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Abstract. In this paper, we study the existence of the free and
cofree objects in the categories Dcpo-S (and Cpo-S) of all di-
rected complete posets (with bottom element) equipped with a
compatible right action of a dcpo-monoid (cpo-monoid) S, with
(strict) continuous action-preserving maps between them. More
precisely, we consider all forgetful functors between these cate-
gories and the categories Dcpo of dcpo’s, (CPo) of cpo’s, Pos of
posets, and Set of sets, and study the existence of their left and
right adjoints.

1. Introduction and Preliminaries

The category Dcpo of Directed Complete Partial Ordered sets plays
an important role in Theoretical Computer Science, and specially in
Domain Theory (see [1]). It has been proved that this category is
complete and cocomplete (see [1, 7]). The free dcpo over a poset has
been given in [4, 9, 12].

In this paper, we consider the free and cofree objects in the cate-
gory Dcpo-S of all S-dcpo’s; dcpo’s equipped with a compatible right
action of a dcpo-monoid S, with continuous action-preserving maps
between them. We take the forgetful functors from this category to
the categories of dcpo’s, posets, and sets, and study the existence of
their left and right adjoints. In fact, we consider the following three
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squares of forgetful functors

Cpo-S
U1−−−→ CpoyU3

yU2

Dcpo-S
U4−−−→ DcpoyU6

yU5

Pos-S
U7−−−→ PosyU9

yU8

Act-S
U10−−−→ Set

and study the existence of the left and the right adjoints for these
functors (that is, Ui-free and Ui-cofree objects). We recall that the
bottom square has been considered in [3], where it has been shown
that the horizontal forgetful functors, U7 and U10, have both left and
right adjoints, while the vertical forgetful functors, U8 and U9, have just
left adjoints (here we give a correction to the definition of the U9-free
functor given in [3]). Also, the left adjoint to the right vertical forgetful
functor, U5, in the middle square has been found in [4, 9, 12].

Here, we show that, although all the forgetful functors in these
squares have left adjoints (for the existence of U1-free, U3-free, and
U6-free, we had to add a condition on S), none of the vertical forgetful
functors in all the above three squares has a right adjoint. In finding
the left adjoints (free objects), we observe that the definition of the left
hand side vertical free functors is the same as the right hand side ones,
and just we need to define a proper S-action. Also we prove that all
the horizontal functors, except U1, have right adjoints (cofree objects).
In finding these right adjoints, we observe that the cofree horizontal
functors (when existing) are in some sense the restrictions of the bot-
tom horizontal cofree functors. The same is true for the free horizontal
functors.

In the following, we give some preliminaries needed in the sequel.
For more information about dcpo’s we refer to [8], about S-sets see
[6, 10], about S-posets see [3], and for S-dcpo’s refer to [11].

Let Pos denote the category of all partially ordered sets (posets) with
order-preserving (monotone) maps between them. A nonempty subset
D of a partially ordered set is called directed, denoted by D ⊆d P , if
for every a, b ∈ D there exists c ∈ D such that a, b ≤ c; and P is called
directed complete, or briefly a dcpo, if for every D ⊆d P , the directed
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join
∨d D exists in P . A dcpo which has a bottom element ⊥ is said

to be a cpo.
A dcpo map or a continuous map f : P → Q between dcpo’s is a map

with the property that for every D ⊆d P , f(D) is a directed subset of

Q and f(
∨d D) =

∨d f(D). A dcpo map f : P → Q between cpo’s
is called strict if f(⊥) = ⊥. Thus we have the categories Dcpo (and
Cpo) of all dcpo’s (cpo’s) with (strict) continuous maps between them.

We repeatedly apply the following lemmas in this paper.

Lemma 1.1. [1, 5] Let {Ai : i ∈ I} be a family of dcpo’s. Then
the directed join of a directed subset D ⊆d

∏
i∈I Ai is calculated as∨d D = (

∨d Di)i∈I where

Di = {a ∈ Ai : ∃d = (dk)k∈I ∈ D, a = di}
for all i ∈ I.

Lemma 1.2. [8] Let P , Q, and R be dcpo’s, and f : P × Q → R be
a function of two variables. Then f is continuous if and only if f is
continuous in each variable; which means that for all a ∈ P, b ∈ Q,
fa : Q → R (b 7→ f(a, b)) and fb : P → R (a 7→ f(a, b)) are continuous.

