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Abstract

Cohen-Macaulayness of bipartite graphs is investigated by several mathematicians

and has been characterized combinatorially. In this paper, we give some different com-

binatorial conditions for a bipartite graph which are equivalent to Cohen-Macaulayness

of the graph. We prove that a bipartite graph is Cohen-Macaulay if and only if it is

well-covered and has a unique perfect matching. We also provide a fast algorithm to

check Cohen-Macaulayness of a given bipartite graph.
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1 Introduction an preliminaries

Characterization and classification of Cohen-Macaulay graphs, specially bipartite graphs,

have been extensively studied in the last decades (e.g. see [2], [4], [6], [11] and [3]). A

thorough background to the subject is provided in the above references and [9]. To make

this note self-contained, we review some of the basic notions.

Throughout this paper, all graphs are finite and simple with no vertex of degree zero.

Let G be a graph with vertex set V (G) and edge set E(G). For two adjacent vertices v

and w in G, we write v ∼ w. The set of all vertices of G adjacent to a vertex v is denoted

by N(v). We say that a set F ⊆ V (G) is an independent set in G if no two vertices of F

are adjacent. A set P ⊆ E(G) is called a perfect matching if there is no pair of distinct

edges in P with a common vertex and any vertex in G belongs to one of the edges in P . A

graph G is called bipartite if V (G) = V ∪W such that V ∩W = ∅ and both V and W and

independent sets in G. A bipartite graph is called complete bipartite if each vertex in V is

adjacent to each vertex of W .

Let G be a graph on the vertex set V (G) = {v1, . . . , vn}. Let K be a field and S =

K[x1, . . . , xn] the polynomial ring on n variables with coefficients in K. The edge ideal I(G)

of G is defined to be the ideal of S generated by all square-free monomials xixj , provided

that, vi ∼ vj in G. The quotient ring R(G) = S/I(G) is called the edge ring of the graph G.

Let [n] = {1, 2, . . . , n}. A (finite) simplicial complex ∆ on n vertices is a collection of

subsets of [n] such that the following conditions hold:
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i) {i} ∈ ∆ for each i ∈ [n],

ii) if E ∈ ∆ and F ⊆ E, then F ∈ ∆.

An element of ∆ is called a face and a maximal face with respect to inclusion order, is called

a facet. The dimension of a face F ∈ ∆ is defined to be |F | − 1 and the dimension of ∆ is

the maximum of the dimensions of its faces. Faces with dimension 0 are called vertices.

Let ∆ be a simplicial complex on [n] and S = K[x1, . . . , xn]. Let I∆ be the ideal of

S generated by all square-free monomials xi1 · · ·xis , provided that, {i1, . . . , is} 6∈ ∆. The

quotient ring K[∆] = S/I∆ is called the Stanley-Reisner ring of the simplicial complex ∆.

Let vi be a vertex in a graph G and xi be the corresponding variable in the polynomial ring.

In this paper, we usually use xi instead of vi. The same notation is used for vertices of a

simplicial complex.

For a graph G, there is a simplicial complex which is called independence complex of G

and is defined by

∆G = {F ⊆ V : F is an independent set in G}.

Let R be a commutative ring with an identity. The depth of R, denoted by depth(R),

is the largest integer r such that there is a sequence f1, . . . , fr of elements of R such that

fi is not a zero-divisor in S/(f1, . . . , fi−1) for all 1 ≤ i ≤ r, and (f1, . . . , fr) 6= R. Such

a sequence is called a regular sequence. The depth is an important invariant of a ring.

It is bounded by another important invariant, the Krull dimension of the ring denoted by

dim(R); the length of the longest chain of prime ideals in the ring. The ring R is called

Cohen-Macaulay if depth(R) = dim(R). A graph G (a simplicial complex ∆, respectively)

is called Cohen-Macaulay if the ring R(G) (the ring K[∆], respectively) is Cohen-Macaulay.

It is well known that dim(K[∆]) = dim(∆) + 1 (see [5]).

