be a signing of an $m \times n\{0,1\}$-matrix A. The oriented bipartite graph \vec{G}_{B} is obtained from G_{A} by orienting the edge $u_{i} w_{j}$ from u_{i} to w_{j} if $b_{i j}=1$, and from w_{j} to u_{i} if $b_{i j}=-1$. The directed bipartite graph \vec{G}_{B}^{*} is an orientation of G_{A}^{*} such that each auxiliary edge of G_{A}^{*} is directed from u_{i} to w_{j}, and any other edge is directed from u_{i} to w_{j} if $b_{i j}=1$, and from w_{j} to u_{i} if $b_{i j}=-1$. In particular, an orientation of G_{A}^{*} is said to be normal if for $i=1,2, \cdots, m$ and $j=i+r(r \in\{0,1, \cdots, n-m\})$, each edge $u_{i} w_{j}$ is oriented from u_{i} to w_{j}.

Proposition 2.2. [11] For a square $\{0,1\}$-matrix A, the following three statements are equivalent:
(1) There exists a signing B of A such that $\operatorname{per}(A)=|\operatorname{det}(B)|$.
(2) The associated bipartite graph G_{A} is Pfaffian.
(3) G_{A} contains no even subdivision of $K_{3,3}$ as a central subgraph.

Moreover, in (1) \vec{G}_{B} is a Pfaffian orientation of G_{A}.
Figure 1(a) illustrates the graph $K_{3,3}$. We say that a graph G is an even subdivision of a graph K if G is obtained from K by replacing some edges of K by internally disjoint paths of odd length. A subgraph H of a graph G is central if $G-V(H)$ has a perfect matching. In an oriented graph, a cycle C of even length (an even cycle) is oddly oriented if it has an odd number of directed edges going in each direction. For two perfect matchings M and M^{\prime}, a cycle in the symmetric difference of M and M^{\prime} is called an M-alternating cycle

Figure 1. (a) $K_{3,3}$, and (b) $K_{2,3}$.
(or M^{\prime}-alternating cycle). Some equivalent characterizations of a Pfaffian graph in terms of central subgraphs and M-alternating cycles are given as below.

Proposition 2.3. [12] Let G be a graph with an even number of vertices and \vec{G} an orientation of G. Then the following three properties are equivalent:
(1) \vec{G} is a Pfaffian orientation of G.
(2) Every central cycle in G is oddly oriented relative to \vec{G}.
(3) If G has a perfect matching, then for some perfect matching M, every M-alternating cycle is oddly oriented relative to \vec{G}.

Since a central cycle either uses two edges incident with a given vertex or none, in a Pfaffian orientation of a graph, if we reverse the directions of all edges incident with a given vertex, then the resulting orientation remains a Pfaffian orientation.

Lemma 2.4. For a nonnegative matrix $A=\left(a_{i j}\right)_{n \times n}$, let $B=\left(b_{i j}\right)_{n \times n}$ be obtained from A by changing $a_{i j}$ to $-a_{i j}$ for some $i, j \in\{1,2, \cdots, n\}$ such that $\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$. Then $b_{i i}=a_{i i}$ for each $i \in\{1,2, \cdots, n\}$.

Proof. Let $\operatorname{per}(x I-A)=\sum_{k=0}^{n} b_{k} x^{n-k}$ and $\operatorname{det}(x I-B)=\sum_{k=0}^{n} c_{k} x^{n-k}$. Since $\operatorname{per}(x I-A)=$ $\operatorname{det}(x I-B)$, we have $b_{1}=c_{1}$. By the given condition, we get that $b_{i i}=a_{i i}$ or $-a_{i i}$. By Eqs. (1) and (2), $b_{1}=-\sum_{i=1}^{n} a_{i i}$ and $c_{1}=-\sum_{i=1}^{n} b_{i i}$. Suppose to the contrary that for some i, $a_{i i}=c(c>0)$, but $b_{i i}=-c$. Then we get that $b_{1}<c_{1}$, a contradiction. So we obtain that $b_{i i}=a_{i i}$ for all $i \in\{1,2, \cdots, n\}$.

Theorem 2.5. A square $\{0,1\}$-matrix A is totally convertible if and only if G_{A}^{*} is Pfaffian.
Proof. Let $A=\left(a_{i j}\right)_{n \times n}$. We fist suppose that A has a signing B such that $\operatorname{per}(x I-A)=$ $\operatorname{det}(x I-B)$. We shall show that \vec{G}_{B}^{*} is a Pfaffian orientation of G_{A}^{*}.

