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Abstract: In this paper, we consider the interval oscillation criteria for second order damped
differential equations with mixed nonlinearities

(
r(t)(x′(t))γ)′

+ p(t)(x′(t))γ +

n∑
i=0

qi(t) |x(gi(t))|αi sgn x(gi(t)) = e(t),

where γ is a quotient of odd positive integers, α0 = γ, αi > 0, i = 1, 2, · · · , n with r, p, e

and qi ∈ C([t0,∞), R), r(t) > 0, gi : R → R are nondecreasing continuous functions on R
and limt→∞ gi(t) = ∞, i = 0, 1, 2, · · · , n. Our results in this paper extend and improve

some known results. Some examples are given here to illustrate our main results.
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1 Introduction

In this paper, we are concerned with the interval oscillation criteria for the certain second order
damped differential equations containing mixed nonlinearities of the form

(r(t)(x′(t))γ)′ + p(t)(x′(t))γ +
n∑

i=0

qi(t) |x(gi(t))|αi sgn x(gi(t)) = e(t), t ≥ t0, (1.1)

where γ is a quotient of odd positive integers, α0 = γ, α1 > α2 > · · · > αm > γ > αm+1 > · · · >
αn > 0 (n > m ≥ 1). We also assume that r, p, e and qi ∈ C([t0,∞), R), r(t) > 0, gi : R → R are
nondecreasing continuous functions on R, limt→∞ gi(t) = ∞, i = 0, 1, 2, · · · , n.

By a solution of Eq. (1.1), we mean a function x ∈ C1([tx,∞), R), tx ≥ t0, which has the
property r(x′)γ ∈ C1([tx,∞), R) and satisfies Eq. (1.1) on [tx,∞). A nontrivial solution of Eq.
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(1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions are oscillatory.

In the last few decades, a great deal of effort has been spent in obtaining sufficient conditions
for the oscillation or nonoscillation of solutions of the second order and higher order differential
equations without forcing terms and it is usually assumed that the potential function q is positive.
We refer the reader to the papers [1–18] and the references cited therein.

However, from the Sturm Separation Theorem, we see that oscillation is only an interval prop-
erty, i.e., if there exists a sequence of subintervals [ai, bi] of [to,∞), as ai →∞, such that for each
i, there exists a solution of equation (1.1) that has at least two zeros in [ai, bi], then every solution
of equation (1.1) is oscillatory, no matter how equation (1.1) is on the remaining parts of [to,∞)
( [19]). Recently, it has been an increasing interest in establishing interval oscillation criteria for
second order differential equations with forcing terms, see [19–34].

In 2004, Li [22] considered the problem of interval oscillation of second order quasi-linear
differential equation with forced term of the form(

r(t)|y′(t)|α−1y′(t)
)′

+ p(t)|y′(t)|α−1y′(t) + q(t)|y(t)|β−1y(t) = e(t), t ≥ t0, (1.2)

where β > α > 0 are constants, r ∈ C([t0,∞), (0,∞)), p, q, e ∈ C([t0,∞), R). By using two
inequalities as well as averaging functions, the author obtained several interval criteria for oscil-
lation, that was, criteria given by the behavior of Eq. (1.2) only on a sequence of subintervals of
[t0,∞). These oscillation criteria extended some known results.

Li et al. [30] studied the oscillation of second-order functional differential equations with mixed
nonlinearities

(p(t)x′(t))′ + q(t)x(t− τ) +
n∑

i=1

qi(t) |x(t− τ)|αi sgn x(t− τ) = e(t), t ≥ t0,

where τ ≥ 0. Without assume that the functions q, qi, e are nonnegative, the results in this paper
extended the results given in [25].

In 2011, Hassan et al. [33] were concerned with the oscillatory behavior of the following forced
second order differential equations with mixed nonlinearities

(a(t)(x′(t))γ)′ + p0(t)xγ(t) +
n∑

i=1

pi(t) |x(t)|αi sgn x(t) = e(t), t ≥ t0 (1.3)

and

(a(t)(x′(t))γ)′ + p0(t)xγ(g0(t)) +
n∑

i=1

pi(t) |x(gi(t))|αi sgn x(gi(t)) = e(t), t ≥ t0, (1.4)

where γ is a quotient of odd positive integers, αi > 0, i = 1, 2, · · · , n and αi > γ for i =
1, 2, · · · , m, αi < γ for i = m + 1, m + 2, · · · , n with a, e and pi ∈ C([t0,∞), R), a(t) > 0,
gi : R → R are positive nondecreasing continuous functions on R and limt→∞ gi(t) = ∞ for
i = 0, 1, 2, · · · , n. The authors established some sufficient conditions for the oscillation of Eq.
(1.3) and Eq. (1.4) that did not assume that e and pi, i = 0, 1, 2, · · · , n are of definite sign. The
results generalized and improved the results in [24], which studied interval oscillation criteria for
special case for Eq. (1.3) in case γ = 1.

In this paper, we intend to use the Riccati transformation technique to obtain some inter-
val oscillation criteria for Eq. (1.1). Our results do not require that the functions p, qi and e,
i = 0, 1, 2, · · · , n are of definite sign and are based on the information only on a sequence of
subintervals of [t0,∞) rather than the whole half-line. To the best of our knowledge, nothing is
known regarding the oscillation criteria for a damped differential equations with mixed nonlinear-
ities and with delayed or advanced arguments. As far as we are aware, these types of equations
were not studied earlier, so our results initiate the study. Our results obtained here improve and
extend the main results of [22–25, 27, 30, 32, 33].

The paper is organized as follows: In the next section, we present some lemmas which will
be used in the following results. In Section 3, using the Riccati transformation technique and
inequalities, we establish some new interval criteria for oscillation of Eq. (1.1). In Section 4, we
give two examples to illustrate Theorems 3.1 and 3.5, respectively.
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2 Some preliminary lemmas

Before stating our main results, we begin with the following lemmas which will play important
roles in the proof of the main results.

