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1 Introduction

Let (Ω,F , P ) be a probability space, X,Y be separable metric spaces and
f : Ω × X → Y be a random operator in the sense that for each fixed x in
X, the mapping f(., x) : ω 7→ f(ω, x) is measurable. The random operator f
is said to be continuous if for each ω in Ω, the mapping f(ω, .) : x 7→ f(ω, x)
is continuous. An X-valued random variable ξ is said to be a random fixed
point of the random operator f : Ω ×X → X if f(ω, ξ(ω)) = ξ(ω) a.s. and
an X-valued random variable ξ is said to be a random coincidence point of
the random operators f, g : Ω ×X → X if f(ω, ξ(ω)) = g(ω, ξ(ω)) a.s.

The theory of random fixed points and random coincidence points is an
important topic of the stochastic analysis and has been investigated by various
authors (see, e.g. [2], [3], [4], [5], [14], [15], [16], [17], [18]).

In this paper, we are concerned with mapping Φ : LX
0 (Ω) → LY

0 (Ω).
Since a random operator f can be viewed as an action which transforms
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each deterministic input x in X into a random output f(x) in LY
0 (ω) while

Φ : LX
0 (Ω) → LY

0 (Ω) can be viewed as an action which transforms each ran-
dom input u in LX

0 (Ω) into a random output Φu, we call Φ a completely ran-
dom operator. In the Section 2, we present some properties of completely ran-
dom operators. Section 3 deals with the notion of random coincidence points
of completely random operators and gives some conditions ensuring the ex-
istence of a random coincidence point of expansive type completely random
operators. It should be noted that the existence of a random coincidence point
of completely random operators does not follow from the existence of corre-
sponding deterministic coincidence point theorem as in the case of the random
operator. In the Section 4, some applications to random fixed point theorems
and random equations are presented.

2 Some properties of completely random operators

Let (Ω,F , P ) be a complete probability space and X be a separable Banach
space. A mapping ξ : Ω → X is called an X-valued random variable if ξ is
(F ,B(X))-measurable, where B(X) denotes the Borel σ-algebra of X. The set
of all (equivalent classes) X-valued random variables is denoted by LX

0 (Ω) and
it is equipped with the topology of convergence in probability. For each p > 0,
the set of X-valued random variables ξ such that E‖ξ‖p < ∞ is denoted by
LX
p (Ω).

At first, recall that (see, e.g. [22])

Definition 1 Let X,Y be two separable Banach spaces.

1. A mapping f : Ω × X → Y is said to be a random operator if for each
fixed x in X, the mapping ω 7→ f(ω, x) is measurable.

2. The random operator f : Ω ×X → Y is said to be continuous if for each
ω in Ω the mapping x 7→ f(ω, x) is continuous.

3. Let f, g : Ω × X → Y be two random operators. The random operator
g is said to be a modification of f if for each x in X, we have f(ω, x) =
g(ω, x) a.s.
Noting that the exceptional set can depend on x.

The following is the notion of the completely random operator.

Definition 2 Let X,Y be two separable Banach spaces.

1. A mapping Φ : LX
0 (Ω)→ LY

0 (Ω) is called a completely random operator.
2. The completely random operator Φ is said to be continuous if for each

sequence (un) in LX
0 (Ω) such that limun = u a.s., we have limΦun = Φu

a.s.
3. The completely random operator Φ is said to be continuous in probability

if for each sequence (un) in LX
0 (Ω) such that limun = u in probability, we

have limΦun = Φu in probability.
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4. The completely random operator Φ is said to be an extension of a random
operator f : Ω ×X → Y if for each x in X

Φx(ω) = f(ω, x) a.s.

where for each x in X, x denotes the random variable u in LX
0 (Ω) given

by u(ω) = x a.s.

Theorem 1 Let f : Ω×X → Y be a random operator admitting a continuous
modification. Then, there exists a continuous completely random operator Φ :
LX
0 (Ω)→ LY

0 (Ω) such that Φ is an extension of f .

Proof Let g be a continuous modification of f . Define Φ : LX
0 (Ω) → LY

0 (Ω)
by

Φu(ω) = g(ω, u(ω)) (1)

for each random variable u in LX
0 (Ω). This definition is well-defined. Indeed,

by [7, Theorem 6.1], g : Ω ×X → Y is measurable, hence ω 7→ g(ω, u(ω)) is
measurable. Next, we have to show that if h is another continuous modification
of f then

g(ω, u(ω)) = h(ω, u(ω)) a.s.