Case (I): $a_{i i}=1$ for every $i \in\{1,2, \cdots, n\}$.
In this case we have that $G_{A}^{*}=G_{A}$ and B is the skew biadjacency matrix of \vec{G}_{B}. Using the fact that $\left(\operatorname{Pf}\left(A_{s}\left(\vec{G}_{B}\right)\right)\right)^{2}=\operatorname{det}\left(A_{s}\left(\vec{G}_{B}\right)\right)[7,12]$, it is easy to check that

$$
\left(\operatorname{Pf}\left(A_{s}\left(\vec{G}_{B}\right)\right)\right)^{2}=\operatorname{det}\left(A_{s}\left(\vec{G}_{B}\right)\right)=\operatorname{det}\left(\begin{array}{cc}
0 & B \\
-B^{T} & 0
\end{array}\right)=(\operatorname{det}(B))^{2} .
$$

Since the constant term of $\operatorname{per}(x I-A)$ is equal to the constant term of $\operatorname{det}(x I-B)$, we get that $\operatorname{per}(A)=\operatorname{det}(B)$. By Eq. (4), $\phi\left(G_{A}\right)=\operatorname{per}(A)=\operatorname{det}(B)$. So we obtain that
$\phi^{2}\left(G_{A}\right)=\left(\operatorname{Pf}\left(A_{s}\left(\vec{G}_{B}\right)\right)\right)^{2}$, i.e. $\phi\left(G_{A}\right)=\left|\operatorname{Pf}\left(A_{s}\left(\vec{G}_{B}\right)\right)\right|$. Therefore, \vec{G}_{B} is a Pfaffian orientation of $G_{A}^{*}=G_{A}$.

Case (II): $a_{i i}=0$ for some $i \in\{1,2, \cdots, n\}$.
Since $\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$, by Lemma 2.4, $a_{j j}=b_{j j}$ for each $j \in\{1,2, \ldots, n\}$. Setting $x=-1$, we get that $\operatorname{per}\left(A_{1}\right)=\operatorname{det}\left(B_{1}\right)$, where $A_{1}=I+A, B_{1}=I+B$. Let $A_{1}=\left(a_{i j}^{1}\right)_{n \times n}$ and $B_{1}=\left(b_{i j}^{1}\right)_{n \times n}$. Then the diagonal entries $b_{i i}^{1}=a_{i i}^{1}=1$ or 2 , and B_{1} is a signing of A_{1}. Since $\operatorname{per}\left(A_{1}\right)=\sum_{\sigma \in \Lambda_{n}} a_{1 \sigma(1)}^{1} a_{2 \sigma(2)}^{1} \cdots a_{n \sigma(n)}^{1}$ and $\operatorname{det}\left(B_{1}\right)=\sum_{\sigma \in \Lambda_{n}} \operatorname{sgn}(\sigma) b_{1 \sigma(1)}^{1} b_{2 \sigma(2)}^{1} \cdots b_{n \sigma(n)}^{1}$, we have that for any $\sigma \in \Lambda_{n}, a_{1 \sigma(1)}^{1} a_{2 \sigma(2)}^{1} \cdots a_{n \sigma(n)}^{1}=\operatorname{sgn}(\sigma) b_{1 \sigma(1)}^{1} b_{2 \sigma(2)}^{1} \cdots b_{n \sigma(n)}^{1}$. Let A_{1}^{\prime} (resp. B_{1}^{\prime}) be obtained from A_{1} (resp. B_{1}) by replacing each diagonal entry 2 with 1 . Then we obtain a $\{0,1\}$-matrix A_{1}^{\prime} with a signing B_{1}^{\prime} such that $\operatorname{per}\left(A_{1}^{\prime}\right)=\operatorname{det}\left(B_{1}^{\prime}\right)$. Since A_{1}^{\prime} is the biadjacency matrix of G_{A}^{*}, we get that $\vec{G}_{B}^{*}=\vec{G}_{B_{1}^{\prime}}$ is a Pfaffian orientation of G_{A}^{*} in the same approach as case (I).

Furthermore, \vec{G}_{B}^{*} is also a normal orientation since the all diagonal entries of its skew biadjacency matrix are 1 s .

Conversely, suppose that the bipartite graph G_{A}^{*} is Pfaffian. By Proposition 2.2, there exists a signing B_{0}^{*} of the biadjacency matrix A^{*} of G_{A}^{*} such that $\operatorname{per}\left(A^{*}\right)=\left|\operatorname{det}\left(B_{0}^{*}\right)\right|$, and the oriented bipartite graph $\vec{G}_{B_{0}^{*}}$ is a Pfaffian orientation of G_{A}^{*}. For each vertex $u_{i} \in U$ such that the edge $u_{i} w_{i}$ is directed from w_{i} to u_{i}, we reverse all the directions of edges incident to u_{i}. After these operations, all the central cycles are still oddly oriented. By Proposition 2.3 , the resulting new orientation, denoted by \vec{G}, is a Pfaffian and normal orientation with each edge $u_{i} w_{i}$ directed from u_{i} to w_{i}.