Lemma 2.1 ([24, Lemma 1]) Let (α1, α2, · · · , αn) be an n-tuple satisfying

α1 > α2 > · · · > αm > γ > αm+1 > · · · > αn > 0.

Then there exists an n-tuple (η1, η2, · · · , ηn) with 0 < ηi < 1 satisfying

n∑
i=1

αiηi = γ, (2.1)

and which also satisfies either
n∑

i=1

ηi < 1 (2.2)

or
n∑

i=1

ηi = 1. (2.3)

Lemma 2.2 ([33, Lemma 2.2]) Let α, β, u, A and B be positive real numbers and γ be a
quotient of odd positive integers. Then

Auγ −Buγ−α ≥ −α

((
γ − α

A

)γ−α(
B

γ

)γ
) 1

α

, 0 < α < γ, (2.4)

Auβ−γ + Bu−γ ≥ β

((
A

γ

)γ (
B

β − γ

)β−γ
) 1

β

, 0 < γ < β. (2.5)

Lemma 2.3 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [G1(a1), G2(b1)) ∪ [G1(a2), G2(b2)), i = 0, 1, 2, · · · , n

and
(−1)ke(t) ≥ 0, t ∈ [G1(ak), G2(bk)), k = 1, 2,

where G1(t) = min{t, g0(t), g1(t), · · · , gn(t)} and G2(t) = max{t, g0(t), g1(t), · · · , gn(t)}.
Furthermore, assume that Eq. (1.1) has a nonoscillatory solution x on [t0,∞). Then for t ∈ [ak, bk)
and k = 1, 2, we have

x(gi(t))
x(t)

≥ δi,k(t),

where for i = 0, 1, 2, · · · , n and k = 1, 2, we denote

δi,k(t) =

{
φi,k(t), gi(t) ≤ t,

ξi,k(t), gi(t) > t,
ζ(t, ak) = exp

(∫ t

G1(ak)

p(s)
r(s)

ds

)
,

φi,k(t) =
∫ gi(t)

gi(ak)

du

(r(u)ζ(u, ak))
1
γ

(∫ t

gi(ak)

du

(r(u)ζ(u, ak))
1
γ

)−1

and

ξi,k(t) =
∫ gi(bk)

gi(t)

du

(r(u)ζ(u, ak))
1
γ

(∫ gi(bk)

t

du

(r(u)ζ(u, ak))
1
γ

)−1

.
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Proof. Let x be an eventually positive solution of Eq. (1.1). Then we can pick T ∈ [t0,∞),
such that x(t) > 0, x(gi(t)) > 0, i = 0, 1, 2, · · · , n, for all t ≥ T. When x(t) and x(gi(t)),
i = 0, 1, 2, · · · , n are eventually negative, the proof follows the same argument using the interval
[G1(a2), G2(b2)) instead of [G1(a1), G2(b1)). By assumption, we can choose b1 > a1 > T, such that
qi(t) ≥ 0 and e(t) ≤ 0 on [G1(a1), G2(b1)). From Eq. (1.1), we find that

(r(t)(x′(t))γ)′ + p(t)(x′(t))γ ≤ 0,

that is
(r(t)(x′(t))γζ(t, a1))

′ ≤ 0,

where ζ(t, a1) is defined as in Lemma 2.3. Hence, r(t)(x′(t))γζ(t, a1) is nonincreasing on [a1, G2(b1)).
If gi(t) ≤ t, then for i = 0, 1, 2, · · · , n and t ∈ [a1, G2(b1)), we have

x(t)− x(gi(t)) =
∫ t

gi(t)

(r(u)(x′(u))γζ(u, a1))
1
γ

(r(u)ζ(u, a1))
1
γ

du

≤ (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

∫ t

gi(t)

du

(r(u)ζ(u, a1))
1
γ

.

Therefore,

x(t)
x(gi(t))

≤ 1 +
(r(gi(t))(x′(gi(t)))γζ(gi(t), a1))

1
γ

x(gi(t))

∫ t

gi(t)

du

(r(u)ζ(u, a1))
1
γ

. (2.6)

Also, since gi(t) are nondecreasing, we see that, for t ∈ [a1, G2(b1)),

x(gi(t)) > x(gi(t))− x(gi(a1)) =
∫ gi(t)

gi(a1)

(r(u)(x′(u))γζ(u, a1))
1
γ

(r(u)ζ(u, a1))
1
γ

du

≥ (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

∫ gi(t)

gi(a1)

du

(r(u)ζ(u, a1))
1
γ

,

which implies that

(r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

x(gi(t))
<

(∫ gi(t)

gi(a1)

du

(r(u)ζ(u, a1))
1
γ

)−1

, for t ∈ [a1, G2(b1)). (2.7)

From (2.6) and (2.7), we get

x(t)
x(gi(t))

<

∫ t

gi(a1)

du

(r(u)ζ(u, a1))
1
γ

(∫ gi(t)

gi(a1)

du

(r(u)ζ(u, a1))
1
γ

)−1

=
1

φi,1(t)
.

Therefore,
x(gi(t)) > φi,1(t)x(t), t ∈ [a1, G2(b1)). (2.8)

On the other hand, if gi(t) > t, then for i = 0, 1, 2, · · · , n and t ∈ [a1, G2(b1)), we obtain

x(gi(t))− x(t) =
∫ gi(t)

t

(r(u)(x′(u))γζ(u, a1))
1
γ

(r(u)ζ(u, a1))
1
γ

du

≥ (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

∫ gi(t)

t

du

(r(u)ζ(u, a1))
1
γ

.

