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Abstract

In this paper we introduce and study the concepts of graded second (gr-second) and

graded coprimary (gr-coprimary) modules which are di¤erent from second and coprimary

modules over arbitrary graded rings. We list some properties and characterizations of

gr-second and gr-coprimary modules and also study graded prime submodules of modules

with gr-coprimary decompositions. We also deal with graded secondary representations

for graded injective modules over commutative graded rings. By using the concept of �-

suspension (�)M of a graded module M; we prove that a graded injective module over a

commutative graded Noetherian ring has a graded secondary representation.
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1 Introduction

Second submodules of modules over commutative rings were introduced in [16] as the dual

notion of prime submodules. Recently this submodule class has been studied in detail by some

authors (see [2], [3]). Second modules over arbitrary rings were de�ned in [1] and used as a

tool for the study of attached prime ideals over noncommutative rings. In [6], second modules

have been studied in detail in the noncommutative setting. In [4], the authors have introduced

and studied graded second modules over commutative graded rings. Most of their results are

related to reference [16] which have been proved for second submodules.

In [9], the authors introduced the concept of coprimary module which is a generalization

of second modules. They gave some characterizations and properties of this module class and

study coprimary decompositions of modules.

Secondary modules are generalizations of second modules over commutative rings. In [15],

secondary modules were considered over commutative graded rings. In [15], Sharp de�ned

graded secondary modules and used them as a tool for the study of asymptotic behavior of

attached prime ideals.

In this paper we introduce and study graded second and graded coprimary modules over

arbitrary graded rings. We also deal with graded secondary representations for graded injective

modules over commutative graded rings.
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Firstly we recall some basic properties of graded rings and modules which will be used in the

sequel. We refer to [10] and [11] for these basic properties and more information on graded rings

and modules. Throughout this paper, all rings are assumed to have identity elements and all

modules are unital right modules unless otherwise stated. Let G be a multiplicative group and

e denote the identity element of G. A ring R is called a graded ring (or G-graded ring) if there

exist additive subgroups Rg of R indexed by the elements g 2 G such that R = �g2GRg and
RgRh � Rgh for all g; h 2 G. If the inclusion is an equality, then the ring R is called strongly

graded. The elements of Rg are called homogeneous of degree g and all the homogeneous

elements are denoted by h(R), i.e. h(R) = [g2GRg. If x 2 R, then x can be written uniquely
as �g2Gxg, where xg is called homogeneous component of x in Rg. Moreover, Re is a subring of

R and 1 2 Re. Also, if r 2 Rg and r is a unit, then r�1 2 Rg�1. A G-graded ring R = �g2GRg
is called a crossed product if Rg contains a unit for every g 2 G. Note that a G-crossed product
R = �g2GRg is a strongly graded ring (see [11, 1.1.2. Remark]). For a G-graded ring R,
Ugr(R) denotes the set of units of R that are homogeneous, and Z(R) denotes the set of central

elements of R.

An ideal I of R is said to be a graded ideal if I = �g2G(I \ Rg). Left and right graded
ideals are de�ned analogously. A proper graded ideal P of a graded ring R is said to be a

graded prime ideal (or gr-prime ideal) of R if whenever A and B are graded ideals of R such

that AB � P , then either A � P or B � P . A proper graded ideal P is a graded prime ideal

of R if and only if whenever a and b are homogeneous elements of R such that aRb � P , then

either a 2 P or b 2 P . If 0 is a graded prime ideal of R, then R is said to be a graded prime

(or gr-prime) ring.

Let R be aG-graded ring. A right R-moduleM is said to be a graded R-module (orG-graded

R-module) if there exists a family of additive subgroups fMggg2G ofM such thatM = �g2GMg

and MgRh �Mgh for all g; h 2 G. Also if an element of M belongs to [g2GMg = h(M), then

it is called homogeneous. Note that Mg is a Re-module for every g 2 G.
Let M = �g2GMg be a G-graded R-module and N be a submodule of M . Then N is

called a graded submodule of M if N = �g2GNg; where Ng = N \Mg for all g 2 G. In this

case, Ng is called the g-component of N . Moreover, M=N becomes a G-graded R-module with

g-component (M=N)g = (Mg +N)=N for g 2 G.
Let N be an arbitrary submodule of a graded R-module M . Then by N� we mean the

graded submodule of M generated by all homogeneous elements x 2 N . It is clear that N� is

the largest graded submodule contained in N . Note that N� = �g2G(N \Mg).

Let M and M 0 be graded R-modules. Then an R-module homomorphism, f :M �!M 0 is

called a graded homomorphism of degree g, if f(Mh) �M 0
gh for all h 2 G.