Let B^{*} be the skew biadjacency matrix of \vec{G}. As $G_{A}^{*}=G_{A^{*}}$ is Pfaffian, for $\omega \in Q_{k, n}$ $(k=1,2, \cdots, n)$, the subgraph $G_{A^{*}[\omega]}$ of G_{A}^{*} is clearly Pfaffian since $G_{A^{*}[\omega]}$ is central in G_{A}^{*}, i.e. $\operatorname{per}\left(A^{*}[\omega]\right)=\left|\operatorname{det}\left(B^{*}[\omega]\right)\right|$. Denote by $A^{*}[\omega]=\left(a_{i j}^{\prime}\right)_{k \times k}$ and $B^{*}[\omega]=\left(b_{i j}^{\prime}\right)_{k \times k}$. Then for $i=1,2, \cdots, n, a_{i i}^{\prime}=b_{i i}^{\prime}=1$. By definitions,

$$
\begin{equation*}
\operatorname{per}\left(A^{*}[\omega]\right)=\sum_{\sigma \in \Lambda_{k}} a_{1 \sigma_{1}}^{\prime} a_{2 \sigma_{2}}^{\prime} \cdots a_{k \sigma_{k}}^{\prime}, \quad \operatorname{det}\left(B^{*}[\omega]\right)=\sum_{\sigma \in \Lambda_{k}} \operatorname{sgn}(\sigma) b_{1 \sigma_{1}}^{\prime} b_{2 \sigma_{2}}^{\prime} \cdots b_{k \sigma_{k}}^{\prime} . \tag{5}
\end{equation*}
$$

Since $B^{*}[\omega]$ is a signing of $A^{*}[\omega]$, we get that for any $\sigma \in \Lambda_{k}$,

$$
a_{1 \sigma_{1}}^{\prime} a_{2 \sigma_{2}}^{\prime} \cdots a_{k \sigma_{k}}^{\prime}=\left|\operatorname{sgn}(\sigma) b_{1 \sigma_{1}}^{\prime} b_{2 \sigma_{2}}^{\prime} \cdots b_{k \sigma_{k}}^{\prime}\right|=0,1 .
$$

Since $\operatorname{per}\left(A^{*}[\omega]\right)=\left|\operatorname{det}\left(B^{*}[\omega]\right)\right|$ together with Eq. 5, we have that for any $\sigma, \sigma^{\prime} \in \Lambda_{k}$,

$$
\operatorname{sgn}(\sigma) b_{1 \sigma_{1}}^{\prime} b_{2 \sigma_{2}}^{\prime} \cdots b_{k \sigma_{k}}^{\prime}=\operatorname{sgn}\left(\sigma^{\prime}\right) b_{1 \sigma_{1}^{\prime}}^{\prime} b_{2 \sigma_{2}^{\prime}}^{\prime} \cdots b_{k \sigma_{k}^{\prime}}^{\prime}
$$

whenever they are both non-zeroes. In particular, for the given $\sigma=(1)(2) \cdots(k)$, we have that $a_{1 \sigma_{1}}^{\prime} a_{2 \sigma_{2}}^{\prime} \cdots a_{k \sigma_{k}}^{\prime}=\operatorname{sgn}(\sigma) b_{1 \sigma_{1}}^{\prime} b_{2 \sigma_{2}}^{\prime} \cdots b_{k \sigma_{k}}^{\prime}=1$. Hence, for each $\sigma \in \Lambda_{k}$,

$$
a_{1 \sigma_{1}}^{\prime} a_{2 \sigma_{2}}^{\prime} \cdots a_{k \sigma_{k}}^{\prime}=\operatorname{sgn}(\sigma) b_{1 \sigma_{1}}^{\prime} b_{2 \sigma_{2}}^{\prime} \cdots b_{k \sigma_{k}}^{\prime}
$$

This shows that $\operatorname{per}\left(A^{*}[\omega]\right)=\operatorname{det}\left(B^{*}[\omega]\right)$. For the orientation subgraph of \vec{G} restricted to G_{A}, let B be its skew biadjacency matrix. Then the above discussions show that $\operatorname{per}(A[\omega])=$ $\operatorname{det}(B[\omega])$ holds for any $\omega \in Q_{k, n}$.

