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Abstract

An m × n {0, 1}-matrix A is said to be totally convertible if there exists a matrix

B obtained from A by changing some 1’s in A to −1’s such that for any submatrix

A′ of A of order m, the corresponding submatrix B′ of B satisfies per(xI − A′) =

det(xI −B′). In this paper, motivated by the well-known Pólya’s problem, our object

is to characterize those totally convertible matrices. Associate a matrix A with a

bipartite graph G∗
A. We first prove that a square matrix A is totally convertible if

and only if G∗
A is Pfaffian, and then we generalize this result to an m × n {0, 1}-

matrix. Moreover, the characterization of a totally convertible matrix provides an

equivalent condition to compute the permanental polynomial of a bipartite graph by

the characteristic polynomial of the skew adjacency matrix of its orientation graph. As

applications, we give some explicit expressions of the permanental polynomials of two

totally convertible matrices by the technique of Pfaffian orientation.
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1 Introduction

For a square matrix A of order n, the characteristic polynomial of A is defined as

det(xI − A) =
n∑

k=0

ckx
n−k,

and the permanental polynomial of A, by definition, is

per(xI − A) =
n∑

k=0

bkx
n−k.

∗This work is supported by NSFC (grant no. 10831001).
†Corresponding author.
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Here the permanent of a matrix C = (cij)n×n is given as [15]

per(C) =
∑
σ∈Λn

n∏
i=1

ciσ(i)

with Λn denoting the set of all the permutations of {1, 2, · · · , n}. Let ω = (ω1, ω2, · · · , ωn)

and Qr,n = {ω|1 ≤ ω1 < · · · < ωr ≤ n} the set of increasing sequence. Then [2, 15]

bk = (−1)k
∑

ω∈Qk,n

per(A[ω]) (1)

and

ck = (−1)k
∑

ω∈Qk,n

det(A[ω]), (2)

where A[ω] denotes the k × k submatrix of A whose (i, j)-entry is aωi,ωj
.

As is well known, computing the permanent of a matrix is a #P-complete problem [20].

So far, few work on permanental polynomials has been reported [1, 3, 4, 8, 10, 14, 22].

This may be due to the difficulty to compute permanents and permanental polynomials.

However, the determinant can be calculated efficiently using Gaussian elimination and the

characteristic polynomial can also be evaluated efficiently [5, 18]. As early as in 1913, Pólya

[16] proposed the following problem. If A is a square {0, 1}-matrix, does there exist a matrix

B obtained from A by changing some of the 1’s to −1’s in such a way that the permanent

of A equals the determinant of B? (If the answer is “yes”, then A is said to be convertible.)

Sixty years later, Little answered Pólya’s question by characterizing the convertible matrix in

terms of Paffian bipartite graph [11]. Robertson et al. [17] and McCuaig [13] independently

gave polynomial-time algorithms to determine whether a given bipartite graph has a Pfaffian

orientation. Here we consider converting the computation of permanental polynomials into

the computation of characteristic polynomials. Concretely, it is described as follows.

For an m × n {0, 1}-matrix A (m ≤ n), a signing of A is a {0, 1,−1}-matrix obtained

from A by replacing some 1’s to −1’s. Our problem is whether there exists a signing B of A

such that for any ω ∈ Qm,n,

per(xI − A[ω]) = det(xI −B[ω]), (3)

where A[ω] denotes an m×m submatrix of A whose rows correspond to the rows of A and

columns correspond to the columns of A with indexes in ω; If yes, we say that A is totally

convertible. In this paper, we mainly characterize those totally convertible matrices. Our

results are stated in terms of bipartite graphs and Pfaffian orientations.