By the separability of X, there exists a sequence (xn) dense in X. For each
xn, there exists a set Ωn of probability one such that g(ω, xn) = h(ω, xn) for
all ω in Ωn. Let Ω0 = ∩∞n=1Ωn. Clearly, Ω0 has probability one and we have

g(ω, xn) = h(ω, xn) ∀ω ∈ Ω0 ∀n. (2)

Fixed ω in Ω0. By the density of (xn) in X, there exists a subsequence (xnk
)

converging to u(ω). By the continuity of the mapping x 7→ g(ω, x) and the
mapping x 7→ h(ω, x), we have

lim
k→∞

g(ω, xnk
) = g (ω, u(ω)) , lim

k→∞
h(ω, xnk

) = h (ω, u(ω)) . (3)

By (2) and (3), we conclude that h(ω, ξ(ω)) = g(ω, ξ(ω)) for all ω in Ω0 as
claimed.

From (1), it is easy to show that the completely random operator Φ is
continuous and is an extension of f .

Proposition 1 Let Φ : LX
0 (Ω) → LY

0 (Ω) be a completely random operator.
Then, the continuity of Φ implies the continuity in probability of Φ.

Proof Let (un) be a sequence in LX
0 (Ω) such that p-limun = u. We have

to show that p-limΦun = Φu. On the contrary, suppose that Φun does not
converge to Φu in probability. Then, there exist t > 0, ε > 0 and a subsequence
(unk

) such that for all unk

P (‖Φunk
− Φu‖ > t) ≥ ε.
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Since p-limunk
= u, there is a subsequence (u′nk

) converging a.s. to u. By the

continuity of Φ,
(
Φu′nk

)
converges a.s. to Φu, so

(
Φu′nk

)
converges to Φu in

probability. Hence,

0 = lim
k
P (‖Φu′nk

− Φu‖ > t) ≥ ε.

We get a contradiction.

3 Random coincidence points of completely random operators

Let f, g : Ω × X → X be random operators. Recall that (see, e.g. [1], [3],
[18]), an X-valued random variable ξ is said to be a random fixed point of the
random operator f if

f(ω, ξ(ω)) = ξ(ω) a.s.

An X-valued random variable u∗ is said to be a random coincidence point
of two random operators f, g if

f(ω, u∗(ω)) = g(ω, u∗(ω)) a.s.

Assume that f, g are continuous. Then, by Theorem 1 the mappings Φ, Ψ :
LX
0 (Ω)→ LX

0 (Ω) defined respectively by

Φu(ω) = f(ω, u(ω))
Ψu(ω) = g(ω, u(ω))

are completely random operators extending f and g, respectively. For each
random fixed point ξ of f , we get

Φξ(ω) = ξ(ω) a.s.

and for each random coincidence point u∗ of two random operators f, g, we
have

Φu∗(ω) = Ψu∗(ω) a.s.

This lead us to the following definition.

Definition 3 1. Let Φ : LX
0 (Ω)→ LX

0 (Ω) be a completely random operator.
An X-valued random variable ξ in LX

0 (Ω) is called a random fixed point
of Φ if

Φξ = ξ.

2. Let Φ1, Φ2, ..., Φn : LX
0 (Ω)→ LX

0 (Ω) be completely random operators. An
X-valued random variable u∗ in LX

0 (Ω) is called a random coincidence
point of Φ1, Φ2, ..., Φn if

Φ1u
∗ = Φ2u

∗ = ... = Φnu
∗. (4)

In this section, we present some conditions ensuring the existence of a
random coincidence point of completely random operators.
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Theorem 2 Let Φ, Ψ,Θ : LX
0 (Ω)→ LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ, Ψ be surjective and f : [0,∞) → [0,∞) be a
mapping such that for each t > 0,

h(t) = inf
s≥t

f(s)

s
> 0. (5)

Assume that for any random variables u, v in LX
0 (Ω) and t > 0, we have

P (‖Φu− Ψv‖ > t) ≥ P (‖Θu−Θv‖+ f (‖Θu−Θv‖) > t) . (6)

Then, Φ,Θ have a random coincidence point and Ψ,Θ have a random coinci-
dence point if there exist random variables u0, v0 in LX

0 (Ω) and p > 0 such
that Φv0 = Θu0 and

M = E‖Θv0 −Θu0‖p <∞. (7)