Since

$$
\operatorname{per}(x I-A)=\sum_{k=0}^{n} x^{n-k}(-1)^{k} \sum_{\omega \in Q_{k, n}} \operatorname{per}(A[\omega])
$$

and

$$
\operatorname{det}(x I-B)=\sum_{k=0}^{n} x^{n-k}(-1)^{k} \sum_{\omega \in Q_{k, n}} \operatorname{det}(B[\omega]),
$$

$\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$ holds and A is totally convertible.
Based on this theorem, we immediately deduce that testing totally convertibility of a square matrix A is reduced to testing the Pfaffian property of G_{A}^{*}.

By the proof of Theorem 2.5 we have the following immediate corollaries.
Corollary 2.6. For a totally convertible square matrix A, if there exists a signing B of A such that $\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$, then \vec{G}_{B}^{*} is a Pfaffian and normal orientation of G_{A}^{*}.

Corollary 2.7. Let A be a totally convertible square matrix, D the restriction of a Pfaffian and normal orientation of G_{A}^{*} on G_{A}. Then the skew biadjacency matrix B of D is a signing of A such that $\operatorname{per}(x I-A)=\operatorname{det}(x I-B)$.

3 Totally convertible $m \times n\{0,1\}$-matrices

In this section we try to characterize those $m \times n\{0,1\}$-matrices which are totally convertible. If not specified, we suppose $m \leq n$.

Lemma 3.1. An $m \times n\{0,1\}$-matrix A is totally convertible if and only if there exists a signing B of A such that for any $\omega \in Q_{m, n}, \vec{G}_{B[\omega]}^{*}$ is a Pfaffian and normal orientation of $\vec{G}_{A[\omega]}^{*}$.

Proof. The result follows from Corollaries 2.6 and 2.7.
For a bipartite graph $G=(U, W ; E)$ with $|U| \leq|W|$, a matching M is left-perfect if $|M|=|U|$. A subgraph H of G is left-central if $G-V(H)$ has a left-perfect matching. A subgraph H of G_{A}^{*} is left-central $(*)$ if, for any $\omega \in Q_{m, n}$ such that $G_{A[\omega]}^{*}$ has H as a subgraph, $G_{A[\omega]}^{*}-V(H)$ has a perfect matching.

Remark 3.2. For an $m \times n\{0,1\}$-matrix A and $\omega \in Q_{m, n}, G_{A[\omega]}^{*}$ is the associated (*) bipartite graph of the $m \times m$ matrix $A[\omega]$ and it is a subgraph of $G_{A}^{*} . G_{A[\omega]}^{*}$ is different from the subgraph $G_{A}^{*}[\omega]$ of G_{A}^{*} induced by all the vertices in U and the vertices in W with indexes in ω. For example, let

$$
A_{0}=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

For $\omega=(2,3,4)$, the graphs $G_{A_{0}}^{*}, G_{A_{0}[\omega]}^{*}$ and $G_{A_{0}}^{*}[\omega]$ are shown in Figure 2.

Figure 2. (a) $G_{A_{0}}^{*}$, (b) $G_{A_{0}[\omega]}^{*}$ and (c) $G_{A_{0}}^{*}[\omega]$.

Theorem 3.3. An $m \times n\{0,1\}$-matrix A is totally convertible if and only if there exists a normal orientation of G_{A}^{*} such that each left-central $(*)$ cycle is oddly oriented.

Proof. If A is totally convertible, let B be a signing of A such that for any $\omega \in Q_{m, n}$, $\operatorname{per}(x I-A[\omega])=\operatorname{det}(x I-B[\omega])$. By Corollary 2.6 and Lemma 3.1, for any $\omega \in Q_{m, n}, \vec{G}_{B[\omega]}^{*}$ is a Pfaffian and normal orientation of $G_{A[\omega]}^{*}$. Thus \vec{G}_{B}^{*} is normal. Let C be a left-central $(*)$ cycle of G_{A}^{*}. Then C is a central cycle of $G_{A[\omega]}^{*}$ for some $\omega \in Q_{m, n}$. So it is oddly oriented in $\vec{G}_{B[\omega]}^{*}$ and therefore oddly oriented in \vec{G}_{B}^{*}.

Let \vec{G} be an orientation of G_{A}^{*} such that each left-central (*) cycle is oddly oriented and B the skew biadjacency matrix of the oriented graph obtained from \vec{G} by deleting all the auxiliary edges. Then for any $\omega \in Q_{m, n}$, any central cycle of $\vec{G}_{B[\omega]}^{*}$ is oddly oriented and $\vec{G}_{B[\omega]}^{*}$ is a Pfaffian orientation of $G_{A[\omega]}^{*}$. As \vec{G} is normal, $\vec{G}_{B[\omega]}^{*}$ is normal for any $\omega \in Q_{m, n}$. By Lemma 3.1, we obtain that A is totally convertible.