Therefore,

x(t)
x(gi(t))

≤ 1− (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

x(gi(t))

∫ gi(t)

t

du

(r(u)ζ(u, a1))
1
γ

. (2.9)

4



Also, since gi(t) are nondecreasing, we see that, for t ∈ [a1, b1),

−x(gi(t)) < x(gi(b1))− x(gi(t)) =
∫ gi(b1)

gi(t)

(r(u)(x′(u))γζ(u, a1))
1
γ

(r(u)ζ(u, a1))
1
γ

du

≤ (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

∫ gi(b1)

gi(t)

du

(r(u)ζ(u, a1))
1
γ

,

which implies that

− (r(gi(t))(x′(gi(t)))γζ(gi(t), a1))
1
γ

x(gi(t))
<

(∫ gi(b1)

gi(t)

du

(r(u)ζ(u, a1))
1
γ

)−1

, t ∈ [a1, b1). (2.10)

From (2.9) and (2.10), we get

x(t)
x(gi(t))

<

∫ gi(b1)

t

du

(r(u)ζ(u, a1))
1
γ

(∫ gi(b1)

gi(t)

du

(r(u)ζ(u, a1))
1
γ

)−1

=
1

ξi,1(t)
.

Therefore,
x(gi(t)) > ξi,1(t)x(t), t ∈ [a1, b1). (2.11)

Combining (2.8) and (2.11), we have

x(gi(t)) ≥ δi,1(t)x(t), i = 0, 1, 2, · · · , n and t ∈ [a1, b1).

This completes the proof.

3 Main results

In this section, we will establish some new criteria for oscillation of Eq. (1.1). In the sequel, we
say that a function u belongs to a function class

ξ(a, b) = {u ∈ C1[a, b] : u(a) = u(b) = 0, u(t) 6≡ 0}, a, b ∈ [t0,∞) with a < b,

denoted by u ∈ ξ(a, b).

Theorem 3.1 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [G1(a1), G2(b1)) ∪ [G1(a2), G2(b2)), i = 0, 1, 2, · · · , n

and
(−1)ke(t) ≥ 0, for t ∈ [G1(ak), G2(bk)), k = 1, 2,

where G1 and G2 are defined as in Lemma 2.3. Furthermore, assume that there exist functions
ρ ∈ C1([t0,∞), R+) and u ∈ ξ(ak, bk), k = 1, 2, such that∫ bk

ak

[
P1,k(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)

]
dt > 0, k = 1, 2, (3.1)

where

P1,k(t) = ρ(t)

(
q0(t)δ

γ
0,k(t) + (η−1

0 |e(t)|)η0

n∏
i=1

(η−1
i qi(t)δαi

i,k(t))ηi

)
,

η0 = 1−
n∑

i=1

ηi, P (t) = (γ + 1)u′(t) +
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
u(t),

ηi > 0, i = 1, 2, · · · , n satisfy (2.1) and (2.2) of Lemma 2.1 and δi,k, i = 0, 1, 2, · · · , n and
k = 1, 2 are defined as in Lemma 2.3. Then every solution of Eq. (1.1) is oscillatory.
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Proof. To arrive at a contradiction, suppose that Eq. (1.1) has a nonoscillatory solution x
on [t0,∞). Without loss of generality, we assume that there exists a t1 ≥ t0, such that x(t) > 0,
x(gi(t)) > 0, i = 0, 1, 2, · · · , n, for all t ≥ t1. By assumption, we can choose b1 > a1 > t1, such
that qi(t) ≥ 0 and e(t) ≤ 0 on the interval [G1(a1), G2(b1)). From Lemma 2.3 and Eq. (1.1), we
have, for t ∈ [a1, b1),

(r(t)(x′(t))γ)′ + p(t)(x′(t))γ +
n∑

i=0

qi(t)δαi
i,1(t)x

αi(t) ≤ e(t). (3.2)

Define the function ω by

ω(t) = ρ(t)
r(t)(x′(t))γ

xγ(t)
, t ∈ [a1, b1). (3.3)

It follows from (3.2) and (3.3) that

ω′(t) = −ρ(t)
p(t)(x′(t))γ

xγ(t)
− ρ(t)q0(t)δ

γ
0,1(t)− ρ(t)

n∑
i=1

qi(t)δαi
i,1(t)x

αi−γ(t)

+
ρ(t)e(t)
xγ(t)

+
ρ′(t)
ρ(t)

ω(t)− ρ(t)
γr(t)(x′(t))γ+1

xγ+1(t)

= −ρ(t)q0(t)δ
γ
0,1(t)− ρ(t)

n∑
i=1

qi(t)δαi
i,1(t)x

αi−γ(t)

−ρ(t)|e(t)|
xγ(t)

+
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

. (3.4)

Corresponding to the exponents αi, i = 1, 2, · · · , n in Eq. (1.1), let ηi, i = 1, 2, · · · , n
be chosen to satisfy (2.1) and (2.2) in Lemma 2.1, and let η0 = 1 −

∑n
i=1 ηi. Employing the

arithmetic-geometric mean inequality in [35],

n∑
i=0

ηiui ≥
n∏

i=0

uηi

i , ui ≥ 0,

we see that, for t ∈ [a1, b1),

|e(t)|x−γ(t) +
n∑

i=1

qi(t)δαi
i,1(t)x

αi−γ(t)

= η0(η−1
0 |e(t)|x−γ(t)) +

n∑
i=1

ηi(η−1
i qi(t)δαi

i,1(t)x
αi−γ(t))

≥ (η−1
0 |e(t)|x−γ(t))η0

n∏
i=1

(η−1
i qi(t)δαi

i,1(t)x
αi−γ(t))ηi

= (η−1
0 |e(t)|)η0

n∏
i=1

(η−1
i qi(t)δαi

i,1(t))
ηi . (3.5)

Combining (3.4) and (3.5), we get

ω′(t) ≤ −P1,1(t) +
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

. (3.6)

Multiplying (3.6) by uγ+1(t) and integrating from a1 to b1, we obtain∫ b1

a1

uγ+1(t)ω′(t)dt ≤ −
∫ b1

a1

uγ+1(t)P1,1(t)dt
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+
∫ b1

a1

(
ρ′(t)
ρ(t)

− p(t)
r(t)

)
uγ+1(t)ω(t)dt−

∫ b1

a1

γuγ+1(t)

(ρ(t)r(t))
1
γ

ω
γ+1

γ (t)dt.