Let R be a G-graded ring. One can form the category gr-R of graded right R-modules whose

objects are graded right R-modules and whose morphisms are graded module homomorphisms

of degree e. For M 2gr-R and � 2 G, the �-suspension (�)M of M is de�ned to be the graded

R-module obtained from M by putting ((�)M)� =M�� for all � 2 G.
Let R = �g2GRg be a G-graded ring. We de�ne graded second (or gr-second) modules and

list some properties of them. We prove that if G is an abelian group and R is a left graded

fully bounded ring such that R=P is a left gr-Goldie ring for every gr-prime ideal P of R,

then a graded right R-module M is a gr-second R-module if and only if Q = annR(M) is a

gr-prime ideal of R and M is a gr-divisible right (R=Q)-module (Theorem 2.7). We study the
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existence of gr-second factor modules of certain graded modules. We also prove that every

non-zero gr-Artinian module contains only a �nite number of maximal gr-second submodules

(Theorem 2.11). After that we de�ne the concept of graded coprimary (or gr-coprimary) module

(which is a generalization of gr-second module) and study gr-coprimary decompositions of

graded modules. In particular we prove that if M is a right module which has a gr-coprimary

decomposition over a graded ring R such that for each homogeneous element a of R, the

graded right ideal aR is generated by a central homogeneous element, then every graded prime

submodule of M has a gr-coprimary decomposition (Theorem 3.5). We deal with gr-secondary

representations for gr-injective modules over commutative graded rings. By using the concept

of �-suspension (�)M of a graded module M; we prove that a gr-injective module over a

commutative gr-noetherian ring has a gr-secondary representation (Corollary 4.5). This result

is the graded version of [14, Theorem 2.3].

2 Graded Second Modules

An R-module M is called a second module provided M 6= 0 and ann
R
(M) = ann

R
(M=N) for

every proper submodule N of M . By a second submodule of a module, we mean a submodule

which is also a second module. In [6], it was proved that an R-module M is a second R-module

if and only if MI =M or MI = 0 for every ideal I of R.

Remark 1 [12, Lemma 1] Let M be a graded R-module and let I be a graded ideal of R. Then

MI and (0 :M I) are graded submodules of M and annR(M) is a graded ideal of R.

De�nition 2.1 Let R be a G-graded ring. A graded R-module M is said to be a graded second

(or gr-second) R-module if M 6= 0 and annR(M) = annR(M=N) for every proper graded

submodule N of M .

Let M be a graded R-module and K be a graded submodule of M . K is said to be a graded

second submodule of M if it is a graded second module itself.

It can be easily checked that ifM is a gr-second R-module, then annR(M) = P is a gr-prime

ideal of R. In this case M is called graded P -second (or gr-P -second) module.

Proposition 2.2 Let R be a G-graded ring and M be a graded R-module. M is a gr-second

R-module if and only if MI = 0 or MI =M for every graded ideal I of R.

Proof Use the similar arguments as in the ungraded case (see [6, Lemma 2.1]). �

Note that a non-zero graded module M over a commutative graded ring R is gr-second if

and only if Mr = 0 or Mr =M for every r 2 h(R).
A graded R-module M is said to be graded simple (or gr-simple) if 0 and M are its only

graded submodules. It is clear that every gr-simple R-module is gr-second.

Clearly every second graded module is a gr-second module. But the converse of this state-

ment is not true in general. If R = k[x; x�1] is the ring of Laurent polynomials, where k is a

�eld, then the right R-module RR is a gr-second R-module but it is not a second R-module.

(See also [4, Remark 2.1]).
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Theorem 2.3 Let R be a G-graded ring and M = �g2GMg be a graded R-module. Then we

have the following.

(1) If M is a gr-second R-module, then Mg is a second Re-module for every g 2 G with

Mg 6= 0.
(2) If R is a strongly graded ring and Mg is a second Re-module for every g 2 G, then M

is a gr-second R-module.

(3) If R is a crossed product, Ugr(R) � Z(R) and Me is a second Re-module, then Mg is a

second Re-module for every g 2 G.
(4) If R is a graded integral domain, M is a torsion-free graded R-module and N is a second

submodule of M such that N contains a nonzero homogeneous element, then N� is a gr-second

submodule of M .

Proof (1) Let J be an ideal of Re. Then I = �g2GRgJ is a graded ideal of R. Since M is

gr-second, MI = 0 or MI = M . Let g 2 G with Mg 6= 0. If MI = 0, then MgJ = MgReJ �
MgI = 0 and so MgJ = 0. If MI = M , then we get that MgJ = Mg. Thus Mg is a second

Re-module.

(2) Clearly M 6= 0:Let I = �g2GIg be a graded ideal of R. Then Ie is an ideal of Re.
Since R is strongly graded, I = RIe by [10, A-I.3.8. Corollary]. It follows that MI =MRIe =

MIe = �g2G(MgIe). If MgIe = 0 for some g 2 G, then MI = 0 by [10, A-I.3.7. Corollary]. If

MgIe 6= 0 for every g 2 G, then MgIe =Mg and we get that MI =M .