By a graph G on p vertices we mean a finite simple graph with vertex-set {v1, v2, · · · , vp}.
A perfect matching of G is a set of edges of G covering every vertex exactly once. We use

ϕ(G) to denote the number of perfect matchings of G. A graph G is bipartite if its vertex-set

can be partitioned into two sets U and W in such a way that every edge has one endvertex

in U and the other one in W , denoted by G = (U,W ;E). An orientation G⃗ of a graph G
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is an assignment of direction to each edge of G. The skew adjacency matrix As(G⃗) of an

orientation G⃗ is the matrix with entry 1 (resp. −1) in row i and column j if an edge is

directed from vi to vj (resp. from vj to vi) in G⃗, and 0 otherwise. We can see that the skew

adjacency matrix of a directed graph is skew symmetric. In particular, the skew adjacency

matrix of a bipartite directed graph G⃗ takes on the form

As(G⃗) =

(
0 Ds

−DT
s 0

)
,

where Ds is the skew biadjacency matrix of G⃗ with rows and columns indexed by vertices in

U and W , respectively, such that the ij-entry is 1 if the edge uiwj is directed from ui to wj,

−1 if the edge uiwj is directed from wj to ui and 0 otherwise.

Let us now assume that A = (aij)n×n (n is even) is a skew symmetric matrix. Denote

by Pn the set of all partitions of {1, 2, · · · , n − 1, n} into pairs. For each partition P =

{{i1, i2}, {i3, i4}, · · · , {in−1, in}}, let

aP := sgn

(
1 2 · · · n− 1 n

i1 i2 · · · in−1 in

)
ai1i2ai3i4 · · · ain−1in .

The Pfaffian of A is defined as

Pf(A) :=
∑

P∈Pn

aP .

For an orientation G⃗ of G, it always holds that

|Pf(As(G⃗))| ≤ ϕ(G).

If equality holds, we call G⃗ a Pfaffian orientation of G [12]. A graph is said to be Pfaffian

if it admits a Pfaffian orientation.

For a {0, 1}-matrix A, we define a bipartite graph G∗
A in Section 2, and prove that a

square {0, 1}-matrix A is totally convertible if and only if G∗
A is Pfaffian. Further, if G∗

A is

Pfaffian, a signing B of A such that per(xI−A) = det(xI−B) can be obtained by assigning a

Pfaffian orientation of G∗
A; if G

∗
A is not Pfaffian, then A is not totally convertible. According

to [13, 17], the problem of determining a square matrix is totally convertible or not can

be settled by a polynomial-time algorithm. More generally, we consider totally convertible

m × n matrix (m ≤ n) in Section 3. We prove that an m × n {0, 1}-matrix A is totally

convertible if and only if G∗
A admits a normal orientation such that each left-central (∗)

cycle is oddly oriented. In Section 4 we show that the result on totally convertible matrix

provides another characterization of the bipartite graph whose permanental polynomial can

be computed by the characteristic polynomial of the skew adjacency matrix of its orientation

graph. As applications, in the last section we deduce explicit formulas of the permanental

polynomials of two totally convertible matrices.
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2 Totally convertible square {0, 1}-matrices

Little [11] gave an elegant characterization of a convertible matrix in terms of excluded

minors (see Proposition 2.2). Following Little’s result, in this section we characterize a

totally convertible square {0,1}-matrix.

For convenience, we first introduce some notations and definitions.

For a {0, 1}-matrix A = (aij)m×n (m ≤ n), we associate a bipartite graph GA = (U,W ;E)

with U = {u1, u2, · · · , um} and W = {w1, w2, · · · , wn} whose edges are those pairs {ui, wj}
for which aij ̸= 0. We can see that A is the biadjacency matrix of GA, and the constant

term bn of polynomial per(xI − A) satisfies [12]

bn = (−1)nper(A) = (−1)nϕ(GA). (4)

If ui ∈ U and wj ∈ W are not adjacent in the associated graph GA and i ≤ j ≤ i+n−m,

we call uiwj an auxiliary edge relative to GA. The associated (∗) bipartite graph G∗
A is the

one obtained from GA by adding all the auxiliary edges relative to GA. The auxiliary edges

are also said to be the auxiliary edges of G∗
A. For example, see Figure 2(a) (The dashed lines

stand for the auxiliary edges). In fact, ui and wj, i ≤ j ≤ i+ n−m, are always adjacent in

G∗
A.