Using integration by parts on the first integral, we have

−
∫ b1

a1

(γ + 1)uγ(t)u′(t)ω(t)dt ≤ −
∫ b1

a1

uγ+1(t)P1,1(t)dt

+
∫ b1

a1

(
ρ′(t)
ρ(t)

− p(t)
r(t)

)
uγ+1(t)ω(t)dt−

∫ b1

a1

γuγ+1(t)

(ρ(t)r(t))
1
γ

ω
γ+1

γ (t)dt.

Thus∫ b1

a1

uγ+1(t)P1,1(t)dt ≤ −
∫ b1

a1

γuγ+1(t)

(ρ(t)r(t))
1
γ

ω
γ+1

γ (t)dt

+
∫ b1

a1

[
(γ + 1)u′(t) + u(t)

(
ρ′(t)
ρ(t)

− p(t)
r(t)

)]
uγ(t)ω(t)dt. (3.7)

Set

F (v) = P (t)uγ(t)v − γuγ+1(t)

(ρ(t)r(t))
1
γ

v
γ+1

γ ,

where P is defined as in Theorem 3.1. By simple calculation, we find that, F has the maximum

Fmax =
(

1
γ + 1

)γ+1

P γ+1(t)ρ(t)r(t), when v =
P γ(t)ρ(t)r(t)
(γ + 1)γuγ(t)

. (3.8)

From (3.7) and (3.8), we obtain∫ b1

a1

uγ+1(t)P1,1(t)dt ≤
∫ b1

a1

ρ(t)r(t)
(γ + 1)γ+1

P γ+1(t)dt,

which contradicts (3.1). The proof when x is eventually negative follows the same arguments using
the interval [G1(a2), G2(b2)) instead of [G1(a1), G2(b1)), where we use q(t) ≥ 0 and e(t) ≥ 0 on
[G1(a2), G2(b2)). This completes the proof.

Remark 3.1 If p(t) ≡ 0, then Theorem 3.1 reduces to Theorem 2.5 in [33]. Furthermore, if
we take gi(t) = t, i = 0, 1, 2, · · · , n, then Theorem 3.1 reduces to Theorem 2.1 in [33].

Theorem 3.2 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [G1(a1), G2(b1)) ∪ [G1(a2), G2(b2)), i = 0, 1, 2, · · · , n

and
(−1)ke(t) ≥ 0, for t ∈ [G1(ak), G2(bk)), k = 1, 2,

where G1 and G2 are defined as in Lemma 2.3. Furthermore, assume that there exist functions
ρ ∈ C1([t0,∞), R+) and u ∈ ξ(ak, bk), k = 1, 2, such that∫ bk

ak

[
P2,k(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)

]
dt > 0, k = 1, 2, (3.9)

where

P2,k(t) = ρ(t)

(
q0(t)δ

γ
0,k(t) +

n∏
i=1

(η−1
i qi(t)δαi

i,k(t))ηi

)
,

ηi > 0, i = 1, 2, · · · , n satisfy (2.1) and (2.3) of Lemma 2.1, P is defined as in Theorem 3.1 and
δi,k, i = 0, 1, 2, · · · , n and k = 1, 2 are defined as in Lemma 2.3. Then every solution of Eq.
(1.1) is oscillatory.
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Proof. Suppose that Eq. (1.1) has a nonoscillatory solution x on [t0,∞). Without loss of gen-
erality, we assume that there exists a t1 ≥ t0, such that x(t) > 0, x(gi(t)) > 0, i = 0, 1, 2, · · · , n,
for all t ≥ t1. By assumption, we can choose b1 > a1 > t1, such that qi(t) ≥ 0 and e(t) ≤ 0 on the
interval [G1(a1), G2(b1)). We define the function ω as in the proof of Theorem 3.1. Proceeding as
in the proof of Theorem 3.1, we have

ω′(t) ≤ −ρ(t)q0(t)δ
γ
0,1(t)−ρ(t)

n∑
i=1

qi(t)δαi
i,1(t)x

αi−γ(t)+
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

. (3.10)

Corresponding to the exponents αi, i = 1, 2, · · · , n in Eq. (1.1), let ηi, i = 1, 2, · · · , n
be chosen to satisfy (2.1) and (2.3) in Lemma 2.1. Employing the arithmetic-geometric mean
inequality in [35],

n∑
i=1

ηiui ≥
n∏

i=1

uηi

i , ui ≥ 0,

we get, for t ∈ [a1, b1),

n∑
i=1

qi(t)δαi
i,1(t)x

αi−γ(t) ≥
n∏

i=1

η−ηi

i (qi(t)δαi
i,1(t))

ηi . (3.11)

Combining (3.10) and (3.11), we obtain

ω′(t) ≤ −P2,1(t) +
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

.

The remainder of the proof is similar to that of Theorem 3.1, so is omitted. Then the theorem is
proved.

Remark 3.2 If p(t) ≡ 0, then Theorem 3.2 reduces to Theorem 2.6 in [33]. Furthermore, if
we take gi(t) = t, i = 0, 1, 2, · · · , n, then Theorem 3.2 reduces to Theorem 2.2 in [33].

Theorem 3.3 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [G1(a1), G2(b1)) ∪ [G1(a2), G2(b2)), i = 0, 1, 2, · · · , n

and
(−1)ke(t) ≥ 0, for t ∈ [G1(ak), G2(bk)), k = 1, 2,

where G1 and G2 are defined as in Lemma 2.3. Furthermore, assume that there exist functions
ρ ∈ C1([t0,∞), R+) and u ∈ ξ(ak, bk), k = 1, 2, such that∫ bk

ak

[
P3,k(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)

]
dt > 0, k = 1, 2, (3.12)

where

P3,k(t) = ρ(t)q0(t)δ
γ
0,k(t) + ρ(t)

n∑
i=1

αi

((
qi(t)δαi

i,k(t)
γ

)γ (
λi|e(t)|
αi − γ

)αi−γ
) 1

αi

λi are positive numbers with
∑n

i=1 λi = 1, P is defined as in Theorem 3.1 and δi,k, i = 0, 1, 2, · · · , n
and k = 1, 2 are defined as in Lemma 2.3. Then every solution of Eq. (1.1) is oscillatory.