Proof Suppose that E‖Θv0−Θu0‖p <∞ for random variables u0, v0 in LX
0 (Ω)

such that Φv0 = Θu0 and p > 0. Because Φ, Ψ are surjective, there exists a
random variable u1 in LX

0 (Ω) such that Φu1 = Θu0, u1 = v0. Again, there
exists a random variable u2 in LX

0 (Ω) such that Ψu2 = Θu1. By induction,
there exists a sequence (un) in LX

0 (Ω) such that

Φu1 = Θu0, Ψu2 = Θu1, ..., Φu2n+1 = Θu2n, Ψu2n+2 = Θu2n+1 n = 1, 2, ...
(8)

We will show that (ξn) given by ξn = Θun−1 (n = 1, 2, ...) in (8) is a
Cauchy sequence in LX

0 (Ω). Define the function g(t), t > 0 by

g(t) = 1 +
f(t)

t
.

So, we have

f(t) = (g(t)− 1) t.

Since f(t) > 0 ∀t > 0, we get g(t) > 1 ∀t > 0. For any random variables
u, v in LX

0 (Ω), we have

P (‖Φu− Ψv‖ > t) ≥ P (‖Θu−Θv‖+ f (‖Θu−Θv‖) > t).

Equivalently,

P (‖Φu− Ψv‖ > t) ≥ P (g (‖Θu−Θv‖) ‖Θu−Θv‖ > t). (9)

Fixed t > 0. For each s ≥ t > 0, we have

g(s) = 1 +
f(s)

s
≥ 1 + h(t) = q(t).

Since g(t) > 1, we get

{g(‖Θu−Θv‖)‖Θu−Θv‖ > t} ⊃ {‖Θu−Θv‖ > t}.
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Hence,

P (‖Φu− Ψv‖ > q(t)t) ≥ P (g(Θ‖u−Θv‖)‖Θu−Θv‖ > q(t)t)
≥ P (g(‖Θu−Θv‖)‖Θu−Θv‖ > q(t)t, ‖Θu−Θv‖ > t)
≥ P (q(t)‖Θu−Θv‖ > q(t)t, ‖Θu−Θv‖ > t)
= P (‖Θu−Θv‖ > t)

Put q = q(t), noting that q > 1 since h(t) > 0.
From this, for each n, we obtain

P (‖ξ2n+1 − ξ2n‖ > qt) = P (‖Φu2n+1 − Ψu2n‖ > qt)
≥ P (‖Θu2n+1 −Θu2n‖ > t)
= P (‖ξ2n+2 − ξ2n+1‖ > t),

and
P (‖ξ2n − ξ2n−1‖ > qt) = P (‖Ψu2n − Φu2n−1‖ > qt)

≥ P (‖Θu2n −Θu2n−1‖ > t)
= P (‖ξ2n+1 − ξ2n‖ > t).

By induction and Chebyshev inequality, we get

P (‖ξn+1 − ξn‖ > t) ≤ P (‖ξn − ξn−1‖ > qt)
≤ ...
≤ P (‖ξ2 − ξ1‖ > qn−1t)
= P (‖Θu1 −Θu0‖ > qn−1t)
= P (‖Θv0 −Θu0‖ > qn−1t)
≤ E‖Θv0 −Θu0‖p 1

(qn−1)ptp = M 1
(qn−1)ptp .

Let r be a number in (1, q). Then, r > 1 and (r− 1)( 1
r + 1

r2 + ...+ 1
rm ) + 1

rm =
1 ∀m ≥ 1.
Thus, for any t > 0, n ≥ 2 and m in N , we have

P (‖ξn+m − ξn‖ > t) ≤ P (‖ξn+m − ξn‖ > (1− 1
rm )t)

≤ P (‖ξn+m − ξn+m−1‖ > t(r − 1)/rm) + ...+ P (‖ξn+1 − ξn‖ > t(r − 1)/r)

≤ M
[(r−1)t]p

[ (rm)p

(qn+m−2)p + ...+ rp

(qn−1)p

]
= M

[(r−1)t]p
rp

(qn−1)p

[
( r
q )p(m−1) + ...+ ( r

q )p + 1
]

= M
[(r−1)t]p

rp

(qn−1)p
1−( r

q )
(m−1)p

1−( r
q )

p

< Mrp

[(r−1)t]p[1−( r
q )

p]
1

(qp)n−1 n ≥ 2

which tends to 0 as n → ∞. It implies that (ξn) is a Cauchy sequence in
LX
0 (Ω). Hence, there exists ξ in LX