Based on the above results, we have the following consequences.
Corollary 3.4. Let A be an $m \times n\{0,1\}$-matrix. Then the skew biadjacency matrix B of D is a signing of A satisfying $\operatorname{per}(x I-A[\omega])=\operatorname{det}(x I-B[\omega])$ for any $\omega \in Q_{m, n}$, where D is an orientation graph obtained by restricting a normal orientation of G_{A}^{*} with each left-central (*) cycle being oddly oriented to G_{A}.

Corollary 3.5. If an $m \times n\{0,1\}$-matrix A is totally convertible, then G_{A}^{*} contains no even subdivision of $K_{3,3}$ as a left-central (*) subgraph.

Proof. Suppose to the contrary that G_{A}^{*} contains a left-central (*) subgraph H^{*} which is isomorphic to an even subdivision of $K_{3,3}$. By definition, there exists a $\omega \in Q_{m, n}$ such that H^{*} is a central subgraph of $G_{A[\omega]}^{*}$. Then by Proposition 2.2, the graph $G_{A[\omega]}^{*}$ is not Pfaffian. By Lemma 3.1, A is not totally convertible. This is a contradiction.

For a bipartite graph $G=(U, W ; E)$ with $|U| \leq|W|$, a totally Pfaffian orientation of G is an orientation such that each left-central cycle is oddly oriented. If a graph admits a totally Pfaffian orientation, then it is totally Pfaffian. In [9] Kakimura gave a characterization of a totally Pfaffian bipartite graph as below.

(a)

(b)

Figure 3. (a) $L_{3,5}$ and (b) an orientation of $L_{3,5}$.

Proposition 3.6. [9] A bipartite graph is totally Pfaffian if and only if it contains no even subdivision of $K_{3,3}, K_{2,3}$ and $L_{3,5}$ as a left-central subgraph.

See Figure 1(b) and Figure 3(a) for $K_{2,3}$ and $L_{3,5}$, respectively. By definitions, a leftcentral (*) cycle of G_{A}^{*} is a left-central cycle. The following corollary follows immediately.

Corollary 3.7. Let A be an $m \times n\{0,1\}$-matrix. If G_{A}^{*} admits a normal and totally Pfaffian orientation, then A is totally convertible.

Remark 3.8. If A is totally convertible, then G_{A}^{*} may be not totally Pfaffian. For example, see matrix A_{0} in Remark 3.2. Since the graph $G_{A_{0}}^{*}$ contains $L_{3,5}$ as a left-central subgraph, $G_{A_{0}}^{*}$ is not totally Pfaffian, but it admits an orientation such that each left-central (*) cycle is oddly oriented. As shown in Figure 3(b), the left-central (*) cycles $u_{2} w_{4} u_{3} w_{5} u_{2}, u_{1} w_{2} u_{2} w_{5} u_{1}$, $u_{1} w_{2} u_{2} w_{4} u_{1}, u_{1} w_{2} u_{2} w_{4} u_{3} w_{5} u_{1}$ are all oddly oriented. By Corollary 3.4,

$$
B_{0}=\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

is the signed matrix of A_{0} such that for any $\omega \in Q_{3,5}$, $\operatorname{per}\left(x I-A_{0}[\omega]\right)=\operatorname{det}\left(x I-B_{0}[\omega]\right)$.

4 The permanental polynomial of a bipartite graph

For a graph G on n vertices, the adjacency matrix $A(G)=\left(a_{i j}\right)_{n \times n}$ is the matrix with rows and columns indexed by the vertices of G such that $a_{i j}=1$ if there is an edge in G joining vertices v_{i} and v_{j}, and $a_{i j}=0$ otherwise. The permanental polynomial of G is defined as $\pi(G, x)=\operatorname{per}(x I-A(G))$. Note that the graph G considered here is simple.

In [22] Yan and zhang considered computing the permanental polynomial of a bipartite graph through the characteristic polynomial of the skew adjacency matrix of an oriented graph; in [23] the present authors gave two characterizations (see Theorem 4.1). Now we establish another equivalent characterization of Theorem 4.1 by the result of totally convertible matrix.

