Cohen-Macaulayness of bipartite graphs, revisited

Rashid Zaare-Nahandi
Institute for Advanced Studies in Basic Sciences, Zanjan 45195, Iran
E-mail: rashidzn@iasbs.ac.ir

Abstract

Cohen-Macaulayness of bipartite graphs is investigated by several mathematicians and has been characterized combinatorially. In this paper, we give some different combinatorial conditions for a bipartite graph which are equivalent to Cohen-Macaulayness of the graph. We prove that a bipartite graph is Cohen-Macaulay if and only if it is well-covered and has a unique perfect matching. We also provide a fast algorithm to check Cohen-Macaulayness of a given bipartite graph. Key words: Edge ideal, Cohen-Macaulay ring, bipartite graph, well-covered. 2010 MR Subject Classification: 13F55, 05C25, 05E45.

1 Introduction an preliminaries

Characterization and classification of Cohen-Macaulay graphs, specially bipartite graphs, have been extensively studied in the last decades (e.g. see [2], [4], [6], [11] and [3]). A thorough background to the subject is provided in the above references and [9]. To make this note self-contained, we review some of the basic notions.

Throughout this paper, all graphs are finite and simple with no vertex of degree zero. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For two adjacent vertices v and w in G, we write $v \sim w$. The set of all vertices of G adjacent to a vertex v is denoted by $N(v)$. We say that a set $F \subseteq V(G)$ is an independent set in G if no two vertices of F are adjacent. A set $P \subseteq E(G)$ is called a perfect matching if there is no pair of distinct edges in P with a common vertex and any vertex in G belongs to one of the edges in P. A graph G is called bipartite if $V(G)=V \cup W$ such that $V \cap W=\varnothing$ and both V and W and independent sets in G. A bipartite graph is called complete bipartite if each vertex in V is adjacent to each vertex of W.

Let G be a graph on the vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Let K be a field and $S=$ $K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring on n variables with coefficients in K. The edge ideal $I(G)$ of G is defined to be the ideal of S generated by all square-free monomials $x_{i} x_{j}$, provided that, $v_{i} \sim v_{j}$ in G. The quotient ring $R(G)=S / I(G)$ is called the edge ring of the graph G.

Let $[n]=\{1,2, \ldots, n\}$. A (finite) simplicial complex Δ on n vertices is a collection of subsets of $[n]$ such that the following conditions hold:
i) $\{i\} \in \Delta$ for each $i \in[n]$,
ii) if $E \in \Delta$ and $F \subseteq E$, then $F \in \Delta$.

An element of Δ is called a face and a maximal face with respect to inclusion order, is called a facet. The dimension of a face $F \in \Delta$ is defined to be $|F|-1$ and the dimension of Δ is the maximum of the dimensions of its faces. Faces with dimension 0 are called vertices.

Let Δ be a simplicial complex on $[n]$ and $S=K\left[x_{1}, \ldots, x_{n}\right]$. Let I_{Δ} be the ideal of S generated by all square-free monomials $x_{i_{1}} \cdots x_{i_{s}}$, provided that, $\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta$. The quotient ring $K[\Delta]=S / I_{\Delta}$ is called the Stanley-Reisner ring of the simplicial complex Δ. Let v_{i} be a vertex in a graph G and x_{i} be the corresponding variable in the polynomial ring. In this paper, we usually use x_{i} instead of v_{i}. The same notation is used for vertices of a simplicial complex.

For a graph G, there is a simplicial complex which is called independence complex of G and is defined by

$$
\Delta_{G}=\{F \subseteq V: F \text { is an independent set in } G\}
$$

Let R be a commutative ring with an identity. The depth of R, denoted by $\operatorname{depth}(R)$, is the largest integer r such that there is a sequence f_{1}, \ldots, f_{r} of elements of R such that f_{i} is not a zero-divisor in $S /\left(f_{1}, \ldots, f_{i-1}\right)$ for all $1 \leq i \leq r$, and $\left(f_{1}, \ldots, f_{r}\right) \neq R$. Such a sequence is called a regular sequence. The depth is an important invariant of a ring. It is bounded by another important invariant, the Krull dimension of the ring denoted by $\operatorname{dim}(R)$; the length of the longest chain of prime ideals in the ring. The ring R is called Cohen-Macaulay if $\operatorname{depth}(R)=\operatorname{dim}(R)$. A graph G (a simplicial complex Δ, respectively) is called Cohen-Macaulay if the $\operatorname{ring} R(G)$ (the ring $K[\Delta]$, respectively) is Cohen-Macaulay. It is well known that $\operatorname{dim}(K[\Delta])=\operatorname{dim}(\Delta)+1$ (see [5]).