0 (Ω) such that p-lim ξn = ξ. Because Φ is
surjective, there exists u∗ in LX

0 (Ω) such that Φu∗ = ξ. So, we have

P (‖ξ − ξ2n‖ > qt) = P (‖Φu∗ − ξ2n‖ > qt)
= P (‖Φu∗ − Ψu2n‖ > qt)
≥ P (‖Θu2n −Θu∗‖+ f (‖Θu2n −Θu∗‖) > qt)
≥ P (‖Θu2n −Θu∗‖ > t)
= P (‖ξ2n+1 −Θu∗‖ > t) .
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Let n → ∞, we receive P (‖ξ −Θu∗‖ > t) = 0 implying Θu∗ = ξ a.s. Then,
Φ,Θ have a random coincidence point u∗.

By the same argument, Ψ,Θ have a random coincidence point v∗.

Corollary 1 Let Φ,Θ : LX
0 (Ω) → LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ be surjective and f : [0,∞)→ [0,∞) be a mapping
such that for each t > 0,

h(t) = inf
s≥t

f(s)

s
> 0. (10)

Assume that for each pair u, v in LX
0 (Ω) and t > 0, we have

P (‖Φu− Φv‖ > t) ≥ P (‖Θu−Θv‖+ f (‖Θu−Θv‖) > t) . (11)

Then Φ,Θ have a random coincidence point if and only if there exist ran-
dom variables u0, v0 in LX

0 (Ω) and p > 0 such that Φv0 = Θu0

M = E‖Θv0 −Θu0‖p <∞. (12)

Proof Put Ψv = Φv, then all the conditions in the Theorem 2 are satisfied.

Corollary 2 Let Φ,Θ be completely random operators satisfying the condi-
tions stated in the Corollary 1. Assume that there exists a number q > 1 such
that

P (‖Φu− Φv‖ > t) ≥ P (‖Θu−Θv‖ > t/q) (13)

for all random variables u, v in LX
0 (Ω) and t > 0. Then Φ,Θ have a random

coincidence point if and only if there exist random variables u0, v0 in LX
0 (Ω)

and p > 0 such that Φv0 = Θu0 and (12) holds.

Proof Consider the function f(t) = (q − 1)t and h(t) = q − 1 > 0. Then f(t)
satisfies the conditions stated in the Corollary 1.

Remark. The following simple example shows that the random coinci-
dence point of Φ and Θ in the Corollary 1 needs not be unique.

Example 1 Define two completely random operators Φ,Θ : LR
0 (Ω) → LR

0 (Ω)
by

Φu = q|u|+ η,Θu = |u|

where η is a positive random variable, q > 1.

It is easy to check that Φ,Θ satisfy all assumptions of Corollary 1 with
f(t) = (q − 1)t. On the other hand, Φ and Θ have two random coincidence
points u∗1 = 1

q−1η, u
∗
2 = − 1

q−1η.
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Theorem 3 Let Φ, Ψ,Θ : LX
0 (Ω)→ LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ, Ψ be surjective and f : [0,∞)→ [0,∞) be a con-
tinuous, increasing function such that f(0) = 0, limt→∞ f(t) = ∞ and q > 1.
Assume that for any random variables u, v in LX

0 (Ω) and t > 0, we have

P (‖Φu− Ψv‖ > f(t)) ≥ P (‖Θu−Θv‖ > f(t/q)) . (14)

If there exist random variables u0, v0 in LX
0 (Ω) and p > 0 such that Φv0 = Θu0

and
M = sup

t>0
tpP (‖Θv0 −Θu0‖ > f(t)) <∞. (15)

Then,

1. Assume that there exists a number c > 1/q such that

∞∑
n=1

f(cn) <∞. (16)

Then, the condition (15) is sufficient for Φ,Θ have a random coincidence
point and Ψ,Θ have a random coincidence point.

2. Assume that for each t, s > 0

f(t+ s) ≥ f(t) + f(s). (17)

Then, the condition (15) is also sufficient for Φ,Θ have a random coinci-
dence point and Ψ,Θ have a random coincidence point.