Remark 2.1. For a square matrix A, G∗
A is obtained from GA by adding an edge uiwi for

each i such that GA does not have uiwi.

Let B = (bij)m×n be a signing of an m×n {0, 1}-matrix A. The oriented bipartite graph

G⃗B is obtained from GA by orienting the edge uiwj from ui to wj if bij = 1, and from wj

to ui if bij = −1. The directed bipartite graph G⃗∗
B is an orientation of G∗

A such that each

auxiliary edge of G∗
A is directed from ui to wj, and any other edge is directed from ui to wj

if bij = 1, and from wj to ui if bij = −1. In particular, an orientation of G∗
A is said to be

normal if for i = 1, 2, · · · ,m and j = i+r (r ∈ {0, 1, · · · , n−m}), each edge uiwj is oriented

from ui to wj.

Proposition 2.2. [11] For a square {0, 1}-matrix A, the following three statements are

equivalent:

(1) There exists a signing B of A such that per(A) = | det(B)|.
(2) The associated bipartite graph GA is Pfaffian.

(3) GA contains no even subdivision of K3,3 as a central subgraph.

Moreover, in (1) G⃗B is a Pfaffian orientation of GA.

Figure 1(a) illustrates the graph K3,3. We say that a graph G is an even subdivision of a

graph K if G is obtained from K by replacing some edges of K by internally disjoint paths

of odd length. A subgraph H of a graph G is central if G − V (H) has a perfect matching.

In an oriented graph, a cycle C of even length (an even cycle) is oddly oriented if it has

an odd number of directed edges going in each direction. For two perfect matchings M

and M ′, a cycle in the symmetric difference of M and M ′ is called an M-alternating cycle
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(a) (b)

Figure 1. (a) K3,3, and (b) K2,3.

(or M ′-alternating cycle). Some equivalent characterizations of a Pfaffian graph in terms of

central subgraphs and M -alternating cycles are given as below.

Proposition 2.3. [12] Let G be a graph with an even number of vertices and G⃗ an orientation

of G. Then the following three properties are equivalent:

(1) G⃗ is a Pfaffian orientation of G.

(2) Every central cycle in G is oddly oriented relative to G⃗.

(3) If G has a perfect matching, then for some perfect matching M , every M-alternating

cycle is oddly oriented relative to G⃗.

Since a central cycle either uses two edges incident with a given vertex or none, in a

Pfaffian orientation of a graph, if we reverse the directions of all edges incident with a given

vertex, then the resulting orientation remains a Pfaffian orientation.

Lemma 2.4. For a nonnegative matrix A = (aij)n×n, let B = (bij)n×n be obtained from A

by changing aij to −aij for some i, j ∈ {1, 2, · · · , n} such that per(xI − A) = det(xI − B).

Then bii = aii for each i ∈ {1, 2, · · · , n}.

Proof. Let per(xI−A) =
∑n

k=0 bkx
n−k and det(xI−B) =

∑n
k=0 ckx

n−k. Since per(xI−A) =

det(xI −B), we have b1 = c1. By the given condition, we get that bii = aii or −aii. By Eqs.

(1) and (2), b1 = −
∑n

i=1 aii and c1 = −
∑n

i=1 bii. Suppose to the contrary that for some i,

aii = c (c > 0), but bii = −c. Then we get that b1 < c1, a contradiction. So we obtain that

bii = aii for all i ∈ {1, 2, · · · , n}.

Theorem 2.5. A square {0, 1}-matrix A is totally convertible if and only if G∗
A is Pfaffian.

Proof. Let A = (aij)n×n. We fist suppose that A has a signing B such that per(xI − A) =

det(xI −B). We shall show that G⃗∗
B is a Pfaffian orientation of G∗

A.