Theorem 4.1. [23] For a bipartite graph G, the following three conditions are equivalent:
(1) There exists an orientation \vec{G} of G such that $\pi(G, x)=\operatorname{det}\left(x I-A_{s}(\vec{G})\right)$.
(2) There exists an orientation \vec{G} of G such that each cycle is oddly oriented.
(3) G contains no even subdivision of $K_{2,3}$.

Theorem 4.2. For a bipartite graph G on n vertices, there exists an orientation \vec{G} such that $\pi(G, x)=\operatorname{det}\left(x I-A_{s}(\vec{G})\right)$ if and only if $G_{A(G)}^{*}$ is Pfaffian.

Proof. By Theorem 2.5, we only need to show that there exists an orientation \vec{G} such that $\pi(G, x)=\operatorname{det}\left(x I-A_{s}(\vec{G})\right)$ if and only if $A(G)$ is totally convertible. For a graph G, the skew adjacency matrix $A_{s}(\vec{G})$ of an orientation graph \vec{G} is a signing of the adjacency matrix $A(G)$. Hence if an orientation \vec{G} exists satisfying $\pi(G, x)=\operatorname{det}\left(x I-A_{s}(\vec{G})\right)$, then $A(G)$ is totally convertible. Conversely, if $A(G)$ is totally convertible, then there is a signing $B=\left(b_{i j}\right)_{n \times n}$ of $A(G)$ such that $\pi(G, x)=\operatorname{per}(x I-A(G))=\operatorname{det}\left(x I-A_{s}(\vec{G})\right)$, then we show that for any i, j $(i \neq j), b_{i j}=-b_{j i}$. Let $\operatorname{per}(x I-A(G))=\sum_{k=0}^{n} b_{k} x^{n-k}$ and $\operatorname{det}\left(x I-A_{s}(\vec{G})\right)=\sum_{k=0}^{n} c_{k} x^{n-k}$. Since $b_{2}=c_{2}$, we get that $\sum_{\omega \in Q_{2, n}} \operatorname{per}(A[\omega])=\sum_{\omega \in Q_{2, n}} \operatorname{det}(A[\omega])$ by equations (1) and (2), i.e. $\sum_{i, j(i \neq j)} a_{i j} \cdot a_{j i}=\sum_{i, j(i \neq j)}-b_{i j} \cdot b_{j i}$. As $a_{i j}=a_{j i}=0$ or $1, b_{i j}=-b_{j i}$ holds. Hence B is skew symmetric and it is the skew adjacency matrix $A_{s}(\vec{G})$ of some orientation graph \vec{G} of G.

Based on the above results, we obtain the following corollary.
Corollary 4.3. A bipartite graph G contains no even subdivision of $K_{2,3}$ if and only if $G_{A(G)}^{*}$ contains no even subdivision of $K_{3,3}$ as a central subgraph.

5 Examples

In this section, by establishing Pfaffian orientations, we will compute the permanental polynomials of some totally convertible matrices.

Lemma 5.1. [19] Define $n \times n$ matrices U and U^{-1} with components $1 \leq k, k^{\prime} \leq n$:

$$
(U)_{k, k^{\prime}}=\sqrt{\frac{2}{n+1}} i^{k} \sin \left(\frac{k k^{\prime} \pi}{n+1}\right), \quad\left(U^{-1}\right)_{k, k^{\prime}}=\sqrt{\frac{2}{n+1}}(-i)^{k^{\prime}} \sin \left(\frac{k k^{\prime} \pi}{n+1}\right)
$$

Let Q be the $n \times n$ matrix $\left(\begin{array}{cccccc}0 & 1 & & & & \\ -1 & 0 & 1 & & & \\ & -1 & 0 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \\ & & & & -1 & 0\end{array}\right)$. Then the matrix $\widetilde{Q}=U^{-1} Q U$ has
the element $(\widetilde{Q})_{k, k^{\prime}}=\delta_{k, k^{\prime}} \cdot 2 i \cos \frac{k \pi}{n+1}$ for $1 \leq k, k^{\prime} \leq n$ and $i^{2}=-1$.