Remark 1.3. Recall that for a poset P , a nonempty subset I is called
an ideal if I is an (up-)directed down subset of P , and the collection
of all ideals of P is usually denoted by Id(P ). It has been stated in [4]
that for a poset P , Id(P ) is the free dcpo over P . Notice that Id(P )
is a dcpo in which the supremum of every directed subset is given by
union, and the down map ↓: P → Id(P ) is the universal monotone map
of the free object.

We consider the cofree dcpo on a poset in Section 2.

Recall that a po-monoid is a monoid with a partial order ≤ which is
compatible with the monoid operation: for s, t, s′, t′ ∈ S, s ≤ t, s′ ≤ t′

imply ss′ ≤ tt′. Similarly, a dcpo (cpo)-monoid is a monoid which is
also a dcpo (cpo) whose binary operation is a (strict) continuous map.

Recall that a (right) S-act or S-set for a monoid S is a set A equipped
with an action A× S → A, (a, s) 7→ as, such that a1 = a and a(st) =
(as)t, for all a ∈ A and s, t ∈ S. Let Act-S denote the category of all S-
acts with action-preserving maps (maps f : A → B with f(as) = f(a)s,
for all a ∈ A, s ∈ S).

Also, for a po-monoid S, a (right) S-poset is a poset A which is also
an S-act whose action λ : A×S → A is order-preserving, where A×S
is considered as a poset with componentwise order. The category of
all S-posets with action-preserving monotone maps between them is
denoted by Pos-S.
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Finally, recall that for a dcpo (cpo)-monoid S, a (right) S-dcpo (S-
cpo) is a dcpo (cpo) A which is also an S-act whose action λ : A×S → A
is a (strict) continuous map.

Also, by an S-dcpo map (S-cpo map) between S-dcpo’s (S-cpo’s), we
mean a map f : A → B which is both (strict) continuous and action-
preserving. We denote the categories of all S-dcpo’s (S-cpo’s) and S-
dcpo (S-cpo) maps between them by Dcpo-S and Cpo-S, respectively.

Furthermore, notice that in the definition of an S-cpo, the monotonic-
ity of the action implies that it is also strict (this is because, for an
S-cpo A, ⊥A ≤ ⊥A⊥S ≤ ⊥A1S = ⊥A). Also, by Lemma 1.2, the action
λ : A × S → A is continuous if and only if the maps λa : S → A and
λs : A → A, for all a ∈ A and s ∈ S, are continuous.

2. Adjoint relations for Dcpo-S

In this section, we consider the middle square of the forgetful func-
tors. We show that both U4 and U5 have left adjoints, while only U4

has a right adjoint. Also, it is proved that if S satisfies a condition
which we call “good”, then U6 has a left adjoint, but U6 does not have
a right adjoint.
Free S-dcpo over a dcpo. By a free S-dcpo on a dcpo P we mean
an S-dcpo F4 together with a continuous map τ : P → F4 with the
universal property that given any S-dcpo A and a continuous map
f : P → A there exists a unique S-dcpo map f : F4 → A such that
f ◦ τ = f .

Theorem 2.1. For a given dcpo P , the free S-dcpo on P is F4 = P×S,
with componentwise order and the action given by (x, s)t = (x, st), for
x ∈ P , s, t ∈ S.

Proof. Recall that P × S is an S-poset, and is a dcpo (see [1]). Now,
we show that the action defined above on P × S is a continuous map.
Applying Lemma 1.2, let D ⊆d P × S and s ∈ S. We show that

(
d∨

D)s =
d∨

(p,t)∈D

(p, ts).

By Lemma 1.1,
∨d D = (

∨d D1,
∨d D2) where D1 = DomD and D2 =

ImD are directed subsets of P and S, respectively. Now,

(
d∨

D)s = (
d∨

D1, (
d∨

D2)s) = (
d∨

D1,

d∨
s′∈D2

s′s) =
d∨

(p,t)∈D

(p, ts).
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Notice that the first equality is true by the definition of the action on
P×S, also the last equality is proved straightforward. Now, let T ⊆d S
and (p, s) ∈ P × S. Then

(p, s)(
d∨

T ) = (p, s(
d∨

T )) = (p,
d∨

t∈T

st) =
d∨

t∈T

(p, st)

where the last equality follows by applying the definition of the least
upper bound.