Case (I): aii = 1 for every i ∈ {1, 2, · · · , n}.
In this case we have that G∗

A = GA and B is the skew biadjacency matrix of G⃗B. Using

the fact that (Pf(As(G⃗B)))
2 = det(As(G⃗B)) [7, 12], it is easy to check that

(Pf(As(G⃗B)))
2 = det(As(G⃗B)) = det

(
0 B

−BT 0

)
= (det(B))2.

Since the constant term of per(xI − A) is equal to the constant term of det(xI − B),

we get that per(A) = det(B). By Eq. (4), ϕ(GA) = per(A) = det(B). So we obtain that
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ϕ2(GA) = (Pf(As(G⃗B)))
2, i.e. ϕ(GA) = |Pf(As(G⃗B))|. Therefore, G⃗B is a Pfaffian orientation

of G∗
A=GA.

Case (II): aii = 0 for some i ∈ {1, 2, · · · , n}.
Since per(xI−A) = det(xI−B), by Lemma 2.4, ajj = bjj for each j ∈ {1, 2, ..., n}. Setting

x = −1, we get that per(A1) = det(B1), where A1 = I+A, B1 = I+B. Let A1 = (a1ij)n×n and

B1 = (b1ij)n×n. Then the diagonal entries b1ii = a1ii = 1 or 2, and B1 is a signing of A1. Since

per(A1) =
∑

σ∈Λn
a11σ(1)a

1
2σ(2) · · · a1nσ(n) and det(B1) =

∑
σ∈Λn

sgn(σ)b11σ(1)b
1
2σ(2) · · · b1nσ(n), we

have that for any σ ∈ Λn, a
1
1σ(1)a

1
2σ(2) · · · a1nσ(n)=sgn(σ)b11σ(1)b

1
2σ(2) · · · b1nσ(n). Let A′

1 (resp. B
′
1)

be obtained from A1 (resp. B1) by replacing each diagonal entry 2 with 1. Then we obtain a

{0, 1}-matrix A′
1 with a signing B′

1 such that per(A′
1) = det(B′

1). Since A
′
1 is the biadjacency

matrix of G∗
A, we get that G⃗∗

B = G⃗B′
1
is a Pfaffian orientation of G∗

A in the same approach

as case (I).

Furthermore, G⃗∗
B is also a normal orientation since the all diagonal entries of its skew

biadjacency matrix are 1s.

Conversely, suppose that the bipartite graph G∗
A is Pfaffian. By Proposition 2.2, there

exists a signing B∗
0 of the biadjacency matrix A∗ of G∗

A such that per(A∗) = | det(B∗
0)|, and

the oriented bipartite graph G⃗B∗
0
is a Pfaffian orientation of G∗

A. For each vertex ui ∈ U such

that the edge uiwi is directed from wi to ui, we reverse all the directions of edges incident

to ui. After these operations, all the central cycles are still oddly oriented. By Proposition

2.3, the resulting new orientation, denoted by G⃗, is a Pfaffian and normal orientation with

each edge uiwi directed from ui to wi.

Let B∗ be the skew biadjacency matrix of G⃗. As G∗
A = GA∗ is Pfaffian, for ω ∈ Qk,n

(k = 1, 2, · · · , n), the subgraph GA∗[ω] of G
∗
A is clearly Pfaffian since GA∗[ω] is central in G∗

A,

i.e. per(A∗[ω]) = | det(B∗[ω])|. Denote by A∗[ω] = (a′ij)k×k and B∗[ω] = (b′ij)k×k. Then for

i = 1, 2, · · · , n, a′ii = b′ii = 1. By definitions,

per(A∗[ω]) =
∑
σ∈Λk

a′1σ1
a′2σ2

· · · a′kσk
, det(B∗[ω]) =

∑
σ∈Λk

sgn(σ)b′1σ1
b′2σ2

· · · b′kσk
. (5)

Since B∗[ω] is a signing of A∗[ω], we get that for any σ ∈ Λk,

a′1σ1
a′2σ2

· · · a′kσk
= |sgn(σ)b′1σ1

b′2σ2
· · · b′kσk

| = 0, 1.

