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Abstract. The energy of a simple graph G, denoted by E(G), is defined as the sum

of the absolute values of eigenvalues of G. In this paper, we show that, among all

subdivisions of graphs with n vertices and chromatic number k, the subdivision of the

Turán graph T (n, k) has the maximal energy.

1. Introduction

Let G be a simple graph with vertex set {v1, v2, . . . , vn} and edge set {e1, e2, . . . , em}.

Suppose S(G) is the subdivision of G, which is obtained from G by replacing each edge

with a path with three vertices (i.e. inserting a new vertex to each edge of G). For the

graph G in Figure 1(a), the subdivision S(G) of G is illustrated in Figure 1(b). Hence

S(G) is a bipartite graph with m + n vertices and 2m edges. Let ∆(G) be the diagonal

matrix of G whose i-th diagonal entry is the degree of the vertex vi (1 ≤ i ≤ n). The

adjacency matrix A(G) of G is the square matrix A(G) = (aij) of order n, where aij = 1 if

vi and vj are adjacent and 0 otherwise. Let Q(G) = ∆(G)+A(G) be the signless Laplacian

matrix of G. The eigenvalues of Q(G) are called the signless Laplacian eigenvalues of G.

Let Ka1,a2,...,ak
be the complete multipartite graph with n =

∑k
i=1 ai vertices, whose vertex

set is partitioned into k parts: V1, V2, . . . , Vk, of cardinalities a1, a2, . . . , ak, and an edge

joins two vertices if and only if they belong to different parts. Let n and k be two positive

integers satisfying n = rk + s and r > 0, 0 6 s < k. The complete multipartite graph

Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

is called the Turán graph, denoted by T (n, k).

Gutman [8] define the energy of a graph G with n vertices, denoted by E(G), as

E(G) =

n∑

i=1

|λi(G)|,

where λi(G)’s are the eigenvalues of the adjacency matrix of G.
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Figure 1. (a). A graph G. (b). The subdivision S(G) of G.

Historically chemists used the model in which the experimental heats of formation of

conjugated hydrocarbons are closely related to the total π-electron energy. Today such a

model is over simplistic, but nevertheless HMO has some value as it points to that part

of the experimental heats of formation of conjugated hydrocarbons that can be viewed as

due to molecular connectvtiz (molecular topology). The calculation of the total π-electron

energy in a conjugated hydrocarbon can be reduced (within the framework of the HMO

approximation [10]) to E(G) of the corresponding graph G. The energy of graphs has

been studied extensively (see for example [1, 7, 11, 12, 13, 14, 16, 19]).

In general, let Xk be any square matrix of order k and let Ik be the unit matrix of order

k. The characteristic polynomial of Xk is defined as

σ(Xk, x) = det[xIk − Xk],

where det[ ] is used to denote the determinant of a square matrix.

It well know [3] that if G is a bipartite with n vertices then the characteristic polynomial

σ(G, x) of G has the following form:

(1.1) σ(G, x) = det(xIn − A(G)) =

[n/2]
∑

t=0

(−1)tb(G, t)xn−2t,

where b(G, 0) = 1 and b(G, t) ≥ 0 for all t = 1, 2, . . . , [n/2]. This expression for σ(G, x)

induces a quasi-order relation (i.e. reflexive and transitive relation) on the set of all

bipartite graphs with n vertices: If G1 and G2 are bipartite graphs with characteristic

polynomials in the form (1.1)

G1 � G2 ⇐⇒ b(G1, t) ≥ b(G2, t) for all t = 0, 1, . . . , [n/2].

If G1 � G2 and there exists k such that b(G1, k) > b(G2, k), then we write G1 ≻ G2.

Gutman [5] introduced this quasi-order relation in order to compare the energies of a

pair of graphs. It is well known that if G is a bipartite graph, then the energy of G can
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be expressed by means of the Coulson integral formula [6, 10]

(1.2) E(G) =
2

π

∫ ∞

0

x−2 ln[1 +

[n/2]
∑

t=1

b(G, t)x2t]dx,

which implies: G1 � G2 =⇒ E(G1) ≥ E(G2) and G1 ≻ G2 =⇒ E(G1) > E(G2).