Proof. Suppose that Eq. (1.1) has a nonoscillatory solution x on [t0,∞). Without loss of gen-
erality, we assume that there exists a t1 ≥ t0, such that x(t) > 0, x(gi(t)) > 0, i = 0, 1, 2, · · · , n,
for all t ≥ t1. By assumption, we can choose b1 > a1 > t1, such that qi(t) ≥ 0 and e(t) ≤ 0 on the
interval [G1(a1), G2(b1)). We define ω as in the proof of Theorem 3.1. Then from (3.4), we find
that

ω′(t) = −ρ(t)q0(t)δ
γ
0,1(t)− ρ(t)

n∑
i=1

[
qi(t)δαi

i,1(t)x
αi−γ(t) + λi|e(t)|x−γ(t)

]
8



+
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

. (3.13)

From (2.5), we get, for t ∈ (a1, b1) and i = 0, 1, 2, · · · , m,

qi(t)δαi
i,1(t)x

αi−γ(t) + λi|e(t)|x−γ(t) ≥ αi

((
qi(t)δαi

i,k(t)
γ

)γ (
λi|e(t)|
αi − γ

)αi−γ
) 1

αi

. (3.14)

Combining (3.13) and (3.14), we obtain

ω′(t) ≤ −P3,k(t) +
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

.

The remainder of the proof is similar to that of Theorem 3.1, so is omitted. The proof is complete.
Next, let us introduce the class of functions Y, which will be extensively used in the sequel.
Let D0 = {(t, s) : t0 ≤ s < t < ∞} and D = {(t, s) : t0 ≤ s ≤ t < ∞}. We say that the function

H ∈ C(D, R) belongs to the class Y, denoted by H ∈ Y, if
(i) H(t, t) = 0, t ≥ t0, H(t, s) > 0 on D0;
(ii) H has continuous partial derivatives ∂H/∂t and ∂H/∂s on D such that

∂H(t, s)
∂t

= h1(t, s)H
γ

γ+1 (t, s) and
∂H(t, s)

∂s
= −h2(t, s)H

γ
γ+1 (t, s),

where h1 and h2 are locally integrable functions.

Theorem 3.4 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [G1(a1), G2(b1)) ∪ [G1(a2), G2(b2)), i = 0, 1, 2, · · · , n

and
(−1)ke(t) ≥ 0, for t ∈ [G1(ak), G2(bk)), k = 1, 2,

where G1 and G2 are defined as in Lemma 2.3. Furthermore, assume that there exist functions
ρ ∈ C1([t0,∞), R+) such that for some H ∈ Y and ck ∈ (ak, bk),

1
H(ck, ak)

∫ ck

ak

[
H(s, ak)P1,k(s)− ρ(s)r(s)

(γ + 1)γ+1
Kγ+1

1 (s, ak)
]

ds

+
1

H(bk, ck)

∫ bk

ck

[
H(bk, s)P1,k(s)− ρ(s)r(s)

(γ + 1)γ+1
Kγ+1

2 (bk, s)
]

ds > 0, k = 1, 2, (3.15)

where

K1(s, ak) = h1(s, ak) + H
1

γ+1 (s, ak)
(

ρ′(s)
ρ(s)

− p(s)
r(s)

)
,

K2(bk, s) = H
1

γ+1 (bk, s)
(

ρ′(s)
ρ(s)

− p(s)
r(s)

)
− h2(bk, s),

ηi > 0, i = 1, 2, · · · , n satisfy (2.1) and (2.2) of Lemma 2.1, P1,k, k = 1, 2 are defined as in
Theorem 3.1 and δi,k, i = 0, 1, 2, · · · , n and k = 1, 2 are defined as in Lemma 2.3. Then every
solution of Eq. (1.1) is oscillatory.

Proof. To arrive at a contradiction, suppose that Eq. (1.1) has a nonoscillatory solution x
on [t0,∞). Without loss of generality, we assume that there exists a t1 ≥ t0, such that x(t) > 0,
x(gi(t)) > 0, i = 0, 1, 2, · · · , n, for all t ≥ t1. By assumption, we can choose b1 > a1 > t1, such
that qi(t) ≥ 0 and e(t) ≤ 0 on the interval [G1(a1), G2(b1)). Proceeding as in the proof of Theorem
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3.1, we get (3.6). Multiplying both sides of (3.6) by H(s, t), and integrating with respect to s from
t to c1, for t ∈ (a1, c1], we have∫ c1

t

H(s, t)P1,1(s)ds ≤ −
∫ c1

t

H(s, t)ω′(s)ds +
∫ c1

t

H(s, t)
(

ρ′(s)
ρ(s)

− p(s)
r(s)

)
ω(s)ds

−
∫ c1

t

H(s, t)
γ

(ρ(s)r(s))
1
γ

ω
γ+1

γ (s)ds. (3.16)

In view of (i) and (ii), we see that∫ c1

t

H(s, t)ω′(s)ds = H(c1, t)ω(c1)−
∫ c1

t

h1(s, t)H
γ

γ+1 (s, t)ω(s)ds. (3.17)

Then, using (3.17) in (3.16), we get∫ c1

t

H(s, t)P1,1(s)ds ≤ −H(c1, t)ω(c1)−
∫ c1

t

H(s, t)
γ

(ρ(s)r(s))
1
γ

ω
γ+1

γ (s)ds

+
∫ c1

t

(
h1(s, t)H

γ
γ+1 (s, t) + H(s, t)

(
ρ′(s)
ρ(s)

− p(s)
r(s)

))
ω(s)ds. (3.18)

Set
G(v) = K1(s, t)H

γ
γ+1 (s, t)v −H(s, t)

γ

(ρ(s)r(s))
1
γ

v
γ+1

γ ,

where K1 is defined as in Theorem 3.4. By simple calculation, we find that, G has the maximum

Gmax =
ρ(s)r(s)

(γ + 1)γ+1
Kγ+1

1 (s, t), when v =
Kγ

1 (s, t)ρ(s)r(s)
(γ + 1)γ

H− γ
γ+1 (s, t). (3.19)

From (3.18) and (3.19), we obtain∫ c1

t

H(s, t)P1,1(s)ds ≤ −H(c1, t)ω(c1) +
∫ c1

t

ρ(s)r(s)
(γ + 1)γ+1

Kγ+1
1 (s, t)ds.