Theorem 5.2. Let $A_{1}=\left(\begin{array}{ccccc}1 & 1 & & & \\ 1 & 1 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 1 & 1 \\ & & & 1 & 1\end{array}\right)$ be an $n \times n$ matrix.
Then

$$
\begin{equation*}
\operatorname{per}\left(x I-A_{1}\right)=\prod_{t=1}^{n}\left(x-1+2 i \cos \frac{t \pi}{n+1}\right) . \tag{6}
\end{equation*}
$$

Proof. We construct the bipartite graph $G_{A_{1}}^{*}$ and the orientation graph $\vec{G}_{A_{1}}^{*}$ as shown in Figure $4(\mathrm{a})$. Let M_{0} be the perfect matching of G^{*} containing the edges $\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right), \cdots$, $\left(u_{n}, w_{n}\right)$. We can see that each M_{0}-alternating cycle takes the form $\left(u_{i} w_{i} u_{i+1} w_{i+1} u_{i}\right)(i \in$ $\{1,2, \cdots, n-1\}$), and is oddly oriented in $\vec{G}_{A_{1}}^{*}$. In addition, each edge (u_{i}, w_{i}) is directed from u_{i} to w_{i}. So $\vec{G}_{A_{1}}^{*}$ is a Pfaffian and normal orientation of $G_{A_{1}}^{*}$. Let B_{1} be the skew biadjacency matrix of $\vec{G}_{A_{1}}^{*}=\vec{G}_{A_{1}}$. By Corollary 2.7, we have that

$$
\operatorname{per}\left(x I-A_{1}\right)=\operatorname{det}\left(x I-B_{1}\right)=\operatorname{det}\left(\begin{array}{ccccc}
x-1 & 1 & & & \\
-1 & x-1 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & x-1 & 1 \\
& & & -1 & x-1
\end{array}\right)
$$

Conjugate the matrix $\left(x I-B_{1}\right)$ by U_{n} to obtain $U_{n}^{-1}\left(x I-B_{1}\right) U_{n}=\operatorname{diag}(x-1+$ $\left.2 i \cos \frac{\pi}{n+1}, x-1+2 i \cos \frac{2 \pi}{n+1}, \cdots, x-1+2 i \cos \frac{n \pi}{n+1}\right)$. So $\operatorname{per}\left(x I-A_{1}\right)=\operatorname{det}\left(U_{n}^{-1}\left(x I-B_{1}\right) U_{n}\right)=$ $\prod_{t=1}^{n}\left(x-1+2 i \cos \frac{t \pi}{n+1}\right)$.

Figure 4. $\quad G_{A_{1}}^{*}$ and $G_{A_{2}}^{*}$.

Lemma 5.3. [21] Define $n \times n$ matrices V_{n} and V_{n}^{-1} with components $1 \leq t, j \leq n$:

$$
\left(V_{n}\right)_{t, j}=\sqrt{\frac{1}{n}} e^{i \frac{(2 j-1) t \pi}{n}}, \quad\left(V_{n}^{-1}\right)_{t, j}=\sqrt{\frac{1}{n}} e^{-i \frac{(2 t-1) j \pi}{n}} .
$$

Let Y_{n} be the $n \times n$ matrix $\left(\begin{array}{cccccc}0 & 1 & & & & 1 \\ -1 & 0 & 1 & & & \\ & -1 & 0 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 0 & 1 \\ -1 & & & & -1 & 0\end{array}\right)$. Then the matrix $\widetilde{Y}_{n}=V_{n}^{-1} Y_{n} V_{n}$ has the element $\left(\widetilde{Y}_{n}\right)_{t, j}=\delta_{t, j} \cdot 2 i \sin \frac{(2 t-1) \pi}{n}$ for $1 \leq t, j \leq n$ and $i^{2}=-1$.
Theorem 5.4. Let $A_{2}=\left(\begin{array}{ccccc}1 & 1 & & & 1 \\ 1 & 1 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 1 & 1 \\ 1 & & & 1 & 1\end{array}\right)$ be an $n \times n$ matrix (n is even).
Then

$$
\begin{equation*}
\operatorname{per}\left(x I-A_{2}\right)=\prod_{t=1}^{n}\left(x-1+2 i \sin \frac{(2 t-1) \pi}{n}\right) \tag{7}
\end{equation*}
$$

Proof. For the graph $G_{A_{2}}^{*}=(U, W)$, we give an orientation $\vec{G}_{A_{2}}^{*}$ as shown in Figure $4(\mathrm{~b})$. Denote by M_{0} the perfect matching $\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right), \cdots,\left(u_{n}, w_{n}\right)$. An M_{0}-alternating cycle of $G_{A_{2}}^{*}$ either takes the form $\left(u_{i} w_{i} u_{i+1} w_{i+1} u_{i}\right)(\bmod n)(i \in\{1,2, \cdots, n\})$ or contains all the vertices of $G_{A_{2}}^{*}$. Since n is even, all the M_{0}-alternating cycles of $\vec{G}_{A_{2}}^{*}$ are oddly oriented. Thus $\vec{G}_{A_{2}}^{*}$ is a Pfaffian orientation of $G_{A_{2}}^{*}$. As $\vec{G}_{A_{2}}^{*}$ is normal and $\vec{G}_{A_{2}}^{*}=\vec{G}_{A_{2}}$, by Theorem 2.5, the skew biadjacency matrix B_{2} of $\vec{G}_{A_{2}}^{*}$ satisfies that

$$
\operatorname{per}\left(x I-A_{2}\right)=\operatorname{det}\left(x I-B_{2}\right)=\operatorname{det}\left(\begin{array}{ccccc}
x-1 & 1 & & & 1 \\
-1 & x-1 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & x-1 & 1 \\
-1 & & & -1 & x-1
\end{array}\right)
$$