This increasing property of E has been successfully applied in the study of the extremal

values of the energy over a significant class of graphs. See for example the papers [15, 16,

20, 21].

In this paper, we compute the signless Laplacian eigenvalues of the complete multipar-

tite graphs Ka1,a2,...,ak
in the next section. In Section 3, we prove that, among all graphs

with n vertices and chromatic number k, the Turán graph T (n, k) has the maximal coef-

ficients of signless Laplacian characteristic polynomial, which implies immediately that,

among all subdivisions of graphs with n vertices and chromatic number k, the subdivision

of the Turán graph T (n, k) has the maximal energy.

2. The signless Laplacian eigenvalues of complete multipartite graphs

Delorme [4] determined the eigenvalues of the adjacency matrix of the complete multi-

partite graphs. In this section, we use a similar method to compute the signless Laplacian

eigenvalues of complete multipartite graphs.

Theorem 2.1. The characteristic polynomial of signless Laplacian matrix of complete

multipartite graph G = Ka1,a2,...,ak
with

∑k
i=1 ai = n is

σ(Q(G), x) =
k∏

i=1

(x − n + ai)
ai−1

(
k∏

i=1

(x − n + 2ai) −
k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

)

.

Proof. For the convenience, we use Q, A and ∆ to denote matrices Q(G), A(G) and ∆(G).

Note that if vertices v and w are in the same part of G, the transpose of the row vector βi

whose coordinates on v, w and elsewhere are respectively 1, −1 and 0 is an eigenvector for

the eigenvalue n−ai of the signless Laplacian matrix Q, and there are ai−1 eigenvectors for

the eigenvalue n−ai (1 ≤ i ≤ k). So we can find
∑k

i=1(ai−1) = n−k linearly independent

eigenvectors of matrix Q which generate a linear subspace U of dimension n − k. Now

we choose an orthogonal basis of the orthogonal complement of U . It is constituted by

the transposes of k row vectors γi (1 ≤ i ≤ k), where γi is the vector whose coordinates

on vertices v ∈ Vi are 1 and elsewhere are 0 , that is, γi = (0, . . . , 0,

ai
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0). It

is easy to find that Q(γT
1 , γT

2 , . . . , γT
k ) = (γT

1 , γT
2 , . . . , γT

k )Nk, where Nk = (nij) is a k × k
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matrix such that nij = n− ai if i = j and nij = aj if i 6= j. It is not difficult to prove the

following claim.

Claim. The characteristic polynomial of Nk is given by

det(xIk − Nk) =
k∏

i=1

(x − n + 2ai) −
k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai).

Let

Xn = (βT
1 , βT

2 , . . . , βT
n−k, γ

T
1 , γT

2 , . . . , γT
k ).

Then QXn = XnMn, where the block diagonal matrix

Mn = diag((n − a1)Ia1−1, (n − a2)Ia2−1, . . . , (n − ak)Iak−1, Nk).

Hence Q = XnMnX−1
n has the same eigenvalues as Mn. Note that, by the the claim

above,

|xIn − Mn| =
k∏

i=1

(x − n + ai)
ai−1

(
k∏

i=1

(x − n + 2ai) −
k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

)

.

The theorem has thus proved. �

Remark 2.2. By Theorem 2.1, the signless Laplacian eigenvalues of Ka1,a2,...,ak
(
∑k

i=1 ai =

n) are n − ai with multiplicity ai − 1 (i = 1, 2, . . . , k) and the roots of the polynomial
k∏

i=1

(x − n + 2ai) −
k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai).

3. Main results

First, we define the relation ≻ (≺,�,�) as follows.

Definition 3.1 ([17]). We say p is partial larger than q if |p| > |q|, denoted by p ≻ q.

Similarly, we have p ≺ q, p � q, p � q.

Definition 3.2 ([17]). Let p(x) =
∑n

i=0 pix
i and q(x) =

∑n
i=0 qix

i. If |pi| > |qi| (resp.

|pi| 6 |qi|) for each 0 6 i 6 n, then we call p(x) � q(x) (resp. p(x) � q(x)). If p(x) � q(x)

(resp. p(x) � q(x)), and there exists a j ∈ {0, 1, · · · , n} such that pj ≻ qj (resp. pj ≺ qj),

we call p(x) ≻ q(x) (resp. p(x) ≺ q(x)).