Again, recalling that P × S is the free S-poset on the poset P , with
the universal map τ : P → P × S, given by x 7→ (x, 1) (see [3]), we
show that τ is continuous. Let D ⊆d P . Then

τ(
d∨

D) = (
d∨

D, 1) =
d∨

x∈D

(x, 1) =
d∨

d∈D

τ(d)

where the second equality is because of the definition of the upper
bound.

Finally, to prove the universal property of τ : P → P × S for S-
dcpo’s, take a continuous map f : P → B to an S-dcpo B. Then the
map f : P × S → B defined by f(p, s) = f(p)s, which is the unique
S-poset map with f ◦ τ = f (see [3]), is continuous. Applying Lemma
1.2, let first D ⊆d P and s ∈ S. Then

f(
d∨

D, s) = f(
d∨

D)s = (
d∨

x∈D

f(x))s =
d∨

x∈D

f(x)s =

=
d∨

x∈D

f(x, s)

where the the third equality is because B is an S-dcpo. Secondly,
assume that T ⊆d S and p ∈ P , then

f(p,
d∨

T ) = f(p)
d∨

T =
d∨

t∈T

f(p)t =
d∨

t∈T

f(p, t)

where the second equality is because B is an S-dcpo. �

Corollary 2.2. The forgetful functor U4 : Dcpo-S → Dcpo has a left
adjoint.

Cofree S-dcpo over a dcpo. By a cofree S-dcpo on a dcpo P we
mean an S-dcpo K4 together with a continuous map σ : K4 → P with
the universal property that given any S-dcpo A and a continuous map
g : A → P there exists a unique S-dcpo map g : A → K4 such that
σ ◦ g = g.
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Theorem 2.3. For a given dcpo P and dcpo-monoid S, the cofree S-
dcpo on P is the set K4 = P (S), of all dcpo maps from S to P , with
pointwise order and the action given by (fs)(t) = f(st), for s, t ∈ S
and f ∈ P (S).

Proof. First we show that P (S) is an S-dcpo. Recall that P (S) is a dcpo,
and the supremum in P (S) is calculated pointwise (see [8]). Also, the
action defined above is a continuous map. It is well-defined, since for
f ∈ P (S) and s ∈ S, fs is continuous. This is because for T ⊆d S,

(fs)(
d∨

T ) = f(s(
d∨

T )) = f(
d∨

t∈T

st) =
d∨

t∈T

f(st) =
d∨

t∈T

(fs)(t)

where the second equality is because S is a dcpo-monoid, and the third
equality is because f is continuous.

To prove the continuity of the action, we apply Lemma 1.2. Let first
F ⊆d P (S) and s ∈ S. Then

((
d∨

F )s)(t) = (
d∨

F )(st) =
d∨

f∈F

f(st) =
d∨

f∈F

(fs)(t) = (
d∨

f∈F

fs)(t)

where the second and the last equality are because supremum in P (S)

is calculated pointwise. Therefore, (
∨d F )s =

∨d(Fs). Now assume
that T ⊆d S and f ∈ P (S). Then

(f(
d∨

T ))(s) = f((
d∨

T )s) = f(
d∨

t∈T

ts) =
d∨

t∈T

f(ts) =

=
d∨

t∈T

(ft)(s) = (
d∨

t∈T

ft)(s)

as required. Consequently P (S) is an S-dcpo. Now, take the cofree
map σ : P (S) → P defined by σ(f) = f(1). First, we show that it is
continuous. Let F ⊆d P (S). Then

σ(
d∨

f∈F

f) = (
d∨

f∈F

f)(1) =
d∨

f∈F

f(1) =
d∨

f∈F

σ(f).

Further, given a continuous map α : A → P from an S-dcpo A, the
map α : A → P (S), given by α(a)(s) = α(as), is an S-dcpo map and
satisfies σ ◦ α = α. First, we show that α is continuous. Let D ⊆d A
and s ∈ S, then

α(
d∨

D)(s) = α((
d∨

D)s) = α(
d∨

x∈D

xs) =
d∨

x∈D

α(xs) =
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=
d∨

x∈D

α(x)(s) = (
d∨

x∈D

α(x))(s).