(3) Since R is a strongly graded ring, Me =MgRg�1 and so Mg 6= 0 for every g 2 G. Let I
be an ideal of Re and g 2 G. Then MeI = 0 or MeI = Me. Since R is crossed product, Rg�1

contains a unit, say x. If MeI = 0, then MgI = Mgxx
�1I � Mex

�1I = MeIx
�1 = 0 and so

MgI = 0. If MeI = Me, then Mg = Mgxx
�1 � Mex

�1 = MeIx
�1 = Mex

�1I � MgI and so

Mg =MgI. Thus Mg is a second Re-module.

(4) N� 6= 0, by the hypothesis. Let 0 6= r 2 h(R). Since M is torsion-free, N�r 6= 0. Let
x 2 N�. We can write x = xg1 + :::+ xgt with xgi 2 N \Mgi , xgi 6= 0 for each 1 � i � t. Since

Nr = N , we can write xgi = (nhi1 + :::+ nhiti )r with nhij 2 h(M) and nhi1 + :::+ nhiti 2 N .
Then xgi = nhijr for some 1 � j � ti and nhikr = 0 for k 6= j. SinceM is torsion-free, nhik = 0

for k 6= j. Thus nhij 2 h(N) and so xgi 2 N�r for each 1 � i � t. This shows that N�r = N�

and hence N� is a gr-second submodule of M . �

Proposition 2.4 Let R be a G-graded ring, M be a graded R-module and A be a graded ideal

of R such that MA = 0. Then, M is a gr-second R-module if and only if M is a gr-second

(R=A)-module.

Proof Use the similar arguments as in the ungraded case (see [6, Corollary 2.4]). �

Let R be a G-graded ring and M be a graded R-module. A graded submodule N of M

is said to be a graded essential (or gr-essential) submodule of M , if for every non-zero graded

submodule L of M we have L \N 6= 0.
Let N be a graded submodule of a graded module M . Then N is gr-essential in M if and

only if N is essential in M by [11, 2.3.5 Proposition].

A graded prime ring R is said to be left graded bounded if each gr-essential left ideal contains

a non-zero graded ideal. A graded ring R is said to be left graded fully bounded if the ring
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R=P is left graded bounded for every graded prime ideal P of R. Right graded bounded and

right graded fully bounded rings are de�ned analogously.

A left graded fully bounded ring need not be left fully bounded. For example, consider

R = �[x; '] where ' is an automorphism of the skew�eld �, x is a variable and multiplication

is given by xa = '(a)x. R is a left graded fully bounded ring because every graded left ideal of

R is two-sided. But R is not left fully bounded if ' is not an inner automorphism of �. (See

[10, page 241]).

A graded ring R having �nite Goldie dimension in the category of graded left R-modules

and satisfying the ascending chain condition on graded left annihilators is called a left graded

Goldie (or left gr-Goldie) ring. Right graded Goldie rings are de�ned analogously.

A left gr-Golide ring is not necessarily a left Goldie ring. Let k be a �eld and R be the

polynomial ring k[x; y] subject to the relation xy = yx = 0. Put Rn = kxn if n � 0 and

Rm = kym if m < 0. As a consequence of [10, C-I.1.1 Example], R = �n2ZRn is a left
gr-Goldie ring but not a left Goldie ring.

Let R be a ring. An element c of R is called right regular provided cr 6= 0 for every non-zero
element r in R. There is an analogous de�nition of left regular elements. An element c of R is

called regular provided it is right and left regular.

Let R be a prime, right Goldie ring. Then every essential right ideal of R contains a regular

element of R by a theorem of Goldie. In [7], Goodearl and Sta¤ord proved the graded version

this theorem.

Theorem 2.5 [7, Theorem 4] Let G be an abelian group and R be a G-graded, gr-prime, right

gr-Goldie ring. Then, any essential, graded right ideal I of R contains a homogeneous regular

element.

Let R be a G-graded ring and M be a graded R-module. Following [10], we say that M is a

graded divisible (or gr-divisible) R-module if M =Mc for every homogeneous regular element

c in R. (See also [10, Page 179]).

Clearly every divisible graded module is gr-divisible. But a gr-divisible module is not nec-

essarily divisible as the following example shows.

Example 2.6 If R = k[x; x�1] is the ring of Laurent polynomials, where k is a �eld, then the

right R-module RR is a gr-divisible R-module but not a divisible R-module.

Theorem 2.7 Let G be an abelian group and R be a G-graded ring.

(1) If R is a gr-prime, right or left gr-Goldie ring, then every non-zero gr-divisible right

R-module is 0-gr-second.

(2) Let R be a left graded fully bounded ring such that R=P is a left gr-Goldie ring for every

gr-prime ideal P of R. Then a graded right R-module M is a gr-second R-module if and only

if Q = annR(M) is a gr-prime ideal of R and M is a gr-divisible right (R=Q)-module.