Letting t → a+
1 in the above inequality and dividing it by H(c1, a1), we have

1
H(c1, a1)

∫ c1

a1

[
H(s, a1)P1,1(s)−

ρ(s)r(s)
(γ + 1)γ+1

Kγ+1
1 (s, a1)

]
ds ≤ −ω(c1). (3.20)

Similarly, multiplying both sides of (3.6) by H(t, s), and integrating with respect to s from c1 to
t, for t ∈ [c1, b1), we get∫ t

c1

H(t, s)P1,1(s)ds ≤ −
∫ t

c1

H(t, s)ω′(s)ds +
∫ t

c1

H(t, s)
(

ρ′(s)
ρ(s)

− p(s)
r(s)

)
ω(s)ds

−
∫ t

c1

H(t, s)
γ

(ρ(s)r(s))
1
γ

ω
γ+1

γ (s)ds

≤ H(t, c1)ω(c1)−
∫ t

c1

H(t, s)
γ

(ρ(s)r(s))
1
γ

ω
γ+1

γ (s)ds

+
∫ t

c1

(
H(t, s)

(
ρ′(s)
ρ(s)

− p(s)
r(s)

)
− h2(t, s)H

γ
γ+1 (t, s)

)
ω(s)ds. (3.21)

Let
G̃(v) = K2(t, s)H

γ
γ+1 (t, s)v −H(t, s)

γ

(ρ(s)r(s))
1
γ

v
γ+1

γ ,

where K2 is defined as in Theorem 3.4. By simple calculation, we find that, G has the maximum

G̃max =
ρ(s)r(s)

(γ + 1)γ+1
Kγ+1

2 (t, s), when v =
Kγ

2 (t, s)ρ(s)r(s)
(γ + 1)γ

H− γ
γ+1 (t, s). (3.22)
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From (3.21) and (3.22), we obtain∫ t

c1

H(t, s)P1,1(s)ds ≤ H(t, c1)ω(c1) +
∫ t

c1

ρ(s)r(s)
(γ + 1)γ+1

Kγ+1
2 (t, s)ds.

Letting t → b−1 in the above inequality and dividing it by H(b1, c1), we have

1
H(b1, c1)

∫ b1

c1

[
H(b1, s)P1,1(s)−

ρ(s)r(s)
(γ + 1)γ+1

Kγ+1
2 (b1, s)

]
ds ≤ ω(c1). (3.23)

Adding (3.20) and (3.23), we get a contradiction to (3.15). This completes the proof.

Remark 3.3 when γ = 1, Theorem 3.4 reduces to the main results in [23].

Particularly, when gi(t) = t, i = 0, 1, 2, · · · , n, Eq. (1.1) reduces to the following equations

(r(t)(x′(t))γ)′ + p(t)(x′(t))γ +
n∑

i=0

qi(t) |x(t)|αi sgn x(t) = e(t). (3.24)

We can also remove the sign condition imposed on the coefficients of the half-linear terms to obtain
interval oscillation criterion for Eq. (3.24) which is applicable for the case when some or all of the
functions qi, i = m + 1, · · · , n are nonpositive. The results is as follows.

Theorem 3.5 Suppose that for any T ≥ t0, there exist constants ak, bk ∈ [T,∞) such that
ak < bk, k = 1, 2, with

qi(t) ≥ 0, for t ∈ [a1, b1) ∪ [a2, b2), i = 0, 1, 2, · · · , m

and
(−1)ke(t) > 0, for t ∈ [ak, bk), k = 1, 2.

Furthermore, assume that there exist functions ρ ∈ C1([t0,∞), R+) and u ∈ ξ(ak, bk), k = 1, 2,
such that ∫ bk

ak

[
Q(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)

]
dt > 0, k = 1, 2, (3.25)

where

Q(t) = ρ(t)q0(t) + ρ(t)
m∑

i=1

αi

((
qi(t)

γ

)γ (
λi|e(t)|
αi − γ

)αi−γ
) 1

αi

−ρ(t)
n∑

i=m+1

αi

((
(qi(t))−

γ

)γ (
γ − αi

λi|e(t)|

)γ−αi
) 1

αi

,

λi are positive numbers with
∑n

i=1 λi = 1, (qi(t))− = max{−qi(t), 0}, i = m + 1, m + 2, · · · , n
and P is defined as in Theorem 3.1. Then every solution of Eq. (1.1) is oscillatory.

Proof. To arrive at a contradiction, suppose that Eq. (1.1) has a nonoscillatory solution x
on [t0,∞). Without loss of generality, we assume that there exists a t1 ≥ t0, such that x(t) > 0,
x(gi(t)) > 0, i = 0, 1, 2, · · · , n, for all t ≥ t1. By assumption, we can choose b1 > a1 > t1, such
that qi(t) ≥ 0 and e(t) < 0 on the interval [a1, b1). We define the function ω as in the proof of
Theorem 3.1. Similarly to the proof of Theorem 3.1, we have

ω′(t) = −ρ(t)q0(t)− ρ(t)
m∑

i=1

[
qi(t)xαi−γ(t) + λi|e(t)|x−γ(t)

]

−ρ(t)
n∑

i=m+1

[
qi(t)xαi−γ(t) + λi|e(t)|x−γ(t)

]
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+
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

. (3.26)