A simplicial complex Δ is called pure if all its facets have the same cardinality. A graph G is called well covered or unmixed if all maximal independent sets of vertices of G have the same cardinality. It is clear that a graph G is unmixed if and only if the simplicial complex Δ_{G} is pure. It is well known that a Cohen-Macaulay simplicial complex is pure ([5]), but the converse is not true, i.e., there are pure simplicial complexes which are not Cohen-Macaulay. Also it is known that if G is a Cohen-Macaulay graph, then \bar{G}, the complement of G, is connected [5].

A pure simplicial complex Δ on vertex set $[n]$ is called completely balanced if there is a partition of $[n]$ as C_{1}, \ldots, C_{r} such that each facet of Δ has exactly one vertex in common with each C_{i}. Here, a partition means that $C_{1} \cup \cdots \cup C_{r}=[n]$, and for each $i \neq j$, $C_{i} \cap C_{j}=\varnothing$. Such simplicial complexes were studied by R. Stanley [8]. He proved that, in a completely balanced simplicial complex with partition C_{1}, \ldots, C_{r}, the elements $\theta_{1}, \ldots, \theta_{r}$ form a homogeneous system of parameters, where

$$
\theta_{i}=\sum_{j \in C_{i}} \bar{x}_{j}
$$

where, \bar{x}_{i} denotes the image of x_{i} in $K[\Delta]$. By a homogeneous system of parameters in a standard graded ring R, we mean a set of homogeneous elements $\theta_{1}, \ldots, \theta_{r}$ of nonzero degrees such that $\operatorname{dim}\left(R /\left(\theta_{1}, \ldots, \theta_{r}\right)\right)=0$.

2 Main Results

M. Estrada and R. H. Villarreal in [2] have proved that, for a bipartite graph G, CohenMacaulayness and shellability are equivalent and, if G is Cohen-Macaulay, then, there is a vertex v in G such that $G \backslash\{v\}$ is again Cohen-Macaulay.

Villarreal has proved in [12] that a bipartite graph G with parts V and W is unmixed if and only if $|V|=|W|$ and there is an order on vertices of V and W as x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} respectively, such that:

1) $x_{i} \sim y_{i}$ for $i=1, \ldots, n$,
2) for each $1 \leq i<j<k \leq n$ if $x_{i} \sim y_{j}$ and $x_{j} \sim y_{k}$, then $x_{i} \sim y_{k}$.
J. Herzog and T. Hibi in [4] have proved that, a bipartite graph G is Cohen-Macaulay if and only if it is unmixed (has properties (1) and (2) above) and:
3) if $x_{i} \sim y_{j}$, then $i \leq j$.

In these results, one needs to find an appropriate order on the vertices of G for which the criterion holds. Therefore, checking the Cohen-Macaulayness of a given bipartite graph in practice is rather complicated. In this paper, we show that one can check CohenMacaulayness of a given bipartite graph in a quite easy way. We prove that, a graph G is Cohen-Macaulay if and only if it is unmixed and has a unique perfect matching. These kind of graphs have applications in computational biology. The unique maximum-weight perfect matching can be used to predict the folding structure of RNA molecules (see [10]). Our main theorem is the following.

Theorem 1 Let G be a bipartite graph with parts V and W. Then, G is Cohen-Macaulay if and only if there is a perfect matching in G as $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$, such that, $x_{i} \in V$ and $y_{i} \in W$ for $i=1, \ldots, n$, and the following two conditions hold.

1) The induced subgraph on $N\left(x_{i}\right) \cup N\left(y_{i}\right)$ is a complete bipartite graph, for $i=1, \ldots, n$.
2) If $x_{i} \sim y_{j}$ for $i \neq j$, then, $x_{j} \nsim y_{i}$.

Before proving the theorem, we prove some preliminary lemmas.
Lemma 2 Let G be an unmixed bipartite graph with a perfect matching $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$. Then, G is Cohen-Macaulay if and only if the sequence $\bar{x}_{1}+\bar{y}_{1}, \ldots, \bar{x}_{n}+\bar{y}_{n}$ is a regular sequence in $R(G)$.