Proof (1) Let X be a non-zero gr-divisible R-module and A = annR(X). Suppose that A 6= 0.
Then A is a gr-essential right (and left) ideal of R. A is an essential right (and left) ideal of R

by [11, Proposition 2.3.5]. A contains a homogeneous regular element c, by Theorem 2.5. But

this implies that X = Xc � XA = 0, a contradiction. Therefore A = 0. Let B be a non-zero

graded ideal of R. Since R is a gr-prime ring, B is an essential graded ideal of R. So B contains
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a homogeneous regular element d by Theorem 2.5. It follows that X = Xb � XB and hence

X = XB. Thus X is a 0-gr-second R-module.

(2) Suppose thatM is a gr-second R-module and Q = annR(M). Then Q is a gr-prime ideal

of R. Let R denote the left gr-bounded left gr-Goldie ring R=Q, and c be a homogeneous regular

element of R. Then the graded essential left ideal Rc contains non-zero two-sided graded ideal

A of R. There exists a graded ideal A of R such that A = A=Q. M =MA �M(Rc+Q) =Mc

and hence M = Mc. It follows that Mc = M for the R-module M . Thus M is a gr-divisible

right R-module. The converse follows from Propositon 2.4 and (1). �

Lemma 2.8 Let R be a G-graded ring such that R satis�es ascending chain condition on gr-

prime ideals and for every proper graded ideal I of R there exists a �nite collection of gr-prime

ideals Qi(1 � i � n) such that Q1:::Qn � I � Q1 \ ::: \ Qn. Let M be a non-zero graded

R-module.

(1) M is a gr-second R-module if and only if, for each gr-prime ideal P of R, either MP = 0

or M =MP .

(2) There exists a gr-second factor module of M .

Proof (1) The necessity is clear. Conversely, suppose that M = MP or MP = 0 for every

gr-prime ideal P of R. Let I be any proper graded ideal of R. By the hypothesis, there exists

a �nite family of gr-prime ideals Qi (1 � i � n) such that Q1 : : : Qn � I � Q1 \ � � � \ Qn. If
MQi = 0 for some 1 � i � n then MI = 0. Otherwise M =MQi (1 � i � n) and hence

M =MQn =MQn�1Qn = � � � =MQ1 : : : Qn �MI �M:

Thus M =MI. It follows that MI = 0 or M =MI for every graded ideal I of R and so M is

a gr-second R-module.

(2) By hypothesis there exists a �nite family of gr-prime ideals Pi (1 � i � t) such that

P1:::Pn � annR(M) � \ni=1Pi. This implies that MP1:::Pn = 0. If MPi = M for every

1 � i � n, then 0 = MP1:::Pn = ::: = MPn = M , a contradiction. Thus M 6= MPi for some

1 � i � t. Let P be a gr-prime ideal of R maximal in the collection of gr-prime ideals Q of

R such that M 6= MQ. Note that M 6= MP . Let T be any gr-prime ideal of R properly

containing P . By the choice of P , we haveM =MT . ThusM=MP = (M=MP )(T=P ). By (1);

M=MP is a gr-second (R=P )-module. Then Proposition 2.4 gives that the R-module M=MP

is a gr-second R-module. �

By [8, Proposition 1.1], the conditions on the graded ring R in Lemma 2.8 are satis�ed when

R is a graded ring which satis�es ascending chain condition on graded ideals.

Let R be a G-graded ring, M be a graded R-module and K be a graded submodule of M .

K is called graded small (or gr-small) submodule of M if whenever L is a graded submodule of

M such that K + L =M we must have L =M .

Clearly every small graded submodule of a graded module is gr-small. But a gr-small

submodule need not be a small submodule. For example, if k is a �eld and R = k[x] is the

polynomial ring, then (x) is a gr-small submodule of RR but not a small submodule of RR.

We say that M is a graded hollow (or gr-hollow) module if M 6= 0 and every proper graded
submodule of M is gr-small.
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Clearly every hollow graded module is gr-hollow. The following example shows that the

converse of this statement is not true in general.

Example 2.9 Let k be a �eld and R = k[x] be the polynomial ring. Consider the right R-

module RR. Every proper graded ideal of R is of the form (xn) for some n 2 Z+. So RR is a
gr-hollow module but it is not a hollow module.

Theorem 2.10 Let R be a G-graded ring and M be a gr-hollow module.

(1) There exists at most one gr-prime ideal P of R such that M=N is a gr-P -second R-

module for some graded submodule N of M .

(2) If R satis�es ascending chain condition on gr-prime ideals and for every proper graded

ideal I of R there exists a �nite collection of gr-prime ideals Qi(1 � i � n) such that Q1:::Qn �
I � Q1 \ ::: \Qn, then there exists only one gr-prime ideal P of R such that M=N is a gr-P -

second R-module for some graded submodule N of M , where P = f�g2Grg 2 R : MrgR 6= M

for every g 2 Gg.