From (2.5), we get, for t ∈ (a1, b1) and i = 0, 1, 2, · · · , m,

qi(t)xαi−γ(t) + λi|e(t)|x−γ(t) ≥ αi

((
qi(t)

γ

)γ (
λi|e(t)|
αi − γ

)αi−γ
) 1

αi

. (3.27)

From (2.4), we obtain, for t ∈ (a1, b1) and i = m + 1, m + 2, · · · , n,

qi(t)xαi−γ(t) + λi|e(t)|x−γ(t) ≥ λi|e(t)|x−γ(t)− (qi(t))−xαi−γ(t)

≥ −αi

((
(qi(t))−

γ

)γ (
γ − αi

λi|e(t)|

)γ−αi
) 1

αi

. (3.28)

Combining (3.26)–(4.2), we have

ω′(t) ≤ −Q(t) +
(

ρ′(t)
ρ(t)

− p(t)
r(t)

)
ω(t)− γω

γ+1
γ (t)

(ρ(t)r(t))
1
γ

.

The remainder of the proof is similar to that of Theorem 3.1, so we omit it. Then the theorem is
proved.

Remark 3.4 If p(t) ≡ 0, gi(t) = t, i = 0, 1, 2, · · · , n, then Theorem 3.5 reduces to Theorem
2.3 in [33].

4 Examples

In this section, we will present the applications of our interval oscillation criteria in three examples.
In particular, we will show a real life application problem of our results.

Firstly, we give an application of Theorem 3.1 on damped simple harmonic motion

x′′(t) + βx′(t) + ω2
0x(t) = 0, (4.1)

where β > 0 is the damping constant. Here

γ = 1, r(t) = 1, p(t) = β, q0(t) = ω2
0 , e(t) = 0, g0(t) = t.

Let η0 = η1 = η2 = 1/3, and

ah =
(h− 1)π

ω0
, bh = ah+1 =

hπ

ω0
, bh+1 =

(h + 1)π
ω0

, h = 1, 2, · · · ,

such that (2.1) and (2.2) in Lemma 2.1 are satisfied, and

q0(t) ≥ 0 on [0,
π

ω0
) ∪ [

π

ω0
,
2π

ω0
),

and

(−1)ke(t) ≥ 0, t ∈ [
(k − 1)π

ω0
,

kπ

ω0)
, k = 1, 2.

Setting ρ(t) = eβt and u(t) = sin ω0t, we have P1,1(t) = P1,2 = tω2
0 , P (t) = 2ω0 cos ωt and∫ b1

a1

[
P1,1(t)uγ+1(t)− ρ(t)r(t)

(γ+1)γ+1 P γ+1(t)
]
dt =

∫ π
ω0

0

[
tω2

0 sin2(ω0t)− ω2
0eβt cos2(ω0t))

]
dt

= π2

4 + ω2
0

2β (1− e
βπ
ω0 ),
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and ∫ b2
a2

[
P1,2(t)uγ+1(t)− ρ(t)r(t)

(γ+1)γ+1 P γ+1(t)
]
dt =

∫ 2π
ω0
π

ω0

[
tω2

0 sin2(ω0t)− ω2
0eβt cos2(ω0t))

]
dt

= 3π2

4 + ω2
0

2β (e
βπ
ω0 − e

2βπ
ω0 ).

Then by Theorem 3.1, every solution of Eq. (4.1) is oscillatory if

π2

4
+

ω2
0

2β
(1− e

βπ
ω0 ) > 0,

3π2

4
+

ω2
0

2β
(e

βπ
ω0 − e

2βπ
ω0 ) > 0. (4.2)

In particular, take β = 1
4 , ω0 = π

4 . Then two inequalities in (4.2) hold. Hence every solution of

x′′(t) +
1
4
x′(t) + (

π

4
)2x(t) = 0 (4.3)

is oscillatory. See Figure below for damped simple harmonic motion equation (4.2).

time

Displacement

Figure 1: damped simple harmonic motion

Next, we will give another example to illustrate Theorem 3.1.
Example 4.2 Consider the following second order damped differential equations with mixed

nonlinearities.

( sin 8t + 2
t

(x′(t))γ
)′

+
sin 8t + 2

t2
(x′(t))γ + c0 sin2 8t xγ(t) + 4c1 cos 2t|x(t)| 52 γsgn x(t)

+c2 sin 2t|x(t)|
γ
2 sgn x(t) = − cos 4t, t ≥ 1, (4.4)

where γ is a quotient of odd positive integer, c0, c1 and c2 are positive constants. Here

r(t) =
sin 8t + 2

t
, p(t) =

sin 8t + 2
t2

, q0(t) = c0 sin2 8t, q1(t) = 4c1 cos 2t, q2(t) = c2 sin 2t,
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e(t) = cos 4t, gi(t) = t, i = 0, 1, 2, α1 =
5
2
γ, α2 =

γ

2
.

Let η0 = η1 = η2 = 1/3, and

ah = 2hπ, bh = ah+1 = 2hπ +
π

8
, bh+1 = 2hπ +

π

4
, h = 0, 1, 2, · · · ,

such that (2.1) and (2.2) in Lemma 2.1 are satisfied, and

qi(t) ≥ 0 on [2hπ, 2hπ +
π

8
) ∪ [2hπ +

π

8
, 2hπ +

π

4
), i = 0, 1, 2,

and
(−1)ke(t) ≥ 0, t ∈ [2hπ, 2hπ +

π

8
) ∪ [2hπ +

π

8
, 2hπ +

π

4
), k = 1, 2.