Since per(A∗[ω]) = | det(B∗[ω])| together with Eq. 5, we have that for any σ, σ′ ∈ Λk,

sgn(σ)b′1σ1
b′2σ2

· · · b′kσk
= sgn(σ′)b′1σ′

1
b′2σ′

2
· · · b′kσ′

k
,

whenever they are both non-zeroes. In particular, for the given σ = (1)(2) · · · (k), we have

that a′1σ1
a′2σ2

· · · a′kσk
= sgn(σ)b′1σ1

b′2σ2
· · · b′kσk

=1. Hence, for each σ ∈ Λk,

a′1σ1
a′2σ2

· · · a′kσk
= sgn(σ)b′1σ1

b′2σ2
· · · b′kσk

.

This shows that per(A∗[ω]) = det(B∗[ω]). For the orientation subgraph of G⃗ restricted to

GA, let B be its skew biadjacency matrix. Then the above discussions show that per(A[ω]) =

det(B[ω]) holds for any ω ∈ Qk,n.
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Since

per(xI − A) =
n∑

k=0

xn−k(−1)k
∑

ω∈Qk,n

per(A[ω])

and

det(xI −B) =
n∑

k=0

xn−k(−1)k
∑

ω∈Qk,n

det(B[ω]),

per(xI − A) = det(xI −B) holds and A is totally convertible.

Based on this theorem, we immediately deduce that testing totally convertibility of a

square matrix A is reduced to testing the Pfaffian property of G∗
A.

By the proof of Theorem 2.5 we have the following immediate corollaries.

Corollary 2.6. For a totally convertible square matrix A, if there exists a signing B of A

such that per(xI −A) = det(xI −B), then G⃗∗
B is a Pfaffian and normal orientation of G∗

A.

Corollary 2.7. Let A be a totally convertible square matrix, D the restriction of a Pfaffian

and normal orientation of G∗
A on GA. Then the skew biadjacency matrix B of D is a signing

of A such that per(xI − A) = det(xI −B).

3 Totally convertible m× n {0, 1}-matrices

In this section we try to characterize thosem×n {0, 1}-matrices which are totally convertible.

If not specified, we suppose m ≤ n.

Lemma 3.1. An m × n {0, 1}-matrix A is totally convertible if and only if there exists a

signing B of A such that for any ω ∈ Qm,n, G⃗
∗
B[ω] is a Pfaffian and normal orientation of

G⃗∗
A[ω].

Proof. The result follows from Corollaries 2.6 and 2.7.

For a bipartite graph G = (U,W ;E) with |U | ≤ |W |, a matching M is left-perfect if

|M | = |U |. A subgraph H of G is left-central if G − V (H) has a left-perfect matching. A

subgraph H of G∗
A is left-central (∗) if, for any ω ∈ Qm,n such that G∗

A[ω] has H as a subgraph,

G∗
A[ω] − V (H) has a perfect matching.

Remark 3.2. For an m × n {0, 1}-matrix A and ω ∈ Qm,n, G∗
A[ω] is the associated (∗)

bipartite graph of the m×m matrix A[ω] and it is a subgraph of G∗
A. G

∗
A[ω] is different from

the subgraph G∗
A[ω] of G

∗
A induced by all the vertices in U and the vertices in W with indexes

in ω. For example, let

A0 =

1 0 0 1 1

0 1 0 1 1

0 0 0 1 1

 .

For ω = (2, 3, 4), the graphs G∗
A0
, G∗

A0[ω]
and G∗

A0
[ω] are shown in Figure 2.
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Figure 2. (a) G∗
A0
, (b) G∗

A0[ω]
and (c) G∗

A0
[ω].