Secondly, α is action-preserving, since for all s, t ∈ S and a ∈ A we
have

α(as)(t) = α((as)t) = α(a(st)) = α(a)(st) = (α(a)s)(t).

To establish the uniqueness of α, suppose that h : A → P (S) is also
an S-dcpo map such that σ ◦ h = α. Then for all a ∈ A and s ∈ S,

h(a)(s) = h(a)(s1) = (h(a)s)(1) = σ(h(a)s)

= σ(h(as)) = α(as) = α(a)(s).

�

Corollary 2.4. The forgetful functor U4 : Dcpo-S → Dcpo has a
right adjoint.

Now, we consider the adjoints of U5. Recall that for a poset P , the
set Id(P ) of ideals of P is the free dcpo over P (see Remark 1.3).

Corollary 2.5. The forgetful functor U5 : Dcpo → Pos has a left
adjoint.

In the following, we see that the right adjoint of U5 does not neces-
sarily exist.

Lemma 2.6. If P is a nontrivial poset with non identity order, which
is also a dcpo, then the cofree dcpo over P does not exist.

Proof. Let P be a non trivial dcpo in which the order is not identity,
and let K(P ) be the cofree dcpo over P as a poset. Take k : K(P ) → P
to be the cofree monotone map.

First we see that k is one-one. This is because, otherwise there exist
x 6= y ∈ K(P ) such that k(x) = k(y) = p0. Then, considering the
monotone map f : {Θ} → P from the singleton dcpo {Θ}, defined by
f(Θ) = p0, we see that there exist two dcpo maps f1, f2 : {Θ} → K(P ),
given by f1(Θ) = x and f2(Θ) = y, such that k ◦ f1 = f and k ◦ f2 = f .
This contradicts the universal property of the cofree map k.

Moreover, we see that k is a retraction, since for the monotone map
idP : P → P , by the universal property of cofree maps, there exists a
dcpo map f : P → K(P ) with k ◦ f = idP . Therefore, k is a poset
isomorphism.

Now, since the order on P is not identity, there exist x, y ∈ P with
x < y. Define the poset map f : P(N) → P by

f(M) =

{
x if M is finite
y otherwise
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Then, by the universal property of cofree maps, there exists a unique
dcpo map f : P(N) → K(P ) with k ◦ f = f . Now, f being a com-
position of two dcpo maps, is a dcpo map. But this is a contradic-
tion, because taking the directed subset D of P(N) consisting of all

finite subsets of N, we have f(
∨d D) = f(

⋃
D) = f(N) = y but∨d f(D) =

∨d{x} = x. �

Corollary 2.7. The forgetful functor U5 : Dcpo → Pos does not have
a right adjoint.

Now, we consider U6. First, using the above corollary, we have:

Remark 2.8. The forgetful functor U6 from Dcpo-S to Pos-S does
not have a right adjoint for a general dcpo-monoid S. This is implied
by taking S = {1}, and applying Corollary 2.7.

Now, we give a condition on S under which U6 has a left adjoint.

Definition 2.9. We say that a dcpo P is good if for every directed
subset D of P ,

∨d D ∈ D.

Remark 2.10. A dcpo P is good if and only if each directed subset of
P has a top element. This condition is also equivalent to the fact that
each element of P is compact. Recall that the element x of a dcpo P
is called compact if for every directed subset D of P , x ≤

∨d D implies
x ≤ d, for some d ∈ D.

Finite posets and Noetherian posets (satisfying ACC on chains of
elements) are examples of good dcpo’s. Also, for any poset P with
discrete order, the posets P ⊕ > and ⊥ ⊕ P are good dcpo’s, where
P ⊕> and ⊥⊕P are obtained by adding a top element and a bottom
element to P , respectively.

Theorem 2.11. Let S be a good dcpo-monoid. For a given S-poset A,
the free S-dcpo on A is the dcpo Id(A) with the action λ : Id(A)×S →
Id(A), given by (I, s) 7→ I.s =: ↓(Is), where Is = {as : a ∈ I} for
I ∈ Id(A) and s ∈ S.