Setting ρ(t) = t and u(t) = sin 8t, we have

P1,1(t) = t
(
c0 sin2 8t + 3 3

√
2c1c2 sin 4t| cos 4t|

)
,

and ∫ b1

a1

[
P1,1(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)

]
dt

=
∫ π

8

0

[
t
(
c0 sin2 8t + 3 3

√
c1c2 sin 8t

)
sinγ+1 8t− sin 8t + 2

(γ + 1)γ+1
((γ + 1)8 cos 8t)γ+1

]
dt

≥
∫ π

8

0

[
2π
(
c0 sin2 8t + 3 3

√
c1c2 sin 8t

)
sinγ+1 8t− 23γ+3(2 cosγ+1 8t + sin 8t cosγ+1 8t)

]
dt

=
π
√

π

4

[
c0γ(γ + 2)

(γ + 3)(γ + 1)
Γ(γ

2 )
Γ(γ+1

2 )
+

3 3
√

c1c2(3γ + 1)
3γ + 4

Γ( 3γ+1
6 )

Γ( 3γ+4
6 )

]
− 8γ

[
γ
√

π

γ + 1
Γ(γ

2 )
Γ(γ+1

2 )
+

1
γ + 2

]
,

where Γ is the Gamma function. Then by Theorem 3.1, every solution of Eq. (4.4) is oscillatory if

π
√

π

4

[
c0γ(γ + 2)

(γ + 3)(γ + 1)
Γ(γ

2 )
Γ(γ+1

2 )
+

3 3
√

c1c2(3γ + 1)
3γ + 4

Γ( 3γ+1
6 )

Γ( 3γ+4
6 )

]
> 8γ

[
γ
√

π

γ + 1
Γ(γ

2 )
Γ(γ+1

2 )
+

1
γ + 2

]
.

Finally, we will give an example to illustrate Theorem 3.5.
Example 4.3 Consider the following second order damped differential equations with mixed

nonlinearities

( sin 2t + 2
t

(x′(t))γ
)′

+
sin 2t + 2

t2
(x′(t))γ + c0 cos2γ 2t xγ(t) + c1 sin 2t|x(t)|2γsgn x(t)

−c2 cosγ+1 2t|x(t)|
γ
2 sgn x(t) = − cos 2t, t ≥ 1, (4.5)

where γ is a quotient of odd positive integer, c0, c1 and c2 are positive constants. Here

r(t) =
sin 2t + 2

t
, p(t) =

sin 2t + 2
t2

, q0(t) = c0 cos2γ 2t, q1(t) = c1 sin 2t,

q2(t) = −c2 cosγ+1 2t, e(t) = cos 2t, α1 = 2γ, α2 =
γ

2
, c0 ≥

c2
2

2
.

Let
a1 = 2hπ, b1 = a2 = 2hπ +

π

4
, b2 = 2hπ +

π

2
, h = 1, 2, · · · ,

such that
qi(t) ≥ 0 on [2hπ, 2hπ +

π

4
) ∪ [2hπ +

π

4
, 2hπ +

π

2
), i = 0, 1, 2,
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and
(−1)ke(t) ≥ 0, t ∈ [2hπ, 2hπ +

π

4
) ∪ [2hπ +

π

4
, 2hπ +

π

2
), k = 1, 2.

Setting ρ(t) = t, λ1 = λ2 = 1/2 and u(t) = sin 2t, we get

Q(t) = t
(
c0 cos2γ 2t +

√
2c1 sin 2t| cos 2t| − c2

2 cos2(γ+1) 2t

2| cos 2t|

)
and ∫ b1

a1

[
Q(t)uγ+1(t)− ρ(t)r(t)

(γ + 1)γ+1 P γ+1(t)
]
dt

=
∫ π

4

0

[
t
(
c0 cos2γ 2t +

√
2c1 sin 2t cos 2t− c2

2

2
cos2γ+1 2t

)
sinγ+1 2t

− sin 2t + 2
(γ + 1)γ+1

((γ + 1)2 cos 2t)γ+1
]
dt

≥
∫ π

4

0

[
2π
((

c0 −
c2
2

2

)
cos2γ+1 2t +

√
2c1 sin 2t cos 2t

)
sinγ+1 2t

−2γ+1(sin 2t cosγ+1 2t + 2 cosγ+1 2t)
]
dt

=
π

2

(
c0 −

c2
2

2

)Γ(γ
2 + 1)Γ(γ + 1)
Γ( 3

2γ + 2)
+
√

2c1

2
Γ( 2γ+5

4 )Γ( 3
4 )

Γ(γ
2 + 2)

− 2γ+1
( 1

γ + 2
+

γ
√

π

γ + 1
Γ(γ

2 )
Γ(γ+1

2 )

)
,

where Γ is the Gamma function. Then by Theorem 3.5, every solution of Eq. (4.5) is oscillatory if

π

2

(
c0 −

c2
2

2

)Γ(γ
2 + 1)Γ(γ + 1)
Γ( 3

2γ + 2)
+
√

2c1

2
Γ( 2γ+5

4 )Γ( 3
4 )

Γ(γ
2 + 2)

> 2γ+1
( 1

γ + 2
+

γ
√

π

γ + 1
Γ(γ

2 )
Γ(γ+1

2 )

)
.

5 Conclusions

In this paper, new interval oscillation criteria for certain classes of second order nonlinear differ-
ential equations with mixed nonlinearities and with delayed or advanced arguments. Our results
do not require that the functions p, qi and e, i = 0, 1, 2, · · · , n are of definite sign, and these
criteria are different from most known ones in the sense that they are based on the information
only on a sequence of subintervals of [t0,∞), rather than on the whole half-line. Moreover, our
results improve and extend the main results of [16–19, 21, 24, 26, 27], for example, if p(t) ≡ 0, then
Theorems 3.1 and 3.2 reduce to Theorems 2.5 and 2.6 in [33]. Furthermore, if we take gi(t) = t,
i = 0, 1, 2, · · · , n, then Theorems 3.1, 3.2 and 3.5 reduce to Theorems 2.1, 2.2 and 2.3 in [33].
When γ = 1, Theorem 3.4 reduces to the main results in [23]. The method can be applied on the
second-order Emden-Fowler neutral differential equation

(r(t)(x′(t) + p(t)x(τ(t)))γ)′ + p(t)(x′(t))γ +
n∑

i=0

qi(t) |x(gi(t))|αi sgn x(gi(t)) = e(t), t ≥ t0.
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