Proof. The sets $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$ form a partition of vertices of G and any maximal independent set intersects each of them in exactly one vertex. Thus, the simplicial complex Δ_{G} is completely balanced. By Corollary 4.2 and its remark in [8], the sequence $x_{1}+$ $y_{1}, \ldots, x_{n}+y_{n}$ is a system of parameters in $R(G)$. By Theorem 17.4 in [7], $R(G)$ is CohenMacaulay if and only if every system of parameters is a regular sequence in $R(G)$.

Lemma 3 Let I be an ideal of $S=K\left[x_{1}, \ldots, x_{n}\right]$, generated by some quadratic monomials. Let for some $i, j, 1 \leq i<j \leq n, x_{i}^{2} \notin I$ and $x_{j}^{2} \notin I$. Then, $\bar{x}_{i}+\bar{x}_{j}$ is a zero-divisor in S / I if and only if one of the following conditions holds.
i) There is $x_{k}, k \notin\{i, j\}$ such that $\bar{x}_{k}\left(\bar{x}_{i}+\bar{x}_{j}\right)=0$ or,
ii) There are integers $k, l, 1 \leq k<l \leq n$, both distinct from i and j, such that $x_{k} x_{l} \notin I$ and $\bar{x}_{k} \bar{x}_{l}\left(\bar{x}_{i}+\bar{x}_{j}\right)=0$.
Here, \bar{x}_{i} denotes the image of x_{i} in S / I.
Proof. Without loss of generality, we may assume that $i=1$ and $j=2$. It is well known that a polynomial f in S belongs to a monomial ideal I if and only if all monomials of f belong to I. Let \prec be the lexicographic order on monomials of S induced by $x_{1} \succ x_{2} \succ$ $\cdots \succ x_{n}$. Let $\bar{x}_{1}+\bar{x}_{2}$ be a zero-divisor in S / I. Then, there is a polynomial h in S such that \bar{h} is nonzero in S / I and $\bar{h}\left(\bar{x}_{1}+\bar{x}_{2}\right)=0$ or equivalently, $f=h\left(x_{1}+x_{2}\right) \in I$. Let $h=h_{1}+h_{2}+\cdots+h_{r}$ such that h_{i} 's are monomials and $h_{1} \succ h_{2} \succ \cdots \succ h_{r}$. We may assume that $h_{1} \notin I$. Now, $h_{1} x_{1}$ is the greatest monomial of f with respect to the order \prec which can not be canceled by other monomials. Therefore, $h_{1} x_{1} \in I$ and there is a quadratic monomial in the monomial generating set of I which divides $h_{1} x_{1}$ and does not divide h_{1}. This monomial must be of the form $x_{1} x_{k}$ for some $k, 1<k \leq n$. On the other hand, $x_{1} \nmid h_{1}$ because $x_{k} \mid h_{1}$ and $h_{1} \notin I$. Since the order is lexicographic, x_{1} does not divide any other monomials in h. Therefore, in the polynomial $h x_{1}+h x_{2}$, there is no monomial of the summand $h x_{2}$, which is divisible by x_{1}. In this summand, $h_{1} x_{2}$ is the greatest monomial with respect to \prec and can not be canceled by other monomials. This implies that $h_{1} x_{2} \in I$. Similar to the above argument, there is a quadratic monomial in the generating set of I which divides $h_{1} x_{2}$ but not h_{1}. This monomial must be of the form $x_{2} x_{l}$ for some $2<l \leq n$. We also have $x_{2} \nmid h_{1}$ but $x_{k} \mid h_{1}$ and $x_{l} \mid h_{1}$. If $k=l$, then, $x_{k}\left(x_{1}+x_{2}\right) \in I$ and if $k \neq l$, then, $x_{k} x_{l}\left(x_{1}+x_{2}\right) \in I$. Note that, $x_{k} x_{l} \notin I$ because $x_{k} x_{l} \mid h_{1}$ and $h_{1} \notin I$. This completes the proof in one direction. The converse is trivial.

Proof of the Theorem 1. We proceed the proof in 3 steps. First we prove that a bipartite graph G is unmixed if and only if there is a perfect matching in G satisfying condition 1. Then, in Step 2, we prove that for an unmixed bipartite graph, condition 2 is necessary for Cohen-Macaulayness. In Step 3 we prove that, condition 2 is also sufficient for CohenMacaulayness of such a graph.