Proof Let g = f−1 be the inverse function of f . Then, g : [0,∞) → [0,∞) is
increasing with g(0) = 0, limt→∞ g(t) = ∞. The condition (14) is equivalent
to the following

P (g (‖Φu− Ψv‖) > t) ≥ P (g(‖Θu−Θv‖) > t/q) . (18)

Let u0 be a random variable in LX
0 (Ω) such that (15) holds. Because Φ, Ψ

are surjective, there exists a random variable u1 in LX
0 (Ω) such that Φu1 =

Θu0, u1 = v0. Again, there exists a random variable u2 in LX
0 (Ω) such that

Ψu2 = Θu1. By induction, there exists a sequence (un) in LX
0 (Ω) by

Φu1 = Θu0, Ψu2 = Θu1, ..., Φu2n+1 = Θu2n, Ψu2n+2 = Θu2n+1 n = 1, 2, ...
(19)

Put ξn = Θun−1, n = 1, 2, .... From (18), for each n, we obtain

P (g(‖ξ2n+1 − ξ2n‖) > qt) = P (g(‖Φu2n+1 − Ψu2n‖) > qt)
≥ P (g(‖Θu2n+1 −Θu2n‖) > t)
= P (g(‖ξ2n+2 − ξ2n+1‖) > t),

and
P (g(‖ξ2n − ξ2n−1‖) > qt) = P (g(‖Ψu2n − Φu2n−1‖) > qt)

≥ P (g(‖Θu2n −Θu2n−1‖) > t)
= P (g(‖ξ2n+1 − ξ2n‖) > t).
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By induction, we obtain for each n

P (g (‖ξn+1 − ξn‖) > t) ≤ P
(
g(‖ξ2 − ξ1‖) > qn−1t

)
= P

(
g(‖Θu1 −Θu0‖) > qn−1t

)
.

= P
(
g(‖Θv0 −Θu0‖) > qn−1t

)
.

Then,
P (g (‖ξn+1 − ξn‖) > t) ≤ P

(
g(‖Θv0 −Θu0‖) > qn−1t

)
. (20)

1. From (15), we have

P (g(‖Φu0 −Θu0‖) > s) = P (‖Φu0 −Θu0‖ > f(s)) ≤ M

sp
. (21)

From (20) and (21), we get

P (g (‖ξn+1 − ξn‖) > t) ≤ M

q(n−1)ptp
. (22)

Taking t = cn, from (22), we get

P (g (‖ξn+1 − ξn‖) > cn) ≤M 1

q(n−1)pcnp
(23)

i.e.

P (‖ξn+1 − ξn‖ > f(cn)) ≤M 1

q(n−1)pcnp
. (24)

Since

∞∑
n=1

P (‖ξn+1 − ξn‖ > f(cn)) ≤M
∞∑

n=1

1

q(n−1)pcnp
<∞,

by the Borel-Cantelli Lemma, there is a set D with probability one such
that for each ω in D there is N(ω)

‖ξn+1(ω)− ξn(ω)‖ ≤ f(cn) ∀n > N(ω).

By (16), we conclude that
∑∞

n=1 ‖ξn+1(ω) − ξn(ω)‖ < ∞ for all ω in D,
which implies that there exists lim ξn(ω) for all ω in D. Consequently, the
sequence (ξn) converges a.s. to ξ in LX

0 (Ω).
Because Φ is surjective, there exists u∗ in LX

0 (Ω) such that Φu∗ = ξ. So,
we have

P (‖ξ − ξ2n‖ > f(qt)) = P (‖ξ2n − Φu∗‖ > f(qt))
= P (‖Ψu2n − Φu∗‖ > f(qt))
≥ P (‖Θu2n −Θu∗‖ > f(t))
≥ P (‖ξ2n+1 −Θu∗‖ > f(t)) .

Let n → ∞, we receive P (‖ξ −Θu∗‖ > f(t)) = 0 for all t > 0 implying
Θu∗ = ξ a.s. Then, Φ,Θ have a random coincidence point u∗.
By the same argument, Ψ,Θ have a random coincidence point v∗.
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2. It is easy to see that for each t, s > 0

g(s+ t) ≤ g(t) + g(s).

Hence, for a ≥
∑m

i=1 si, we have

P (g(‖ξn+m − ξn‖) > a) ≤ P (g (
∑m

i=1 ‖ξn+i − ξn+i−1‖) > a)
≤ P (

∑m
i=1 g(‖ξn+i − ξn+i−1‖) >

∑m
i=1 si)

≤
∑m

i=1 P (g(‖ξn+i − ξn+i−1‖) > si) .

From (15), we have

P (g (‖ξn+i − ξn+i−1‖) > si) ≤
Mq(n+i−1)p

spi
. (25)

Put r be a number in (1, q) and si = s(r − 1)/ri. An argument similar to
that in the foward proof yields

lim
n→∞

P (g(‖ξn+m − ξn‖) > s) = 0 ∀s > 0,

so
lim
n→∞

P (‖ξn+m − ξn‖ > f(s)) = 0 ∀s > 0.