Theorem 3.3. An m× n {0, 1}-matrix A is totally convertible if and only if there exists a

normal orientation of G∗
A such that each left-central (∗) cycle is oddly oriented.

Proof. If A is totally convertible, let B be a signing of A such that for any ω ∈ Qm,n,

per(xI −A[ω]) = det(xI −B[ω]). By Corollary 2.6 and Lemma 3.1, for any ω ∈ Qm,n, G⃗
∗
B[ω]

is a Pfaffian and normal orientation of G∗
A[ω]. Thus G⃗

∗
B is normal. Let C be a left-central (∗)

cycle of G∗
A. Then C is a central cycle of G∗

A[ω] for some ω ∈ Qm,n. So it is oddly oriented

in G⃗∗
B[ω] and therefore oddly oriented in G⃗∗

B.

Let G⃗ be an orientation of G∗
A such that each left-central (∗) cycle is oddly oriented and

B the skew biadjacency matrix of the oriented graph obtained from G⃗ by deleting all the

auxiliary edges. Then for any ω ∈ Qm,n, any central cycle of G⃗∗
B[ω] is oddly oriented and

G⃗∗
B[ω] is a Pfaffian orientation of G∗

A[ω]. As G⃗ is normal, G⃗∗
B[ω] is normal for any ω ∈ Qm,n.

By Lemma 3.1, we obtain that A is totally convertible.

Based on the above results, we have the following consequences.

Corollary 3.4. Let A be an m×n {0, 1}-matrix. Then the skew biadjacency matrix B of D

is a signing of A satisfying per(xI−A[ω]) = det(xI−B[ω]) for any ω ∈ Qm,n, where D is an

orientation graph obtained by restricting a normal orientation of G∗
A with each left-central

(∗) cycle being oddly oriented to GA.

Corollary 3.5. If an m×n {0, 1}-matrix A is totally convertible, then G∗
A contains no even

subdivision of K3,3 as a left-central (∗) subgraph.

Proof. Suppose to the contrary that G∗
A contains a left-central (∗) subgraph H∗ which is

isomorphic to an even subdivision of K3,3. By definition, there exists a ω ∈ Qm,n such that

H∗ is a central subgraph of G∗
A[ω]. Then by Proposition 2.2, the graph G∗

A[ω] is not Pfaffian.

By Lemma 3.1, A is not totally convertible. This is a contradiction.

For a bipartite graph G = (U,W ;E) with |U | ≤ |W |, a totally Pfaffian orientation of G is

an orientation such that each left-central cycle is oddly oriented. If a graph admits a totally

Pfaffian orientation, then it is totally Pfaffian. In [9] Kakimura gave a characterization of a

totally Pfaffian bipartite graph as below.
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Figure 3. (a) L3,5 and (b) an orientation of L3,5.

Proposition 3.6. [9] A bipartite graph is totally Pfaffian if and only if it contains no even

subdivision of K3,3, K2,3 and L3,5 as a left-central subgraph.

See Figure 1(b) and Figure 3(a) for K2,3 and L3,5, respectively. By definitions, a left-

central (∗) cycle of G∗
A is a left-central cycle. The following corollary follows immediately.

Corollary 3.7. Let A be an m×n {0, 1}-matrix. If G∗
A admits a normal and totally Pfaffian

orientation, then A is totally convertible.

Remark 3.8. If A is totally convertible, then G∗
A may be not totally Pfaffian. For example,

see matrix A0 in Remark 3.2. Since the graph G∗
A0

contains L3,5 as a left-central subgraph,

G∗
A0

is not totally Pfaffian, but it admits an orientation such that each left-central (∗) cycle is
oddly oriented. As shown in Figure 3(b), the left-central (∗) cycles u2w4u3w5u2, u1w2u2w5u1,

u1w2u2w4u1, u1w2u2w4u3w5u1 are all oddly oriented. By Corollary 3.4,

B0 =

1 0 0 −1 1

0 1 0 1 −1

0 0 0 1 1


is the signed matrix of A0 such that for any ω ∈ Q3,5, per(xI − A0[ω]) = det(xI −B0[ω]).