Step 1. Let G be unmixed. There is no isolated vertex and any vertex in V is adjacent to some vertices in W. Therefore, there is no vertex in V independent to the set W. This means that W is a maximal independent set in G. Similarly, V is a maximal independent set. By unmixedness of $G,|V|=|W|$. Let $A \subseteq V$ be a nonempty set. Suppose $|N(A)|<|A|$. There is no edge between A and $W \backslash N(A)$. Therefore, $A \cup(W \backslash N(A))$ is an independent set and its size is strictly greater than $|W|$, which is a contradiction. Therefore, $|N(A)| \geq|A|$ for each nonempty subset A of V. Therefore, by the marriage theorem of Hall [1], there is a perfect matching between V and W.

Now, let $V=\left\{x_{1}, \ldots, x_{n}\right\}, W=\left\{y_{1}, \ldots, y_{n}\right\}$ and $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$ be a perfect matching in G. The graph G is unmixed and any maximal independent set of vertices in G has cardinality n. Therefore, any maximal independent set intersects each edge of the perfect matching in exactly one vertex. Suppose for some $j, 1 \leq j \leq n$, the induced subgraph on $N\left(x_{j}\right) \cup N\left(y_{j}\right)$ is not a complete bipartite graph. Then, there are $x \in N\left(y_{j}\right)$ and $y \in N\left(x_{j}\right)$ such that $x \nsim y$. The set $\{x, y\}$ is independent and so there is a maximal independent set
containing it. But, this maximal independent set does not meet the edge $\left\{x_{j}, y_{j}\right\}$ which is a contradiction. Therefore, condition 1 holds.

Conversely, assume that there is a perfect matching $\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}$ in G which satisfies condition 1. Let A be a maximal independent set in G. Then A meets each edge in the perfect matching in at most one vertex. Suppose that for some $j, 1 \leq j \leq n$, $A \cap\left\{x_{j}, y_{j}\right\}=\varnothing$. Then, neither x_{j} nor y_{j} is independent to A, and there are $x, y \in A$ such that $x \sim y_{j}$ and $y \sim x_{j}$. But, x and y are not adjacent and the induced subgraph on $N\left(x_{j}\right) \cup N\left(y_{j}\right)$ is not a complete bipartite graph, which is a contradiction. Therefore, A meets any edge in the perfect matching and has cardinality n. It means that G is unmixed.

Step 2. Let G be a bipartite graph with a perfect matching which satisfies condition 1 but condition 2 fails. That is, for some i and $j, 1 \leq i<j \leq n$, we have $x_{i} \sim y_{j}$ and $x_{j} \sim y_{i}$. Then, in the quotient ring $R(G) /\left(x_{i}+y_{i}\right)$, the element \bar{x}_{i} is nonzero and $\bar{x}_{i}\left(\bar{x}_{j}+\bar{y}_{j}\right)=0$ because $\bar{x}_{i}=-\bar{y}_{i}$. Therefore, $\bar{x}_{j}+\bar{y}_{j}$ is a zero-divisor in $R(G) /\left(x_{i}+y_{i}\right)$. This means that the sequence $\bar{x}_{1}+\bar{y}_{1}, \ldots, \bar{x}_{n}+\bar{y}_{n}$ is not a regular sequence in $R(G)$ and hence by Lemma 2 , $R(G)$ is not Cohen-Macaulay.

Step 3. Let G be a bipartite graph with a perfect matching satisfying condition 1. In this case, $\operatorname{dim}(R(G))=n$ and to prove that $R(G)$ is Cohen-Macaulay, it is enough to show that the sequence $\bar{x}_{1}+\bar{y}_{1}, \ldots, \bar{x}_{n}+\bar{y}_{n}$ is a regular sequence in $R(G)$ (Lemma 2). For an integer i, $1 \leq i<n$, the ring $R(G) /\left(x_{1}+y_{1}, \ldots, x_{i-1}+y_{i-1}\right)$ can be viewed as the ring $R^{\prime}(G)$ obtained by $R(G)$ identifying x_{j} with $-y_{j}$ for $j=1, \ldots, i-1$. By the Lemma 3 and its proof, the only possibility for $\bar{x}_{i}+\bar{y}_{i}$ to be zero-divisor in $R^{\prime}(G)$ is that there is $j, 1 \leq j \leq i-1$, such that $\bar{x}_{j}\left(\bar{x}_{i}+\bar{y}_{i}\right)=0$. Therefore, $\bar{x}_{j} \bar{y}_{i}=0$ and $\bar{x}_{j} \bar{x}_{i}=0$ or equivalently, $\bar{y}_{j} \bar{x}_{i}=0$. Therefore, $x_{j} \sim y_{i}$ and $y_{j} \sim x_{i}$. But, in this case, condition 2 fails. This completes the proof.