Thus, we obtain

lim
n→∞

P (‖ξn+m − ξn‖ > t) = 0 ∀t > 0.

Consequently, the sequence (ξn) converges in probability to ξ in LX
0 (Ω).

Because Φ is surjective, there exists u∗ in LX
0 (Ω) such that Φu∗ = ξ. So,

we have

P (‖ξ − ξ2n‖ > f(qt)) = P (‖ξ2n − Φu∗‖ > f(qt))
= P (‖Ψu2n − Φu∗‖ > f(qt))
≥ P (‖Θu2n −Θu∗‖ > f(t))
≥ P (‖ξ2n+1 −Θu∗‖ > f(t)) .

Let n → ∞, we receive P (‖ξ −Θu∗‖ > f(t)) = 0 for all t > 0 implying
Θu∗ = ξ a.s. Then, Φ,Θ have a random coincidence point u∗.
By the same argument, Ψ,Θ have a random coincidence point v∗.

Corollary 3 Let Φ,Θ : LX
0 (Ω) → LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ be surjective and f : [0,∞) → [0,∞) be a con-
tinuous, increasing function such that f(0) = 0, limt→∞ f(t) = ∞ and q > 1.
Assume that for any u, v in LX

0 (Ω) and t > 0, we have

P (‖Φu− Φv‖ > f(t)) ≥ P (‖Θu−Θv‖ > f(t/q)) . (26)

If there exist random variables u0, v0 in LX
0 (Ω) and p > 0 such that Φv0 = Θu0

and
M = sup

t>0
tpP (‖Θv0 −Θu0‖ > f(t)) <∞. (27)

Then,
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1. Assume that there exists a number c > 1/q such that

∞∑
n=1

f(cn) <∞. (28)

Then, the condition (27) is sufficient for Φ,Θ to have a random coincidence
point.

2. Assume that for each t, s > 0

f(t+ s) ≥ f(t) + f(s). (29)

Then, the condition (27) is also sufficient for Φ,Θ to have a random coin-
cidence point.

Proof It is easy to receive the corollary when we take Ψv = Φv in Theorem 3.

4 Applications to random fixed point theorems and random
equations

In this section, we present some applications to random fixed point theorems
and random equations.

Theorem 4 Let Φ : LX
0 (Ω)→ LX

0 (Ω) be surjective, continuous in probability
completely random operator and f : [0,∞)→ [0,∞) be a continuous, increas-
ing function such that f(0) = 0, limt→∞ f(t) =∞ and q > 1. Assume that for
each pair u, v in LX

0 (Ω)

P (‖Φu− Φv‖ > f(t)) ≥ P (‖u− v‖ > f(t/q)) . (30)

If there exist random variables v0 in LX
0 (Ω) and p > 0 such that

M = sup
t>0

tpP (‖Φv0 − v0‖ > f(t)) <∞. (31)

Then

1. Assume that there exists a number c > 1/q such that

∞∑
n=1

f(cn) <∞. (32)

Then, the condition (31) is sufficient for Φ to have a unique random fixed
point.

2. Assume that for each t, s > 0

f(t+ s) ≥ f(t) + f(s). (33)

Then, the condition (31) is also sufficient for Φ to have a unique random
fixed point.
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Proof Consider the completely random operator Θ given by Θu = u. By Corol-
lary 3, Φ and Θ have a random coincidence point ξ which is exactly the random
fixed point of Φ.

Let ξ, η be two random fixed points of Φ. Then, for each t > 0, we have

P (‖ξ − η‖ > f(qt)) = P (‖Φξ − Φη‖ > f(qt)) ≥ P (‖ξ − η‖ > f(t)) .

By induction, it follows that

P (‖ξ − η‖ > f(t)) ≤ P (‖ξ − η‖ > f(qnt)) ∀n.

Since limn→∞ f(qnt) = +∞, we conclude that P (‖ξ − η‖ > f(qnt)) = 0 for
each t > 0. Hence, g(‖ξ − η‖) = 0 a.s., with g is the inverse function of f .
So, we have ξ = η a.s. as claimed.