By the definition above, the following result is immediate.

Lemma 3.3. Suppose ai > bi > 0 for i = 1, 2, · · · , n. Then

n∏

i=1

(x − ai) �

n∏

i=1

(x − bi),
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furthermore, if there exists a j ∈ {1, 2, · · · , n} such that aj > bj, then

n∏

i=1

(x − ai) ≻

n∏

i=1

(x − bi).

Lemma 3.4. Let n, a and b be three positive integers and a − b > 2, a 6 n. Then

(x − n + a − 1)a−2(x − n + b + 1)b ≻ (x − n + a)a−1(x − n + b)b−1.

Proof. Note that

(x − n + a − 1)(x − n + b + 1) = x2 − 2nx + (a + b)x − n(a + b) + ab + n2 + a − b − 1

and

(x − n + a)(x − n + b) = x2 − 2nx + (a + b)x − n(a + b) + ab + n2.

Since a − b − 2 ≥ 0, by Lemma 3.3,

(3.1) (x − n + a − 1)b−1(x − n + b + 1)b−1 ≻ (x − n + a)b−1(x − n + b)b−1.

Again, by Lemma 3.3,

(3.2) (x − n + a − 1)a−b−1(x − n + b + 1)1 ≻ (x − n + a)a−b.

The result follows from (3.1) × (3.2). �

Lemma 3.5 ([9]). Let G1 and G2 be two bipartite graphs with n vertices. Then

σ(G1, x) � σ(G2, x) ⇒ E(G1) � E(G2);

σ(G1, x) ≻ σ(G2, x) ⇒ E(G1) ≻ E(G2).

Lemma 3.6 ([18]). Let G be a graph with n vertices and m edges. Then

σ(S(G), x) = xm−nσ(Q(G), x2) = xm−n det(x2In − Q(G)).

A subgraph H of a graph G is called a TU-subgraph if each component of H is a tree

or a unicyclic graph whose cycle has an odd number of vertices. Suppose all components

of a TU-subgraph H are T1, T2, . . . , Ts, U1, U2, . . . , Ut, where Ti’s are trees and Uj ’s are

unicyclic graph, and ni is the number of vertices of Ti for i = 1, 2, . . . , s. Define:

φ(H) = 4t
s∏

i=1

ni.
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Lemma 3.7 ([2]). Let G be a simple graph of order n with the signless Laplacian char-

acteristic polynomial of form

σ(Q(G), x) = det(xIn − Q(G)) = xn + q1(G)xn−1 + q2(G)xn−2 + . . . + qn−1(G)x + qn(G).

Then, for 0 6 i 6 n,

(−1)iqi(G) =
∑

H

φ(H),

where the summation is over all TU-subgraph of G with i edges.

We use G to denote the complement of a graph G. For any e = uv ∈ E(G), i.e., e = uv

is not an edge in G. We use G + e to denote the graph obtained by adding e to G.

Similarly, for any set W of vertices (edges), G − W and G + W are the graphs obtained

by deleting the vertices (edges) in W from G and by adding the vertices (edges) in W to

G, respectively. By Lemma 3.7, we obtain immediately the following result.

Lemma 3.8. Let G be a non-complete connected graph of order n and e ∈ E(G). Then

σ(Q(G + e), x) = det(xIn − Q(G + e)) ≻ det(xIn − Q(G)) = σ(Q(G), x).

Lemma 3.9. Let n, ai, k and bi be positive integers and a1 > a2 >, . . . , > ak, and

a1 − a2 > 2, where n =
∑k

i=1 ai. If ai = bi (3 6 i 6 k), b1 = a1 − 1, b2 = a2 + 1, then

k∏

i=1

(x− n +2bi)−

k∑

j=1

bj

k∏

i=1,i6=j

(x−n + 2bi) ≻

k∏

i=1

(x− n +2ai)−

k∑

j=1

aj

k∏

i=1,i6=j

(x− n +2ai).