Proof (1) Let P1 and P2 be gr-prime ideals of R such that M=N1 is a gr-P1-second R-module

and M=N2 is a gr-P2-second R-module for some graded submodules N1; N2 of M . As M is gr-

hollow, N1+N2 is a proper graded submodule ofM . M= (N1 +N2) ' (M=Ni)=(N1+N2=Ni) is a

non-zero graded factor module of the gr-second moduleM=Ni for each i = 1; 2. SoM=(N1+N2)

must be a gr-seond R-module and P1 = P2.

(2) We know that there exists only one gr-prime ideal Q of R such that M=N is a gr-Q-

second module for some graded submodule N of M , by Lemma 2.8 and (1). We must show

that Q = P . If x = �g2Gxg 2 Q, then xg 2 Q for every g 2 G as Q is a graded ideal. So

MxgR � N 6= M for every g 2 G and this shows that x 2 P . Conversely, if x = �g2Gxg 2 P ,
then MxgR 6= M for every g 2 G. Since M is gr-hollow, we have MxgR + N 6= M for every

g 2 G, and since M=N is graded Q-second, we have that M=(MxgR+N) is a graded Q-second

module for every g 2 G. Thus xg 2 annR(M=MxgR +N) = Q for every g 2 G. This implies
that x 2 Q. �

Let R be a graded ring and M be a non-zero graded R-module. By a maximal gr-second

submodule ofM we mean a gr-second submodule L ofM such that L is not properly contained

in another gr-second submodule of M . Let (Ni)i2I be a chain of gr-second submodules of M .

We can prove that [i2INi is a gr-second submodule of M by using similar arguments as in the

ungraded case. (See [6, Proposition 4.2]). By using this result and Zorn�s Lemma, we can prove

that every gr-second submodule of M is contained in a maximal gr-second submodule of M .

Theorem 2.11 Let R be a G-graded ring and M be a non-zero graded Artinian R-module.

Then M contains only a �nite number of maximal gr-second submodules.

Proof Use the similar arguments as in the ungraded case (see [6, Theorem 4.4]). �

3 Graded Coprimary Modules

In [9], the authors de�ned a coprimary module as follows: Let R be a ring. Given a prime ideal

P of R, a non-zero R-module M is called P -coprimary if
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(i) (N :M) � P for every proper submodule N of M , and

(ii) Ph � annR(M) for some positive integer h.

M is called coprimary if it is P -coprimary for some prime ideal P of R.

In this section we introduce and study the notion of graded coprimary module which is a

generalization of the notion of gr-second module.

De�nition 3.1 Let R be a graded ring and P be a gr-prime ideal R. A non-zero graded R-

module M is called graded P -coprimary (or gr-P -coprimary) provided there exists a positive

integer n such that

Pn � (0 :R M) � (N :R M) � P;

for every proper graded submodule N of M . The graded module M is called graded coprimary

(or gr-coprimary) if it is graded P -coprimary for some gr-prime ideal P .

A non-zero graded R-module M has a gr-coprimary decomposition if there exist a positive

integer n and graded submodules Mi(1 � i � n) of M such that M =M1 + :::+Mn, and Mi is

gr-coprimary for each 1 � i � n. If M has a gr-coprimary decomposition, then we say that M

has a normal gr-coprimary decomposition if there exist a positive integer n, distinct gr-prime

ideals Pi(1 � i � n) of R, and gr-Pi-coprimary submodules Mi(1 � i � n) of M such that

(i) M =M1 + :::+Mn, and

(ii) M 6=M1 + :::+Mi�1 +Mi+1 + :::+Mn for all 1 � i � n.

In this case the set fP1; :::; Png is called graded attached primes of M and denoted by

Att�(M).

It is clear that every gr-second module is gr-coprimary. Also it is easy to see that every

graded factor module of a gr-coprimary module is gr-coprimary.

Lemma 3.2 Let R be a graded ring and P be a gr-prime ideal of R. Then a non-zero graded

R-moduleM is gr-P -coprimary if and only if, for every graded ideal A of R, M =MA if A 6� P

and there exists a positive integer h such that MAh = 0 if A � P .

Proof This is straightforward. �

De�nition 3.3 Let R be a graded ring, M be a graded R-module and N be a graded submodule

of M . N is called a graded pure submodule of M if NI = MI \N for every graded ideal I of

R.

Proposition 3.4 Let R be a graded ring, P be a gr-prime ideal of R, M be a graded R-module

and N be a non-zero proper graded pure submodule of M . M is a gr-P -coprimary module if

and only if N and M=N are gr-P -coprimary modules.

Proof Suppose that M is gr-P -coprimary. Then Ph � annR(M) for some h 2 Z+. Let A be
graded ideal of R. If A � P , thenNAh = 0. If A * P , thenNA =MA\N =M\N = N . Thus

N is gr-P -coprimary. It is clear that M=N is gr-P -coprimary. Conversely suppose that N and

M=N are gr-P -coprimary modules. Then Ph1 � annR(N) and Ph2 � annR(M=N) for some

h1; h2 2 Z+. Let h = max(h1; h2). Then we haveMPh � N and 0 = NPh =MPh\N =MPh.