A simplicial complex ∆ is called pure if all its facets have the same cardinality. A graph

G is called well covered or unmixed if all maximal independent sets of vertices of G have the

same cardinality. It is clear that a graph G is unmixed if and only if the simplicial complex

∆G is pure. It is well known that a Cohen-Macaulay simplicial complex is pure ([5]), but the

converse is not true, i.e., there are pure simplicial complexes which are not Cohen-Macaulay.

Also it is known that if G is a Cohen-Macaulay graph, then G, the complement of G, is

connected [5].

A pure simplicial complex ∆ on vertex set [n] is called completely balanced if there is a

partition of [n] as C1, . . . , Cr such that each facet of ∆ has exactly one vertex in common

with each Ci. Here, a partition means that C1 ∪ · · · ∪ Cr = [n], and for each i 6= j,

Ci ∩ Cj = ∅. Such simplicial complexes were studied by R. Stanley [8]. He proved that, in

a completely balanced simplicial complex with partition C1, . . . , Cr, the elements θ1, . . . , θr

form a homogeneous system of parameters, where

θi =
∑

j∈Ci

x̄j ,

where, x̄i denotes the image of xi in K[∆]. By a homogeneous system of parameters in

a standard graded ring R, we mean a set of homogeneous elements θ1, . . . , θr of nonzero

degrees such that dim(R/(θ1, . . . , θr)) = 0.
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2 Main Results

M. Estrada and R. H. Villarreal in [2] have proved that, for a bipartite graph G, Cohen-

Macaulayness and shellability are equivalent and, if G is Cohen-Macaulay, then, there is a

vertex v in G such that G \ {v} is again Cohen-Macaulay.

Villarreal has proved in [12] that a bipartite graph G with parts V and W is unmixed

if and only if |V | = |W | and there is an order on vertices of V and W as x1, . . . , xn and

y1, . . . , yn respectively, such that:

1) xi ∼ yi for i = 1, . . . , n,

2) for each 1 ≤ i < j < k ≤ n if xi ∼ yj and xj ∼ yk, then xi ∼ yk.

J. Herzog and T. Hibi in [4] have proved that, a bipartite graph G is Cohen-Macaulay if

and only if it is unmixed (has properties (1) and (2) above) and:

3) if xi ∼ yj, then i ≤ j.

In these results, one needs to find an appropriate order on the vertices of G for which the

criterion holds. Therefore, checking the Cohen-Macaulayness of a given bipartite graph

in practice is rather complicated. In this paper, we show that one can check Cohen-

Macaulayness of a given bipartite graph in a quite easy way. We prove that, a graph G

is Cohen-Macaulay if and only if it is unmixed and has a unique perfect matching. These

kind of graphs have applications in computational biology. The unique maximum-weight

perfect matching can be used to predict the folding structure of RNA molecules (see [10]).

Our main theorem is the following.

Theorem 1 Let G be a bipartite graph with parts V and W . Then, G is Cohen-Macaulay

if and only if there is a perfect matching in G as {x1, y1}, . . . , {xn, yn}, such that, xi ∈ V

and yi ∈ W for i = 1, . . . , n, and the following two conditions hold.

1) The induced subgraph on N(xi) ∪N(yi) is a complete bipartite graph, for i = 1, . . . , n.

2) If xi ∼ yj for i 6= j, then, xj 6∼ yi.

Before proving the theorem, we prove some preliminary lemmas.

Lemma 2 Let G be an unmixed bipartite graph with a perfect matching {x1, y1}, . . . , {xn, yn}.

Then, G is Cohen-Macaulay if and only if the sequence x̄1 + ȳ1, . . . , x̄n + ȳn is a regular se-

quence in R(G).

Proof. The sets {x1, y1}, . . . , {xn, yn} form a partition of vertices of G and any maximal

independent set intersects each of them in exactly one vertex. Thus, the simplicial complex

∆G is completely balanced. By Corollary 4.2 and its remark in [8], the sequence x1 +

y1, . . . , xn + yn is a system of parameters in R(G). By Theorem 17.4 in [7], R(G) is Cohen-

Macaulay if and only if every system of parameters is a regular sequence in R(G). �

Lemma 3 Let I be an ideal of S = K[x1, . . . , xn], generated by some quadratic monomials.