Proof. Note that

(x − n + 2a1)(x − n + 2a2) = x2 − 2nx + 2(a1 + a2)x − 2(a1 + a2)n + n2 + 4a1a2

and

(x − n + 2b1)(x − n + 2b2) = x2 − 2nx + 2(b1 + b2)x − 2(b1 + b2)n + n2 + 4b1b2

= x2 − 2nx + 2(a1 + a2)x − 2(a1 + a2)n + n2 + 4a1a2 + 4(a1 − a2) − 4.

So

(3.3) (x − n + 2b1)(x − n + 2b2) − (x − n + 2a1)(x − n + 2a2) = 4(a1 − a2) − 4.

Again,

(−a1)(x − n + 2a2) + (−a2)(x − n + 2a1) = −(a1 + a2)x + (a1 + a2)n − 4a1a2
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and

(−b1)(x − n + 2b2) + (−b2)(x − n + 2b1) = −(b1 + b2)x + (b1 + b2)n − 4b1b2

= −(a1 + a2)x + (a1 + a2)n − 4a1a2 − 4(a1 − a2) + 4.

Thus

(3.4) −b1(x−n+2b2)−b2(x−n+2b1)−[−a1(x−n+2a2)−a2(x−n+2a1)] = −4(a1−a2)+4.

Hence, by (3.3) and (3.4),

(3.5)
k∏

i=1

(x − n + 2bi) −
k∏

i=1

(x − n + 2ai) = [4(a1 − a2) − 4]
k∏

j=3

(x − n + 2aj),

(3.6)

−

2∑

j=1

bj

k∏

i=1,i6=j

(x−n+2bi)+

2∑

j=1

aj

k∏

i=1,i6=j

(x−n+2ai) = −[4(a1 −a2)−4]

k∏

j=3

(x−n+2aj).

For 3 6 i 6 n,

−ai(x − n + 2a1)(x − n + 2a2) = −ai[x
2 − 2nx + 2(a1 + a2)x − 2(a1 + a2)n + n2 + 4a1a2]

and

−bi(x−n+2b1)(x−n+2b2) = −bi[x
2−2nx+2(a1+a2)x−2(a1+a2)n+n2+4a1a2+4(a1−a2)−4].

Therefore,

(3.7) −bi(x−n+2b1)(x−n+2b2)− [−ai(x−n+2a1)(x−n+2a2)] = ai(−4(a1−a2)+4).

By (3.6) and (3.7),

(3.8) −
k∑

j=1

bj

k∏

i=1,i6=j

(x − n + 2bi) +
k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

= −[4(a1 − a2) − 4]

k∏

j=3

(x − n + 2aj) +

k∑

i=3

k∏

j=3,j 6=i

(x − n + 2aj)ai[−4(a1 − a2) + 4)].

Hence, by (3.5) and (3.8),
[

k∏

i=1

(x − n + 2bi) −

k∑

j=1

bj

k∏

i=1,i6=j

(x − n + 2bi)

]

−

[
k∏

i=1

(x − n + 2ai) −

k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

]

=

k∑

i=3

k∏

j=3,j 6=i

(x − n + 2aj)ai[−4(a1 − a2) + 4)].
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Thus, by Definition 3.2

k∏

i=1

(x− n +2bi)−
k∑

j=1

bj

k∏

i=1,i6=j

(x−n + 2bi) ≻
k∏

i=1

(x− n +2ai)−
k∑

j=1

aj

k∏

i=1,i6=j

(x− n +2ai).

Hence we have finished the proof of the lemma. �

Theorem 3.10. Let G be a connected graph of order n with chromatic number k. Then

σ(Q(G), x) � (x − n + r)(r−1)(k−s)(x − n + r + 1)rs[(x − n + 2r)k−s(x − n + 2r + 2)s

−(k − s)r(x− n + 2r)k−s−1(x− n + 2r + 2)s − s(r + 1)(x− n + 2r)k−s(x− n + 2r + 2)s−1].

The equality holds if and only if G ∼= Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

, where r and s are integers

with n = rk + s and 0 ≤ s < k.