Let A be a graded ideal of R. If A � P , then MAh = 0. If A 6� P , then NA = N and
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MA + N = M . It follows that MA + NA = MA + (MA \ N) = MA = M . Thus M is

gr-P -coprimary. �

In [8], the authors de�ned a graded prime module as follows. A graded R-module M is

called a graded prime module provided that annR(N) = annR(M) for all non-zero graded

R-submodules N of M . A graded submodule K of M is called a graded prime (or gr-prime)

submodule of M , if M=K is a graded prime module. In this case P = (K : M) is a gr-prime

ideal of R and K is called graded P -prime submodule of M . (See [5], [8], [12] for more details

about graded prime submodules).

Theorem 3.5 Let R be a G-graded ring such that for each a 2 h(R) the graded right ideal aR
is generated by a central homogeneous element and let M be a graded R-module.

(1) If M is gr-coprimary and N is a nonzero graded P -prime submodule of M , then N is

gr-P -coprimary.

(2) If N is a gr-P -coprimary submodule of M and K is a graded prime sumodule of M ,

then N \K is gr-P -coprimary.

(3) If M has a gr-coprimary decomposition and N is a graded prime submodule of M , then

N has a gr-coprimary decomposition.

Proof (1) Let M be gr-Q-coprimary module. Then (N :M) = P � Q and Qh � annR(M) �
P for some h 2 Z+. So we get that Q = P .

There exists a positive integer h such that Ph � annR(M) � annR(N). Let A be a graded

ideal of R. If A � P , then NAh = 0. Assume that A 6� P . Let a 2 AnP be a homogeneous

element. By hypothesis, aR = bR = Rb for some b 2 h(R) \ Z(R) and hence M =M(RaR) =

M(Rb) = Mb. Let n 2 N . Then n = mb for some m = �ti=1mgi 2 M; (mgi 6= 0). Since N is

graded mgib 2 N for every 1 � i � t. Let i 2 f1; :::; tg. Since b 2 Z(R); mgibR = mgiRb � N

and so b 2 annR(N + mgiR=N). If N + mgiR 6= N; then annR(N + mgiR=N) = P and so

b 2 P . But this implies that a 2 P , a contradiction. Thus N +mgiR = N and we have that

mgi 2 N . This shows that n 2 Nb � N(RaR) � NA. Therefore we get that N = NA.

(2) It can be easily shown that N \ K is a graded prime submodule of N . So the result

follows from (1).

(3) Let M = �ki=1Si be a normal gr-coprimary decomposition of M and Att�(M) =

fP1; :::; Pkg. Let N be a graded P -prime submodule of M . Then Si 6� N for some Si, say

S1. We show that P = P1. There exists a homogeneous element yh 2 S1nN . Also there
exists a positive integer n1 such that P

n1
1 � annR(S1). Since yhP

n1
1 = 0 � N and N is

graded P -prime, we get that P1 � P . For the other containment, suppose that there exists

a homogeneous element c 2 PnP1. Since RcR 6� P1 and S1 is gr-P1-coprimary, we get that

S1 = S1(RcR) � M(RcR) = M(cR) � N which is a contradiction. Therefore P1 = P . Simi-

larly, if Sj 6� N for j 6= 1, then P = P1 = Pj , a contradiction. Thus Sj � N for every 2 � j � n.

It follows that N = N \ (S1 +�nj=2Sj) = �nj=2Sj + (N \ S1). Now the result follows from (2).

�

A G-graded ring R is said to be gr-regular if for every homogeneous element x 2 h(R) there
exists y 2 R such that x = xyx. By [10, C-I.5.1. Proposition], a G-graded ring R is gr-regular if

and only if every principal left (right) graded ideal is generated by a homogeneous idempotent
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element. A gr-regular ring R is said to be gr-abelian regular if all homogeneous idempotent

elements of R are central.

Clearly every regular (resp. abelian regular) graded ring is gr-regular (resp. gr-abelian

regular). But the converse of this statement is not true in general. Let k be a �eld and consider

the �rst Weyl algebra A1(k) that is the algebra generated by the elements of k together with

x and y, which commute with the elements of k and satisfy the equation xy � yx = 1. Put

S = A1(k), deg(x) = 1 and deg(y) = �1. Then S is a graded ring such that S0 = k[xy]. By

[10, C-I.5.24. Example], the total graded ring of fractions of S; Qg(S) is a gr-abelian regular

ring but not a regular ring and hence not an abelian regular ring.

Corollary 3.6 Let R be a gr-abelian regular ring and M be a graded R-module which has a

gr-coprimary decomposition. Then every gr-prime submodule of M has a gr-coprimary decom-

position.

Proof By [10, C-I.5.1 Proposition], the conditions on the graded ring R in Theorem 3.5 are

satis�ed when R is a gr-Abelian regular ring. Thus the result follows. �

4 Graded Secondary Representations For Graded Injec-

tive Modules

In this section we deal with graded secondary representations for graded injective modules over

commutative graded rings.