Let for some i, j, 1 ≤ i < j ≤ n, x2
i 6∈ I and x2

j 6∈ I. Then, x̄i + x̄j is a zero-divisor in S/I

if and only if one of the following conditions holds.

i) There is xk, k 6∈ {i, j} such that x̄k(x̄i + x̄j) = 0 or,
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ii) There are integers k, l, 1 ≤ k < l ≤ n, both distinct from i and j, such that xkxl 6∈ I and

x̄kx̄l(x̄i + x̄j) = 0.

Here, x̄i denotes the image of xi in S/I.

Proof. Without loss of generality, we may assume that i = 1 and j = 2. It is well known

that a polynomial f in S belongs to a monomial ideal I if and only if all monomials of f

belong to I. Let ≺ be the lexicographic order on monomials of S induced by x1 ≻ x2 ≻

· · · ≻ xn. Let x̄1 + x̄2 be a zero-divisor in S/I. Then, there is a polynomial h in S such

that h̄ is nonzero in S/I and h̄(x̄1 + x̄2) = 0 or equivalently, f = h(x1 + x2) ∈ I. Let

h = h1 + h2 + · · · + hr such that hi’s are monomials and h1 ≻ h2 ≻ · · · ≻ hr. We may

assume that h1 6∈ I. Now, h1x1 is the greatest monomial of f with respect to the order ≺

which can not be canceled by other monomials. Therefore, h1x1 ∈ I and there is a quadratic

monomial in the monomial generating set of I which divides h1x1 and does not divide h1.

This monomial must be of the form x1xk for some k, 1 < k ≤ n. On the other hand,

x1 ∤ h1 because xk|h1 and h1 6∈ I. Since the order is lexicographic, x1 does not divide any

other monomials in h. Therefore, in the polynomial hx1 + hx2, there is no monomial of the

summand hx2, which is divisible by x1. In this summand, h1x2 is the greatest monomial

with respect to ≺ and can not be canceled by other monomials. This implies that h1x2 ∈ I.

Similar to the above argument, there is a quadratic monomial in the generating set of I

which divides h1x2 but not h1. This monomial must be of the form x2xl for some 2 < l ≤ n.

We also have x2 ∤ h1 but xk|h1 and xl|h1. If k = l, then, xk(x1 + x2) ∈ I and if k 6= l, then,

xkxl(x1 + x2) ∈ I. Note that, xkxl 6∈ I because xkxl|h1 and h1 6∈ I. This completes the

proof in one direction. The converse is trivial. �

Proof of the Theorem 1. We proceed the proof in 3 steps. First we prove that a bipartite

graph G is unmixed if and only if there is a perfect matching in G satisfying condition 1.

Then, in Step 2, we prove that for an unmixed bipartite graph, condition 2 is necessary

for Cohen-Macaulayness. In Step 3 we prove that, condition 2 is also sufficient for Cohen-

Macaulayness of such a graph.

Step 1. Let G be unmixed. There is no isolated vertex and any vertex in V is adjacent

to some vertices in W . Therefore, there is no vertex in V independent to the set W . This

means that W is a maximal independent set in G. Similarly, V is a maximal independent

set. By unmixedness of G, |V | = |W |. Let A ⊆ V be a nonempty set. Suppose |N(A)| < |A|.

There is no edge between A and W \N(A). Therefore, A∪(W \N(A)) is an independent set

and its size is strictly greater than |W |, which is a contradiction. Therefore, |N(A)| ≥ |A|

for each nonempty subset A of V . Therefore, by the marriage theorem of Hall [1], there is

a perfect matching between V and W .