Proposition 4 Condition 1 in Theorem 1 which is equivalent to unmixedness of a bipartite graph is also equivalent to say that non of the polynomials $x_{1}+y_{1}, \ldots, x_{n}+y_{n}$ is a zero-divisor in $R(G)$.

Proof. The assertion is clear by the Lemma 3 and the Theorem 1.

Remark 5 Condition 2 in Theorem 1 is equivalent to say that, for each i and $j, 1 \leq i<$ $j \leq n$, the induced subgraph on vertices $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ has connected complement.

Corollary 6 Let G be a bipartite Cohen-Macaulay graph and let $\left\{x_{i}, y_{i}\right\}$ be any edge in the perfect matching mentioned in Theorem 1. Then, $G \backslash\left\{x_{i}, y_{i}\right\}$ is again Cohen-Macaulay.

Proof. Here, by $G \backslash\left\{x_{i}, y_{i}\right\}$ we mean the graph obtained by deleting vertices x_{i} and y_{i} and all edges passing through one of these vertices. It is clear that if condition 1 or 2 in Theorem 1 holds for G, then, it holds for $G \backslash\left\{x_{i}, y_{i}\right\}$ for each $i=1, \ldots, n$.

Proposition 7 Let G be a bipartite Cohen-Macaulay graph with parts V and W. Then, there is at least one vertex of degree one in each part.

Proof. Let y be a vertex in W such that for any other vertex $y^{\prime} \in W$, we have $\operatorname{deg}\left(y^{\prime}\right) \leq$ $\operatorname{deg}(y)$. Let $x \in V$ be the vertex such that $\{x, y\}$ is in a perfect matching in G. If $\operatorname{deg}(x)>1$, then there is a vertex $y^{\prime} \in W \backslash\{y\}$ such that $x \sim y^{\prime}$. Let x^{\prime} be a vertex in $V \backslash\{x\}$ such that $\left\{x^{\prime}, y^{\prime}\right\}$ is in the perfect matching. Since G is Cohen-Macaulay, the induced subgraph on $N(x) \cup N(y)$ is a complete bipartite graph and $x^{\prime} \notin N(y)$. Then, y^{\prime} is adjacent to each vertex in $N(y) \cup\left\{x^{\prime}\right\}$. This means that $\operatorname{deg}\left(y^{\prime}\right)>\operatorname{deg}(y)$, which is a contradiction. Therefore, $\operatorname{deg}(x)=1$.

Let G be a Cohen-Macaulay bipartite graph. There are some vertices in both parts with degree one. If we remove the vertex adjacent to a vertex of degree one, the edge consisting of these two vertices in a perfect matching will be removed and the remaining graph is also Cohen-Macaulay.

Corollary 8 Let G be a Cohen-Macaulay bipartite graph. Then, there is a unique perfect matching in G.

Proof. Let V and W be two parts of G. By the Theorem 1, there is a perfect matching. Let P be a perfect matching in G. By the above proposition, there is a vertex x_{1} of degree one in V. Let $y_{1} \in W$ be the unique vertex adjacent to x_{1}. Then $\left\{x_{1}, y_{1}\right\} \in P$. The graph $G \backslash\left\{x_{1}, y_{1}\right\}$ is again Cohen-Macaulay and $V \backslash\left\{x_{1}\right\}$ has a vertex of degree one as x_{2}. Let $y_{2} \in W \backslash\left\{y_{1}\right\}$ be the unique vertex adjacent to x_{2}. Then, $\left\{x_{2}, y_{2}\right\} \in P$. Continuing this process, P will be uniquely determined.