Proof. First we show that Id(A) is an S-dcpo. Notice that, by Remark
1.3, Id(A) is a dcpo in which the supremum of a directed subset D of
Id(A) is

⋃
D. Also, it is clear that the given action is well-defined.

Further, for all I ∈ Id(A) and s, t ∈ S, we have
(1) I.1 = ↓(I1) = ↓I = I,
(2) I.(st) = ↓(I(st)) = ↓((Is)t) = ↓(↓(Is))t = (I.s).t,

where equalities are true by a straightforward computation using def-
initions. Now, we show that the action is also continuous. Applying
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Lemma 1.2, let {Iα : α ∈ Λ} be a directed subset of Id(A) and s ∈ S.
We have

(
d∨

α∈Λ

Iα).s = (
⋃
α∈Λ

Iα).s = ↓((
⋃
α∈Λ

Iα)s) = ↓(
⋃
α∈Λ

(Iαs)) =
⋃
α∈Λ

(↓(Iαs) =

=
d∨

α∈Λ

(↓(Iαs)) =
d∨

α∈Λ

Iα.s

where the equalities are true by straightforward calculations.
Now, assume that T ⊆d S and I ∈ Id(A). Then

I.(
d∨

T ) = ↓(I(
d∨

T )) =
d∨

t∈T

↓(It) =
d∨

t∈T

I.t,

where the second equality follows from the hypothesis that
∨d T ∈

T , which gives that ↓(I(
∨d T ) is the maximum element of the set

{↓It : t ∈ T}. Therefore,

↓(I(
d∨

T )) =
d∨

t∈T

↓(It),

and so Id(A) is an S-dcpo. Now, we show that ↓: A → Id(A), a 7→ ↓a is
an S-poset map. It is clear that ↓ is order-preserving. It is also action-
preserving, since (↓a).s = ↓((↓a)s) = ↓(as). Finally, we show that
↓: A → Id(A) is a universal map. Let f : A → B be an S-poset map to

an S-dcpo B. Then the map f : Id(A) → B given by f(I) =
∨d f(I)

is the unique S-dcpo map with f ◦ ↓ = f . To see this, first we show
that f is continuous. Let {Iα : α ∈ Λ} be a directed subset of Id(A).
Then

f(
d∨

α∈Λ

Iα) = f(
⋃
α∈Λ

Iα) =
d∨

f(
⋃
α∈Λ

Iα) =
d∨

α∈Λ

(
d∨

f(Iα)) =
d∨

α∈Λ

f(Iα)

where the third equality follows by the definition of supremum. In fact,
since f(Iα) ⊆ f(

⋃
α∈Λ Iα), we get

∨d f(Iα) ≤
∨d f(

⋃
α∈Λ Iα), for all

α ∈ Λ. Also, if b ∈ B is an upper bound of the set {
∨d f(Iα) : α ∈ Λ},

then for x ∈ f(
⋃

α∈Λ Iα), we have x ∈ f(Iα0), for some α0 ∈ Λ, and so

x ≤
∨d f(Iα0) ≤ b, which gives

∨d f(
⋃

α∈Λ Iα) ≤ b.

Also, f is action-preserving, since for I ∈ Id(A) and s ∈ S, we have

f(I.s) = f(↓(Is)) =
d∨

f(↓(Is)) =
d∨

f(Is) =
d∨

f(I)s =
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= (
d∨

f(I))s = f(I)s

where the third equality is because an element c is an upper bound of
f(↓(Is)) if and only if it is an upper bound of f(Is). The fourth equality
is because f is action-preserving. Also, the fifth equality is because B is
an S-dcpo. Furthermore, we have f(↓a) =

∨d f(↓a) = f(a). To show
the uniqueness of f , suppose that h : Id(A) → B is also an S-dcpo
map with h ◦ ↓ = f . Then for every I ∈ Id(A),

f(I) =
d∨

f(I) =
d∨

a∈I

f(a) =
d∨

a∈I

h(↓a) = h(
⋃
a∈I

↓a) = h(I).

�

Corollary 2.12. If S is a good dcpo-monoid, then the forgetful functor
U6 : Dcpo-S → Pos-S has a left adjoint.