Now, let V = {x1, . . . , xn}, W = {y1, . . . , yn} and {x1, y1}, . . . , {xn, yn} be a perfect

matching in G. The graph G is unmixed and any maximal independent set of vertices in G

has cardinality n. Therefore, any maximal independent set intersects each edge of the perfect

matching in exactly one vertex. Suppose for some j, 1 ≤ j ≤ n, the induced subgraph on

N(xj)∪N(yj) is not a complete bipartite graph. Then, there are x ∈ N(yj) and y ∈ N(xj)

such that x 6∼ y. The set {x, y} is independent and so there is a maximal independent set
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containing it. But, this maximal independent set does not meet the edge {xj, yj} which is

a contradiction. Therefore, condition 1 holds.

Conversely, assume that there is a perfect matching {x1, y1}, . . . , {xn, yn} in G which

satisfies condition 1. Let A be a maximal independent set in G. Then A meets each edge

in the perfect matching in at most one vertex. Suppose that for some j, 1 ≤ j ≤ n,

A ∩ {xj , yj} = ∅. Then, neither xj nor yj is independent to A, and there are x, y ∈ A

such that x ∼ yj and y ∼ xj . But, x and y are not adjacent and the induced subgraph

on N(xj) ∪N(yj) is not a complete bipartite graph, which is a contradiction. Therefore, A

meets any edge in the perfect matching and has cardinality n. It means that G is unmixed.

Step 2. Let G be a bipartite graph with a perfect matching which satisfies condition 1

but condition 2 fails. That is, for some i and j, 1 ≤ i < j ≤ n, we have xi ∼ yj and xj ∼ yi.

Then, in the quotient ring R(G)/(xi + yi), the element x̄i is nonzero and x̄i(x̄j + ȳj) = 0

because x̄i = −ȳi. Therefore, x̄j + ȳj is a zero-divisor in R(G)/(xi + yi). This means that

the sequence x̄1 + ȳ1, . . . , x̄n + ȳn is not a regular sequence in R(G) and hence by Lemma 2,

R(G) is not Cohen-Macaulay.

Step 3. Let G be a bipartite graph with a perfect matching satisfying condition 1. In this

case, dim(R(G)) = n and to prove that R(G) is Cohen-Macaulay, it is enough to show that

the sequence x̄1+ ȳ1, . . . , x̄n+ ȳn is a regular sequence in R(G) (Lemma 2). For an integer i,

1 ≤ i < n, the ring R(G)/(x1+y1, . . . , xi−1+yi−1) can be viewed as the ring R′(G) obtained

by R(G) identifying xj with −yj for j = 1, . . . , i − 1. By the Lemma 3 and its proof, the

only possibility for x̄i + ȳi to be zero-divisor in R′(G) is that there is j, 1 ≤ j ≤ i− 1, such

that x̄j(x̄i + ȳi) = 0. Therefore, x̄j ȳi = 0 and x̄j x̄i = 0 or equivalently, ȳj x̄i = 0. Therefore,

xj ∼ yi and yj ∼ xi. But, in this case, condition 2 fails. This completes the proof. �

Proposition 4 Condition 1 in Theorem 1 which is equivalent to unmixedness of a bipartite

graph is also equivalent to say that non of the polynomials x1+y1, . . . , xn+yn is a zero-divisor

in R(G).

Proof. The assertion is clear by the Lemma 3 and the Theorem 1. �

Remark 5 Condition 2 in Theorem 1 is equivalent to say that, for each i and j, 1 ≤ i <

j ≤ n, the induced subgraph on vertices {xi, yi, xj , yj} has connected complement.

Corollary 6 Let G be a bipartite Cohen-Macaulay graph and let {xi, yi} be any edge in the

perfect matching mentioned in Theorem 1. Then, G \ {xi, yi} is again Cohen-Macaulay.