Let R be a commutative G-graded ring and I be a graded ideal of R. The graded radical

of I (in abbreviation "Gr(I)") is the set of all x = �g2Gxg 2 R such that for each g 2 G there

exists ng > 0 with xngg 2 I. Note that, if r is a homogeneous element of R, then r 2 Gr(I) if
and only if rn 2 I for some n 2 N.
Let R be a commutative G-graded ring. In [15], Sharp de�ned graded secondary modules

as follows: A graded R-module M is said to be graded secondary (or gr-secondary) if M 6= 0
and, for each homogeneous element r of R, the endomorphism of M given by multiplication by

r is either surjective or nilpotent. In this case Gr(annR(M)) = P is a gr-prime ideal of R, and

M is said to be graded P -secondary. M is said to have a gr-secondary representation if it can

be written as a sum M =M1 + :::+Mk with each Mi gr-secondary.

Clearly every gr-second module over a commutative graded ring is gr-secondary. Also note

that, when R is a commutative graded Noetherian ring, M is gr-coprimary if and only if M is

gr-secondary.

Proposition 4.1 Let R be a graded integral domain and M be a torsionfree graded R-module

which has a secondary representation. Then M has a gr-secondary representation.

Proof Firstly we show that if N1 and N2 are submodules of M , then (N1 +N2)
�
= N�

1 +N
�
2 .

Clearly N�
1 + N�

2 � (N1 + N2)
�. Let x 2 h((N1 + N2)

�). x = n1 + n2 for some n1 2 N1,

n2 2 N2. Since x is homogeneous, n1 and n2 must be homogeneous of the same degree with x.
Hence n1 2 N�

1 , n2 2 N�
2 and so x 2 N�

1 +N
�
2 .

Let M = N1+ :::+Nk be a secondary representation of M with Ni a secondary submodule

of M for 1 � i � k. Then we have M = N�
1 + :::+N

�
k . It can be proved that N

�
i = 0 or N

�
i is
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a gr-secondary submodule of M for i = 1; ::; k, as in the proof of Theorem 2.3-(4). This shows

that M has a gr-secondary representation. �

Le R be a commutative graded ring. Following [13], we say that I is a graded primary

ideal of R (in abbreviation, "G-primary ideal") if I 6= R and whenever a; b 2 h(R) with ab 2 I
then a 2 I or b 2 Gr(I). In this case Gr(I) = P is a gr-prime ideal of R and I is called

G-P -primary. Let I be a proper graded ideal of R. In [13], a graded primary G-decomposition

of I is de�ned as an intersection of �nitely many graded primary ideals of R. Such a graded

primary G-decomposition I = Q1 \ ::: \Qn with Gr(Qi) = Pi for i = 1; :::; n of I is said to be

a minimal graded primary G-decomposition of I precisely when

(i) P1; :::; Pn are di¤erent gr-prime ideals of R, and

(ii) Qj 6� \ni=1
i 6=j

Qi for all j = 1; :::; n.

I is said to be a G-decomposable graded ideal of R precisely when it has a graded primary

G-decomposition. Note that every G-decomposable graded ideal of R has a minimal graded

primary G-decomposition.

Let R be a G-graded ring and E be a graded R-module. Following [10], we say that E is

a gr-injective R-module if E is an injective object in gr-R. In [10] it was shown that every

injective graded module is gr-injective but a gr-injective module need not be injective. (See [10,

A-I.2.5. Corollary and A-I.2.6. Remark]).

By using the notion of �-suspension (�)M of a graded module M , we obtain the following

two lemmas which are the graded versions of [14, Lemma 2.1 and 2.2].

Lemma 4.2 Let R be a commutative G-graded ring, Q be a graded P -primary ideal of R and

E be a gr-injective R-module. Then (0 :E Q) is zero or graded P -secondary submodule of E.

Proof Suppose that (0 :E Q) 6= 0. Let a 2 R be a homogeneous element of degree �.

If a 2 P , then an 2 Q for some positive integer n, so that (0 :E Q)an = 0.

If a =2 P , then we see that (0 :E Q) = (0 :E Q)a as follows. Let x 2 (0 :E Q) be a

homogeneous element of degree �. De�ne the map � : (��1) (R=Q) �! E for which �(b+Q) =

xb for all b + Q 2 (��1) (R=Q). Clearly � is an R-module homomorphism. Let b + Q 2
(��1) (R=Q)� for � 2 G. Then b = b��1� + q for some b��1� 2 R

��1�
and q 2 Q. We have

xb = x(b��1� + q) = xb��1� 2 E� . So � is a graded R-module homomorphism.
Let ga : (�

�1) (R=Q) �! (���1) (R=Q) be the map de�ned by ga(y + Q) = ya + Q for all

y +Q 2 R=Q. Clearly ga is an R-module homomorphism. If y +Q 2 (��1) (R=Q)� for � 2 G,
then y = y��1� + q

0 for some y��1� 2 R��1� and q0 2 Q. We have ya+Q = (y��1� + q0)a+Q =
ay��1� +Q 2 (���1) (R=Q)� . Thus ga is a graded R-module homomorphism.
If y + Q 2 ker(ga), where y = �mi=1ygi ; ygi 6= 0, then ya = �mi=1ygia 2 Q. Since Q is a

graded ideal, ygia 2 Q for all 1 � i � m. We get that ygi 2 Q for all 1 � i � m, as Q is graded

P -primary. Therefore y 2 Q, so that ga is a monomorphism in gr-R.