Theorem 5 Let Φ,Θ : LX
0 (Ω) → LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ be surjective and f : [0,∞)→ [0,∞) be a mapping
such that for each t > 0,

h(t) = inf
s≥t

f(s)

s
> 0. (34)

Assume that for each pair u, v in LX
0 (Ω) and t > 0, we have

P (‖Φu− Φv‖ > t) ≥ P (‖Θu−Θv‖+ f (‖Θu−Θv‖) > t) . (35)

If Φ,Θ commute i.e. ΦΘu = ΘΦu for any random variable u in LX
0 (Ω) then

Φ and Ψ have a unique common random fixed point if there exist random
variables u0, v0 in LX

0 (Ω) and p > 0 such that Φv0 = Θu0 and

M = E‖Θv0 −Θu0‖p <∞. (36)

Proof Suppose that (36) holds. By Corollary 1, there exists u∗ such that Φu∗ =
Θu∗ = ξ. For t > 0, we have

P (‖Φξ − ξ‖ > qt) = P (‖Φξ − Φu∗‖ > qt) ≥ P (‖Θξ −Θu∗‖ > t)
= P (‖ΘΦu∗ − ξ‖ > t) = P (‖ΦΘu∗ − ξ‖ > t)
= P (‖Φξ − ξ‖ > t).

By induction, it follows that P (‖Φξ − ξ‖ > t) ≤ P (‖Φξ − ξ‖ > qnt) for any
n ∈ N . Let n→∞, we have P (‖Φξ − ξ‖ > t) = 0 for any t > 0. Thus, Φξ = ξ
i.e. ξ is a random fixed point of Φ. We have Θξ = ΘΦu∗ = ΦΘu∗ = Φξ = ξ.
So ξ is also a random fixed point of Θ.

Let ξ1 and ξ2 be two common random fixed points of Φ and Θ. For each
t > 0, we have

P (‖ξ1 − ξ2‖ > qnt) = P (‖Φξ1 − Φξ2‖ > qnt) ≥ P (‖Θξ1 −Θξ2‖ > qn−1t)
= P (‖ξ1 − ξ2‖ > qn−1t) ≥ ... ≥ P (‖ξ1 − ξ2‖ > t).

Let n→∞, we have P (‖ξ1 − ξ2‖ > t) = 0 for all t > 0. Hence, ξ1 = ξ2.
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Corollary 4 Let Φ : LX
0 (Ω) → LX

0 (Ω) be a surjective, continuous in prob-
ability and probabilistic q-expansive completely random operator in the sense
that there exists a number q > 1 such that

P (‖Φu− Φv‖ > t) ≥ P (‖u− v‖ > t/q)

for all random variables u, v in LX
0 (Ω) and t > 0. Then, Φ has a unique

random fixed point if there exist a random variable v0 in LX
0 (Ω) and p > 0

such that

E ‖Φv0 − v0‖p <∞.

Proof Consider Θ : LX
0 (Ω) → LX

0 (Ω) given by Θu = u, the function f(t) =
(1− q)t and h(t) = 1− q > 0. Then Φ,Θ and f(t) satisfy the conditions stated
in the Theorem 5 and Φ,Θ commute. Thus, Φ and Θ have a common random
fixed point ξ i.e. Φ has a random fixed point ξ.

Theorem 6 Let Φ,Θ : LX
0 (Ω) → LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ be surjective and

P (‖Φu− Φv‖ > f(t)) ≥ P (‖Θu−Θv‖ > f(t/q)) . (37)

for all u, v in LX
0 (Ω), t > 0 and f : [0,∞)→ [0,∞) be a continuous, increasing

function such that f(0) = 0, limt→∞ f(t) = ∞ satisfying either (32) or (33)
and q > 1. Consider random equation of the form

Φu− λΘu = η (38)

where λ is a real number and η is a random variable in LX
0 (Ω).

Assume that

0 < |λ| ≤ inf
t>0

f
(

q
q′ t
)

f (t)
(39)

where q′ > 1. Then the equation (38) has a unique random solution if there
exist a random variable v0 in LX

0 (Ω) and a number p > 0 such that

M = sup
t>0

tpP (‖Φv0 − λΘv0 − η‖ > |λ|f (t)) <∞. (40)

Proof Suppose that the condition (40) holds. Define a completely random
operator Ψ by

Ψu =
Φu− η
λ

.