4 The permanental polynomial of a bipartite graph

For a graph G on n vertices, the adjacency matrix A(G) = (aij)n×n is the matrix with rows

and columns indexed by the vertices of G such that aij = 1 if there is an edge in G joining

vertices vi and vj, and aij = 0 otherwise. The permanental polynomial of G is defined as

π(G, x) = per(xI − A(G)). Note that the graph G considered here is simple.

In [22] Yan and zhang considered computing the permanental polynomial of a bipartite

graph through the characteristic polynomial of the skew adjacency matrix of an oriented

graph; in [23] the present authors gave two characterizations (see Theorem 4.1). Now we es-

tablish another equivalent characterization of Theorem 4.1 by the result of totally convertible

matrix.
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Theorem 4.1. [23] For a bipartite graph G, the following three conditions are equivalent:

(1) There exists an orientation G⃗ of G such that π(G, x) = det(xI − As(G⃗)).

(2) There exists an orientation G⃗ of G such that each cycle is oddly oriented.

(3) G contains no even subdivision of K2,3.

Theorem 4.2. For a bipartite graph G on n vertices, there exists an orientation G⃗ such

that π(G, x) = det(xI − As(G⃗)) if and only if G∗
A(G) is Pfaffian.

Proof. By Theorem 2.5, we only need to show that there exists an orientation G⃗ such that

π(G, x) = det(xI−As(G⃗)) if and only if A(G) is totally convertible. For a graph G, the skew

adjacency matrix As(G⃗) of an orientation graph G⃗ is a signing of the adjacency matrix A(G).

Hence if an orientation G⃗ exists satisfying π(G, x) = det(xI − As(G⃗)), then A(G) is totally

convertible. Conversely, if A(G) is totally convertible, then there is a signing B = (bij)n×n of

A(G) such that π(G, x) = per(xI−A(G)) = det(xI−As(G⃗)), then we show that for any i, j

(i ̸= j), bij = −bji. Let per(xI−A(G)) =
∑n

k=0 bkx
n−k and det(xI−As(G⃗)) =

∑n
k=0 ckx

n−k.

Since b2 = c2, we get that
∑

ω∈Q2,n
per(A[ω]) =

∑
ω∈Q2,n

det(A[ω]) by equations (1) and (2),

i.e.
∑

i,j(i ̸=j) aij · aji =
∑

i,j(i̸=j)−bij · bji. As aij = aji = 0 or 1, bij = −bji holds. Hence B is

skew symmetric and it is the skew adjacency matrix As(G⃗) of some orientation graph G⃗ of

G.

Based on the above results, we obtain the following corollary.

Corollary 4.3. A bipartite graph G contains no even subdivision of K2,3 if and only if G∗
A(G)

contains no even subdivision of K3,3 as a central subgraph.

5 Examples

In this section, by establishing Pfaffian orientations, we will compute the permanental poly-

nomials of some totally convertible matrices.

Lemma 5.1. [19] Define n× n matrices U and U−1 with components 1 ≤ k, k′ ≤ n:

(U)k,k′ =

√
2

n+ 1
ik sin(

kk′π

n+ 1
), (U−1)k,k′ =

√
2

n+ 1
(−i)k

′
sin(

kk′π

n+ 1
).

Let Q be the n× n matrix



0 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 0


. Then the matrix Q̃ = U−1QU has

the element (Q̃)k,k′ = δk,k′ · 2i cos kπ
n+1

for 1 ≤ k, k′ ≤ n and i2 = −1.
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Theorem 5.2. Let A1 =



1 1

1 1 1
. . .

. . .
. . .

1 1 1

1 1


be an n× n matrix.