The diagram
E

� "
0 �! (��1) (R=Q)

ga�! (���1) (R=Q)

has exact row in gr-R. Since E is a gr-injective module, this diagram can be completed with

a graded R-module homomorphism  : (���1) (R=Q) �! E such that  ga = �. Thus x =
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�(1) =  ga(1) =  (1a) =  (1)a. Since  (1) 2 (0 :E Q), we have x 2 (0 :E Q)a. As (0 :E Q) is

generated by homogeneous elements, we get that (0 :E Q) = (0 :E Q)a, and the result follows.

�

Lemma 4.3 Let R be a commutative graded ring, I1; :::; In be graded ideals of R and E be a

gr-injective R-module. Then Pn
i=1(0 :E Ii) = (0 :E

Tn
i=1 Ii)

Proof Let x 2 (0 :E \ni=1Ii) be a homogeneous element of degree �. Let � : (��1)R �!
(��1) (R= \ni=1 Ii) and, for each i = 1; :::; n; �i : (��1)R �! (��1) (R=Ii), be the natural graded

homomorphisms. There is an R-monomorphism f : (��1) (R= \ni=1 Ii) �! �ni=1(��1) (R=Ii)
for which f(�(a)) = (�1(a); :::; �n(a)) for all a 2 R. If �(a) = a+ \ni=1Ii 2 (��1) (R= \ni=1 Ii)�
for � 2 G, then a = r��1�+y for some r��1� 2 R��1� and y 2 \ni=1Ii. We have (�1(a); :::; �n(a)) =
(r��1� + y + I1; :::; r��1� + y + In) = (r��1� + I1; :::; r��1� + In) 2 �ni=1(��1) (R=Ii)� =

(�ni=1(��1) (R=Ii))� . Thus f is a graded R-module homomorphism.
Also, there is an R-module homomorphism g : (��1) (R= \ni=1 Ii) �! E for which g(�(a)) =

xa for all a 2 R. If a + \ni=1Ii 2 (��1) (R= \ni=1 Ii)� for � 2 G, then a = s��1� + z for some

s��1� 2 R��1� and z 2 \ni=1Ii. We have xa = x(s��1� + z) = xs��1� 2 E� . Thus g is a graded
R-module homomorphism.

As E is gr-injective, the diagram

E

g "
0 �! (��1) (R= \ni=1 Ii)

f�! �ni=1(��1) (R=Ii)

can be completed with a graded homomorphism h : �ni=1(��1) (R=Ii) �! E such that hf = g.

Now x = g(�(1)) = hf(�(1)) 2 Im(h), and it is clear that Im(h) � �ni=1(0 :E Ii). It follows

that (0 :E \ni=1Ii) � �ni=1(0 :E Ii). Since the reverse inclusion is clear the result follows. �

Theorem 4.4 Let R be a commutative graded ring and the zero ideal of R have a graded

primary G-decomposition. If E is a gr-injective R-module, then E has a gr-secondary repre-

sentation.

More precisely, let 0 = Q1 \ ::: \ Qn be a minimal graded primary G-decomposition of the
zero ideal of R, with Qi a graded G-Pi-primary ideal for i = 1; :::; n. Then

E = (0 :E Q1) + ::: + (0 :E Qn); and (0 :E Qi) is either zero or graded Pi-secondary for

i = 1; :::; n.

Proof (0 :E Qi) is either zero or gr-secondary for each 1 � i � n, by Lemma 4.2. Lemma 4.3

shows that E = (0 :E 0) = (0 :E \ni=1Qi) = �ni=1(0 :E Qi), where (0 :E Qi) is either zero or

graded Pi-secondary. Thus E has a gr-secondary representation. �

In [14, Theorem 2.3], it was proved that every injective module over a commutative Noetherian

ring has a secondary representation. In the following corollary we get the graded version of this

result by using the concept of �-suspension (�)M of a graded module M .
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Corollary 4.5 Let R be a commutative graded Noetherian ring and E be a gr-injective R-

module. Then E has a gr-secondary representation.

Proof Since R is commutative graded Noetherian, every proper graded ideal of R has a graded
primary G-decomposition by [13, Corollary 2.16]. So E has a gr-secondary representation by

Theorem 4.4. �
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