From (40) it follows that

M = sup
t>0

tpP (‖Ψv0 −Θu0‖ > f(t)) <∞. (41)
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Let g = f−1 be the inverse function of f . Then, g : [0,∞)→ [0,∞) is contin-
uous, increasing with g(0) = 0, limt→∞ g(t) =∞. For each t > 0, there exists
t′ so that f(t′) = |λ|f(t) i.e. t′ = g(|λ|f(t)). So, we have

P (‖Ψu− Ψv‖ > f (t)) = P (‖Φu− Φv‖ > |λ|f (t))
= P (‖Φu− Φv‖ > f (t′))
≥ P (‖Θu−Θv‖ > f (t′/q))

= P
(
‖Θu−Θv‖ > f

(
t
q′

q′t′

qt

))
.

From (39), we receive |λ|f (t) ≤ f
(

q
q′ t
)

. Then, we deduce g (|λ|f (t)) ≤ q
q′ t.

So, t′ ≤ q
q′ t and q′t′

qt ≤ 1. Hence,

P

(
‖Θu−Θv‖ > f

(
t

q′
q′t′

qt

))
≥ P (‖Θu−Θv‖ > f (t/q′))

which implies

P (‖Ψu− Ψv‖ > f (t)) ≥ P (‖Θu−Θv‖ > f (t/q′)) .

Consequently, Θ and Ψ satisfy the conditions stated in the Corollary 3. Hence,
Θ and Ψ has a random coincidence point ξ i.e. the equation (38) has a random
solution ξ.

Corollary 5 Let Φ : LX
0 (Ω) → LX

0 (Ω) be a surjective, continuous in proba-
bility completely random operator satisfying the following condition

P (‖Φu− Φv‖ > f(t)) ≥ P (‖u− v‖ > f(t/q)) . (42)

for all u, v in LX
0 (Ω), t > 0 , where f : [0,∞) → [0,∞) is a continuous,

increasing function such that f(0) = 0, limt→∞ f(t) = ∞ satisfying either
(32) or (33) and q > 1. Consider random equation of the form

Φu− λu = η (43)

where λ is a real number and η is a random variable in LX
0 (Ω).

Assume that

0 < |λ| ≤ inf
t>0

f
(

q
q′ t
)

f (t)
(44)

where q′ > 1. Then the equation (43) has a unique random solution if and only
if there exist a random variable v0 in LX

0 (Ω) and a number p > 0 such that

M = sup
t>0

tpP (‖Φv0 − λv0 − η‖ > |λ|f (t)) <∞. (45)

Proof Applying the Theorem 6 for the completely random operator Θ given
by Θu = u.
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Corollary 6 Let Φ,Θ : LX
0 (Ω) → LX

0 (Ω) be continuous in probability com-
pletely random operators, Φ be surjective satisfying the following condition

P (‖Φu− Φv‖ > t) ≥ P (‖Θu−Θv‖ > t/q) (46)

for all u, v in LX
0 (Ω) and a number q > 1. Consider the random equation

Φu− λΘu = η (47)

where λ is a real number and η is a random variable in LX
p (Ω), p > 0.

Assume that 0 < |λ| < q. Then, the random equation (47) has a solution
if there exists a random variable v0 in LX

0 (Ω) such that

E‖Φv0 − λΘv0‖p <∞. (48)

Proof Suppose that there exists a random variable u0 in LX
0 (Ω) such that

(48) holds. So, Φ and Θ satisfy (42) where f(t) = t. Take |λ| < s < q, then
q′ = q/s > 1 and

0 < |λ| < s =
q

q′
=
f
(

q
q′ t
)

f (t)
.

Moreover, for each t > 0

tpP (‖Φv0 − λΘv0 − η‖ > |λ|t) ≤
E‖Φv0 − λΘv0 − η‖p

|λ|p
<∞ (49)

since

E(‖Φu0 − λΘu0 − η‖p) ≤ CpE(‖Φu0 − λΘu0‖p) + CpE‖η‖p <∞

where Cp is a constant. Hence, the condition (40) is satisfied. By Theorem 6,
we conclude that the equation (47) has a random solution.

Taking the completely random operator Θ given by Θu = u, we obtain

Corollary 7 Let Φ : LX
0 (Ω) → LX

0 (Ω) be a surjective, continuous in proba-
bility completely random operator satisfying the following condition

P (‖Φu− Φv‖ > t) ≥ P (‖u− v‖ > t/q) (50)

for all u, v in LX
0 (Ω) and a number q > 1. Consider the random equation

Φu− λu = η (51)

where λ is a real number satisfying 0 < |λ| < q and η is a random vari-
able in LX

p (Ω), p > 0. Then, the random equation (51) has a unique random

solution if there exists a random variable v0 in LX
0 (Ω) such that

E‖Φv0 − λv0‖p <∞. (52)
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