Conjugating $\left(x I-B_{2}\right)$ by V_{n}, we obtain that $V_{n}^{-1}\left(x I-B_{2}\right) V_{n}=\operatorname{diag}\left(x-1+2 i \sin \frac{\pi}{n}, x-\right.$ $\left.1+2 i \sin \frac{3 \pi}{n}, \cdots, x-1+2 i \sin \frac{(2 n-1) \pi}{n}\right)$. So $\operatorname{per}\left(x I-A_{2}\right)=\operatorname{det}\left(V_{n}^{-1}\left(x I-B_{2}\right) V_{n}\right)=\prod_{t=1}^{n}(x-$ $\left.1+2 i \sin \frac{(2 t-1) \pi}{n}\right)$ holds.

References

[1] M. Borowiecki and T. Jóźwiak, Computing the permanental polynomial of a multigraph, Discuss. Math. 5 (1982) 9-16.
[2] R.A. Brualdi and D. Cvetković, A Combinatorial Approach to Matrix Theory and its Application, CRC Press, 2008.
[3] G.G. Cash, The permanental polynomial, J. Chem. Inf. Comput. Sci. 40 (2000) 12031206.
[4] G.G. Cash, Permanental polynomials of smaller fullerenes, J. Chem. Inf. Comput. Sci. 40 (2000) 1207-1209.
[5] J.G. Dumas, C. Pernet and Z. Wan, Efficient computation of the characteristic polynomial, in: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, 2005, Beijing, China, pp. 140-147.
[6] I. Fischer and C.H.C. Little, Even circuits of prescribed clockwise parity, Electron. J. Combin. 10 (2003) \#R45.
[7] C. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[8] I. Gutman and G.G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and benzenoid hydrocarbons, MATCH Commum. Math. Comput. Chem. 45 (2002) 55-70.
[9] N. Kakimura, Matching structure of symmetric bipartite graphs and a generalization of Pólya's problem, J. Combin. Theory Ser. B 100 (2010) 650-670.
[10] D. Kasum and N. Trinajstić, I. Gutman, Chemical graph theory III. On the permanental polynomial, Croat. Chem. Acta 54 (1981) 321-328.
[11] C.H.C. Little, A characterization of convertible (0,1)-matrices, J. Combin. Theory Ser. B 18 (1975) 187-208.
[12] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, Vol. 29, North-Holland, Amsterdam, 1986.
[13] W. McCuaig, Pólya's permanent problem, Electron. J. Combin. 11 (2004) \#R79.
[14] R. Merris, K.R. Rebman and W. Watkins, Permanental polynomials of graphs, Linear Algebra Appl. 38 (1981) 273-288.
[15] H. Minc, Permanents, Addision-Wesley, 1978.
[16] G. Pólya, Aufgabe 424, Arch. Math. Phys. Ser. 20 (1913) 271.
[17] N. Robertson, P.D. Seymour and R. Thomas, Permanents, Pfaffian orientations and even directed circuits, Ann. of Math. 150 (1999) 929-975.
[18] S. Rombouts and K. Heydey, An accurate and efficient algorithm for the computation of the characteristic polynomial of a general square matrix, J. Comput. Phys. 140 (1998) 453-458.
[19] G. Tesler, Matchings in graphs on non-orientable surfaces, J. Combin. Theory Ser. B 78 (2000) 198-231.
[20] L. Valliant, The complexity of computing the permanent, Theor. Comput. Sci. 8 (1979) 189-201.
[21] W. Yan, Y. Yeh and F. Zhang, Dimer problem on the cylinder and torus, Physica A 387 (2008) 6069-6078.
[22] W. Yan and F. Zhang, On the permanental polynomials of some graphs, J. Math. Chem. 35 (2004) 175-188.
[23] H. Zhang and W. Li, Computing the permanental polynomials of bipartite graphs by Pfaffian orientation, Discrete Appl. Math. 160 (2012) 2069-2074.

[^0]: *This work is supported by NSFC (grant no. 10831001).
 ${ }^{\dagger}$ Corresponding author.