Corollary 9 Let G be an unmixed bipartite graph. Then, the following conditions are equivalent.
i) G is Cohen-Macaulay.
ii) There is a unique perfect matching in G.
iii) For each two edges e_{1}, e_{2} in a perfect matching, the complement of the induced subgraph on vertices of e_{1} and e_{2} is connected.
iv) For a perfect matching P in G, there is an order on edges of P such that $P=$ $\left\{\left\{x_{1}, y_{1}\right\}, \ldots,\left\{x_{n}, y_{n}\right\}\right\}$ and $x_{i} \sim y_{j}$ implies $i \leq j$.

Proof. (i $\rightarrow \mathrm{ii}$) This is proved in Corollary 8. Let G be unmixed but not Cohen-Macaulay. Then, there is a perfect matching and two edges in the perfect matching as $\left\{x_{i}, y_{i}\right\}$ and $\left\{x_{j}, y_{j}\right\}$ such that $x_{i} \sim y_{j}$ and $x_{j} \sim y_{i}$. Substituting $\left\{x_{i}, y_{i}\right\}$ and $\left\{x_{j}, y_{j}\right\}$ by $\left\{x_{i}, y_{j}\right\}$ and $\left\{x_{j}, y_{i}\right\}$, we get a different perfect matching. This proves (ii $\left.\rightarrow \mathrm{i}\right)$. The equivalence of (i) and (iii) is clear by Theorem 1 and Remark 5. To prove (i $\rightarrow \mathrm{iv}$), let x_{1}, \ldots, x_{n} be vertices of V such that $\operatorname{deg}\left(x_{i}\right) \geq \operatorname{deg}\left(x_{i+1}\right)$ for each $i=1, \ldots, n-1$. Then, $\operatorname{deg}\left(y_{1}\right)=1$. Remove $\left\{x_{1}, y_{1}\right\}$. In the remaining graph, $\operatorname{deg}\left(y_{2}\right)=1$ and continuing this process shows that there is no any edge between x_{i} and y_{j} if $i>j$. Finally, condition (iv) clearly implies condition (iii).

Now for a given bipartite graph G, we present a fast polynomial-time algorithm to check whether G is Cohen-Macaulay.

Algorithm 10 Let G be a given bipartite graph with parts V and $W,|V|=|W|=n$.
Step 1. Take $i=0$.
Step 2. If there is no vertex with degree 1 in V, go to Step 6 .
Step 3. Set $i=i+1$. Choose a vertex of degree one in V and name it x_{i}. Name the vertex in W adjacent to x_{i} to be y_{i}. Take $V=V \backslash\left\{x_{i}\right\}, W=W \backslash\left\{y_{i}\right\}$. If $i<n$, go to Step 2.

Step 4. If there is $j, 2 \leq j \leq n$ such that, a vertex in $N\left(x_{j}\right)$ and a vertex in $N\left(y_{j}\right)$ are not adjacent, then, go to Step 6.

Step 5. Write "G is Cohen-Macaulay" and end the algorithm.
Step 6. Write "G is not Cohen-Macaulay" and end the algorithm.

References

[1] R. Brualdi, Introductory Combinatorics, Fifth edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2010.
[2] M. Estrada and R. H. Villarreal, Cohen-Macaulay bipartite graphs, Arch. Math., 68 (1997) 124-128.
[3] H. Haghighi, S. Yassemi and R. Zaare-Nahandi, Bipartite S_{2} graphs are Cohen-Macaulay, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 53 (101) (2010), no. 2, 125-132.
[4] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs, and Alexander duality, J. Algebraic Comb., 22 (3) (2005) 289-302.
[5] J. Herzog and T. Hibi, Monomial Ideals, GTM 260, Springer-Verlag, 2011.
[6] J. Herzog, T. Hibi and X. Zheng, Cohen-Macaulay chordal graphs, J. Combin. Theory Series A, 113 (2006) 911-916.
[7] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1996.
[8] R. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc., 249 (1979) 139-157.
[9] R. Stanley, Combinatorics and Commutative Algebra, 2nd Ed., Progress in Math., Birkhauser, 1996.
[10] J. E. Tabaska, R. B. Cary, H. N. Gabow and G. D. Stormo. An RNA folding method capable of identifying pseudoknots and base triples, Bioinformatics, 14 (1998) 691-699.
[11] R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math., 66 (1990) 277-293.
[12] R. H. Villarreal, Unmixed bipartite graphs, Revista Colombiana de Matematicas, 41 (2007) 393-395.