Proof. Here, by G \ {xi, yi} we mean the graph obtained by deleting vertices xi and yi

and all edges passing through one of these vertices. It is clear that if condition 1 or 2 in

Theorem 1 holds for G, then, it holds for G \ {xi, yi} for each i = 1, . . . , n. �

Proposition 7 Let G be a bipartite Cohen-Macaulay graph with parts V and W . Then,

there is at least one vertex of degree one in each part.
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Proof. Let y be a vertex in W such that for any other vertex y′ ∈ W , we have deg(y′) ≤

deg(y). Let x ∈ V be the vertex such that {x, y} is in a perfect matching in G. If deg(x) > 1,

then there is a vertex y′ ∈ W \ {y} such that x ∼ y′. Let x′ be a vertex in V \ {x} such

that {x′, y′} is in the perfect matching. Since G is Cohen-Macaulay, the induced subgraph

on N(x) ∪ N(y) is a complete bipartite graph and x′ 6∈ N(y). Then, y′ is adjacent to

each vertex in N(y) ∪ {x′}. This means that deg(y′) > deg(y), which is a contradiction.

Therefore, deg(x) = 1. �

Let G be a Cohen-Macaulay bipartite graph. There are some vertices in both parts with

degree one. If we remove the vertex adjacent to a vertex of degree one, the edge consisting

of these two vertices in a perfect matching will be removed and the remaining graph is also

Cohen-Macaulay.

Corollary 8 Let G be a Cohen-Macaulay bipartite graph. Then, there is a unique perfect

matching in G.

Proof. Let V and W be two parts of G. By the Theorem 1, there is a perfect matching.

Let P be a perfect matching in G. By the above proposition, there is a vertex x1 of degree

one in V . Let y1 ∈ W be the unique vertex adjacent to x1. Then {x1, y1} ∈ P . The graph

G \ {x1, y1} is again Cohen-Macaulay and V \ {x1} has a vertex of degree one as x2. Let

y2 ∈ W \ {y1} be the unique vertex adjacent to x2. Then, {x2, y2} ∈ P . Continuing this

process, P will be uniquely determined. �

Corollary 9 Let G be an unmixed bipartite graph. Then, the following conditions are equiv-

alent.

i) G is Cohen-Macaulay.

ii) There is a unique perfect matching in G.

iii) For each two edges e1, e2 in a perfect matching, the complement of the induced subgraph

on vertices of e1 and e2 is connected.

iv) For a perfect matching P in G, there is an order on edges of P such that P =

{{x1, y1}, . . . , {xn, yn}} and xi ∼ yj implies i ≤ j.

Proof. (i→ii) This is proved in Corollary 8. Let G be unmixed but not Cohen-Macaulay.

Then, there is a perfect matching and two edges in the perfect matching as {xi, yi} and

{xj , yj} such that xi ∼ yj and xj ∼ yi. Substituting {xi, yi} and {xj , yj} by {xi, yj} and

{xj , yi}, we get a different perfect matching. This proves (ii→i). The equivalence of (i) and

(iii) is clear by Theorem 1 and Remark 5. To prove (i→iv), let x1, . . . , xn be vertices of

V such that deg(xi) ≥ deg(xi+1) for each i = 1, . . . , n − 1. Then, deg(y1) = 1. Remove

{x1, y1}. In the remaining graph, deg(y2) = 1 and continuing this process shows that there is

no any edge between xi and yj if i > j. Finally, condition (iv) clearly implies condition (iii).

�

Now for a given bipartite graph G, we present a fast polynomial-time algorithm to check

whether G is Cohen-Macaulay.
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Algorithm 10 Let G be a given bipartite graph with parts V and W , |V | = |W | = n.

Step 1. Take i = 0.

Step 2. If there is no vertex with degree 1 in V , go to Step 6.

Step 3. Set i = i + 1. Choose a vertex of degree one in V and name it xi. Name the

vertex in W adjacent to xi to be yi. Take V = V \ {xi},W = W \ {yi}. If i < n, go

to Step 2.

Step 4. If there is j, 2 ≤ j ≤ n such that, a vertex in N(xj) and a vertex in N(yj)

are not adjacent, then, go to Step 6.

Step 5. Write ”G is Cohen-Macaulay” and end the algorithm.

Step 6. Write ”G is not Cohen-Macaulay” and end the algorithm.
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