Proof. Let G∗ be a graph having the maximum coefficients of the signless Laplacian

characteristic polynomial among all connected graphs of order n with chromatic number

k. Then V (G∗) can be partitioned into k color classes, say V1, V2, . . . , Vk. Let |Vi| = ai

for i = 1, 2, . . . , k. Then
∑k

i=1 ai = n. Lemma 3.8 implies that G∗ ∼= Ka1,a2,...,ak
. Assume

that a1 > a2 > . . . > ak. By theorem 2.1,

σ(Q(G), x) =

k∏

i=1

(x − n + ai)
ai−1

(
k∏

i=1

(x − n + 2ai) −

k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

)

.

If ap − aq ≥ 2, Lemma 3.4 implies that (let ap = a, aq = b in Lemma 3.4)

(x − n + ap − 1)ap−2(x − n + aq + 1)aq ≻ (x − n + ap)
ap−1(x − n + aq)

aq−1.

Hence

(3.9)

k∏

i=1

(x − n + bi)
bi−1 ≻

k∏

i=1

(x − n + ai)
ai−1,

where bp = ap − 1, bq = aq + 1, bi = ai for 1 ≤ i ≤ k, i 6= p, q. By Lemma 3.9,

k∏

i=1

(x−n+2bi)−

k∑

j=1

bj

k∏

i=1,i6=j

(x−n+2bi)) ≻

k∏

i=1

(x−n+2ai)−

k∑

j=1

aj

k∏

i=1,i6=j

(x−n+2ai).

Thus, by (3.9),

k∏

i=1

(x − n + bi)
bi−1

(
k∏

i=1

(x − n + 2bi) −
k∑

j=1

bj

k∏

i=1,i6=j

(x − n + 2bi)

)

≻

k∏

i=1

(x − n + ai)
ai−1

(
k∏

i=1

(x − n + 2ai) −

k∑

j=1

aj

k∏

i=1,i6=j

(x − n + 2ai)

)

.
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Hence, replacing any pair (ai, aj) satisfying ai − aj ≥ 2 with the pair (ai − 1, aj + 1) in

product

k∏

i=1

(x − n + ai)
ai−1

(
k∏

i=1

(x − n + 2ai) −

k∑

j=1

aj

k∏

i6=j

(x − n + 2ai)

)

=: f(x)

will increase the coefficients. By repeating this process, we find the coefficients of f(x) with
∑k

i=1 ai = n and a1 > a2 > . . . > ak is maximum if and only if a1 = a2 = . . . = ak−s = r

and ak−s+1 = . . . = ak = r + 1, where r, s are integers with n = rk + s and 0 6 s < k.

Then G∗ ∼= Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

, which is called the Turán graph. It is not difficult

to prove that if G∗ ∼= Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

, then

σ(Q(G∗), x) = (x − n + r)(r−1)(k−s)(x − n + r + 1)rs[(x − n + 2r)k−s(x − n + 2r + 2)s

−(k − s)r(x− n + 2r)k−s−1(x− n + 2r + 2)s − s(r + 1)(x− n + 2r)k−s(x− n + 2r + 2)s−1].

The theorem thus follows. �

Remark 3.11. Theorem 3.10 implies that the Turán graph Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

has

the maximum coefficients of signless Laplacian characteristic polynomials among all graphs

of order n with chromatic number k, where n = rk + s and 0 ≤ s ≤ k.

The following lemma is immediate from Lemmas 3.5.

Lemma 3.12. Let G1 and G2 be two bipartite graphs with n1 and n2 vertices, respectively.

For any two positive integers p1 and p2 satisfying n1 + p1 = n2 + p2, then

xp1σ(G1, x) � xp2σ(G2, x) ⇒ E(G1) � E(G2);

xp1σ(G1, x) ≻ xp2σ(G2, x) ⇒ E(G1) ≻ E(G2).

By Lemmas 3.6 and 3.12 and Theorem 3.10, the following result is obvious.

Theorem 3.13. Let G be a simple graph of order n whose chromatic number is k, where

n = rk + s and 0 6 s < k. Then

E(S(G)) 6 E(S(Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

))

with equality if and only if G is the complete multipartite graph Kr, . . . , r
︸ ︷︷ ︸

k−s

,r + 1, . . . , r + 1
︸ ︷︷ ︸

s

,

where S(G) denotes the subdivision of G.
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