Then

per(xI − A1) =
n∏

t=1

(x− 1 + 2i cos
tπ

n+ 1
). (6)

Proof. We construct the bipartite graph G∗
A1

and the orientation graph G⃗∗
A1

as shown in Fig-

ure 4(a). Let M0 be the perfect matching of G∗ containing the edges (u1, w1), (u2, w2), · · · ,
(un, wn). We can see that each M0-alternating cycle takes the form (uiwiui+1wi+1ui) (i ∈
{1, 2, · · · , n − 1}), and is oddly oriented in G⃗∗

A1
. In addition, each edge (ui, wi) is directed

from ui to wi. So G⃗∗
A1

is a Pfaffian and normal orientation of G∗
A1
. Let B1 be the skew

biadjacency matrix of G⃗∗
A1

= G⃗A1 . By Corollary 2.7, we have that

per(xI − A1) = det(xI −B1) = det



x− 1 1

−1 x− 1 1
. . .

. . .
. . .

−1 x− 1 1

−1 x− 1


.

Conjugate the matrix (xI − B1) by Un to obtain U−1
n (xI − B1)Un = diag(x − 1 +

2i cos π
n+1

, x−1+2i cos 2π
n+1

, · · · , x−1+2i cos nπ
n+1

). So per(xI−A1) = det(U−1
n (xI−B1)Un) =∏n

t=1(x− 1 + 2i cos tπ
n+1

).

(a) (b)

Figure 4. G∗
A1

and G∗
A2
.

Lemma 5.3. [21] Define n× n matrices Vn and V −1
n with components 1 ≤ t, j ≤ n:

(Vn)t,j =

√
1

n
ei

(2j−1)tπ
n , (V −1

n )t,j =

√
1

n
e−i

(2t−1)jπ
n .

11



Let Yn be the n × n matrix



0 1 1

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 −1 0


. Then the matrix Ỹn = V −1

n YnVn

has the element (Ỹn)t,j = δt,j · 2i sin (2t−1)π
n

for 1 ≤ t, j ≤ n and i2 = −1.

Theorem 5.4. Let A2 =



1 1 1

1 1 1
. . .

. . .
. . .

1 1 1

1 1 1


be an n× n matrix (n is even).

Then

per(xI − A2) =
n∏

t=1

(x− 1 + 2i sin
(2t− 1)π

n
). (7)

Proof. For the graph G∗
A2

= (U,W ), we give an orientation G⃗∗
A2

as shown in Figure 4(b).

Denote by M0 the perfect matching (u1, w1), (u2, w2), · · · , (un, wn). An M0-alternating cycle

of G∗
A2

either takes the form (uiwiui+1wi+1ui) (mod n) (i ∈ {1, 2, · · · , n}) or contains all the
vertices of G∗

A2
. Since n is even, all the M0-alternating cycles of G⃗∗

A2
are oddly oriented.

Thus G⃗∗
A2

is a Pfaffian orientation of G∗
A2
. As G⃗∗

A2
is normal and G⃗∗

A2
= G⃗A2 , by Theorem

2.5, the skew biadjacency matrix B2 of G⃗∗
A2

satisfies that

per(xI − A2) = det(xI −B2) = det



x− 1 1 1

−1 x− 1 1
. . .

. . .
. . .

−1 x− 1 1

−1 −1 x− 1


.

Conjugating (xI − B2) by Vn, we obtain that V −1
n (xI − B2)Vn = diag(x − 1 + 2i sin π

n
, x −

1+2i sin 3π
n
, · · · , x− 1+2i sin (2n−1)π

n
). So per(xI−A2) = det(V −1

n (xI−B2)Vn) =
∏n

t=1(x−
1 + 2i sin (2t−1)π

n
) holds.
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[1] M. Borowiecki and T. Jóźwiak, Computing the permanental polynomial of a multigraph,

Discuss. Math. 5 (1982) 9-16.
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