3. Adjoint relations for Cpo-S

In this section, we consider the top square of the forgetful functors.
We show that U2 has a left adjoint, and if we assume that S is a
cpo-monoid whose identity is the bottom element, then U1 has a left
adjoint; also if S is a cpo-monoid whose identity is the top element,
then U3 has a left adjoint. But, none of U1, U2, and U3 has a right
adjoint.
Free S-cpo on a cpo P . By a free S-cpo on a cpo P we mean an
S-cpo F1 together with a strict continuous map τ : P → F1 with the
universal property that given any S-cpo A and a strict continuous map
f : P → A there exists a unique S-cpo map f : F1 → A such that
f ◦ τ = f .

Theorem 3.1. Let S be a cpo-monoid whose identity is the bottom
element. Then for a given cpo P and cpo-monoid S, the free S-cpo on
P is F1 = P × S, with componentwise order and the action given by
(x, s)t = (x, st), for x ∈ P , s, t ∈ S.

Proof. First recall that P × S with the above action and order is the
free S-dcpo on the dcpo P (see Theorem 2.1). Also, we know that
P × S with the componentwise order is a cpo (see [1]). Now, we show
that τ : P → P ×S given by x 7→ (x, 1) is a universal strict continuous
map. Since the identity element of S is the bottom element, we have

τ(⊥P ) = (⊥P , 1) = (⊥P ,⊥S)

which means that τ is strict. The continuity of τ was proved in Theorem
2.1. To prove the universal property, let f : P → B be any strict
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continuous map to an S-cpo B. Then the map f : P × S → B defined
by f(p, s) = f(p)s is the unique S-dcpo map with f ◦ τ = f (see
Theorem 2.1). Now, we show that f is also strict. Since f is strict and
B is an S-cpo,

f(⊥P ,⊥S) = f(⊥P )⊥S = ⊥B⊥S = ⊥B.

�

Corollary 3.2. If S is a cpo-monoid whose identity is the bottom ele-
ment, then the forgetful functor U1 : Cpo-S → Cpo has a left adjoint.

Remark 3.3. The forgetful functor U1 : Cpo-S → Cpo does not have
a right adjoint. One can see this by noting that it does not necessarily
preserve the initial object. For example, let S be the 2-element chain
{1, a} with 1 < a, and aa = a, 1a = a = a1. Then S is an S-cpo and,
it is the initial object of Cpo-S (see [11]), whereas the initial object in
the category Cpo is the singleton cpo.

Now, we consider U2.

Theorem 3.4. The forgetful functor U2 : Cpo → Dcpo has a left
adjoint.

Proof. For a dcpo P , P⊥ = ⊥⊕ P is the free cpo on P . �

Remark 3.5. The forgetful functor U2 : Cpo → Dcpo does not have
a right adjoint. This is because, U2 does not preserve the initial object.
Notice that the initial object in Cpo is the singleton poset {Θ}, while
the initial object in Dcpo is the empty poset.

Finally, we study U3.
Free S-cpo over an S-dcpo. By a free S-cpo on an S-dcpo A we
mean an S-cpo F6 together with a S-dcpo map τ : A → F6 with
the universal property that given any S-cpo B and a strict continuous
map f : A → B there exists a unique S-cpo map f : F6 → A such that
f ◦ τ = f .

Theorem 3.6. Let S be a cpo-monoid in which the identity element is
the top element. Then the free S-cpo on an S-dcpo A is A⊥ = ⊥ ⊕ A
with the action defined by:

a.s =

{
as if a ∈ A
⊥ if a = ⊥

for all a ∈ A⊥ and s ∈ S.
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Proof. We show that this action is continuous. Applying Lemma 1.2,
let D ⊆d A⊥ and s ∈ S. First note that D ⊆ A⊥ is directed if and only
if D ⊆ A is directed or D = D′ ∪{⊥} where D′ = ∅ or D′ is a directed
subset of A. Therefore, two cases may occur:

Case (1): D ⊆d A. In this case,

(
d∨

D).s = (
d∨

D)s =
d∨

x∈D

xs =
d∨

x∈D

x.s

since the action on A is continuous.
Case (2): D = D′ ∪ {⊥}, where D′ ⊆d A or D′ = ∅. If D′ = ∅, then

the result is clear. Let D′ ⊆d A. Then,

(
d∨

D).s = (
d∨

D′).s = (
d∨

D′)s =
d∨

x∈D′

xs =

(
d∨

x∈D′

x.s) ∨ (⊥.s) =
d∨

x∈D

x.s

Now assume that T ⊆d S and a ∈ A⊥. If a = ⊥, then ⊥.(
∨d T ) =

⊥ =
∨d(⊥.s). If a ∈ A, then

a.(
d∨

T ) = a(
d∨

T ) =
d∨

t∈T

(at) =
d∨

t∈T

(a.t)

where the second equality is because A is an S-dcpo. Therefore, A⊥
is an S-cpo. Now, we show that the inclusion map ι : A → A⊥ is the
universal free map. Let f : A → B be any S-dcpo map to an S-cpo B.
Then, the map f : A⊥ → B defined by

f(a) =

{
f(a) if a ∈ A
⊥B if a = ⊥

is the unique cpo map with f ◦ ι = f . Now, we show that f : A⊥ → B
is action-preserving, and so it is an S-cpo map. Since the identity
element of S is the top element, the bottom element of every S-cpo is
a zero element (s ≤ 1 implies ⊥As ≤ ⊥A1 = ⊥A, and so ⊥As = ⊥A),
and hence f(⊥.s) = f(⊥) = ⊥B = ⊥Bs = f(⊥)s, for all s ∈ S. Also,
for a 6= ⊥ and s ∈ S, f(a.s) = f(as) = f(as) = f(a)s = f(a)s. �

Corollary 3.7. If S is a cpo-monoid whose identity is the top element,
then the forgetful functor U3 : Cpo-S → Dcpo-S has a left adjoint.

Remark 3.8. The forgetful functor U3 : Cpo-S → Dcpo-S does not
have a right adjoint. Take S = {1} and apply Remark 3.5. Another
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way to see this, is by showing that U3 does not preserve the initial
object. Consider the example S given in Remark 3.3. Then S is the
initial object in the category Cpo-S, but the initial object in Dcpo-S
is the empty poset.

4. Erratum to Adjoint relations for Pos-S

In this section, we consider the bottom square of forgetful functors.
Recall that the adjoint situations related to the category of S-posets
have been stated in [3]. The free functor from S-acts to S-posets is
described in Theorem 17 of [3]. There is an error in that description
which makes it true if and only if the pomonoid S has a trivial order.
In fact, it is stated there that for a given S-act A, the free S-poset
is (A, ∆), where ∆ is the discrete (equality) order. But, if there are
s, t ∈ S with s < t, then we may have a in A such that as 6= at and so
(as, at) 6∈ ∆. That is, (A, ∆) is not necessarily an S-poset.

In the following, we correct this, and find the free adjunction to the
forgetful functor U9 : Pos-S → Act-S.

Let A be an S-act. Consider the relation R = {(as, at) : a ∈ A, s ≤
t} on A. Recall the order ∆R (see [2], and ≤R in [3]) given by

a∆Rb if and only if there exist a1, a
′
1, . . . , an, a

′
n ∈ A;

a = a1Ra′1 = · · · = anRa′n = b

which explicitly means that a∆Rb if and only if there exist a1, a2, ..., an ∈
A, s1, ..., sn ∈ S, t1, ..., tn ∈ S with si ≤ ti, for all i = 1, ..., n, and such
that

a = a1s1 a2t2 = a3s3 · · · antn = b
a1t1 = a2s2 a3t3 = a4s4 · · · an−1tn−1 = ansn

Then the relation θ given by

aθb ⇔ a∆Rb∆Ra

is an S-act congruence, and the quotient S-act A/θ turns into an S-
poset with the order given by

[a]θ ≤ [b]θ ⇔ a∆Rb.

Theorem 4.1. For a given S-act A, the quotient S-act A/θ given
above is the free S-poset on A.

Proof. First note that the S-act A/θ with the above order is an S-poset.
To see this, we show that the order is a well-defined partial order, and
also the action is monotone. Let [a]θ = [c]θ, [b]θ = [d]θ, and [a]θ ≤ [b]θ.
Then a∆Rc∆Ra, b∆Rd∆Rb, and a∆Rb. This gives that c∆Ra∆Rb∆Rd,
and so c∆Rd, since ∆R is transitive. Thus, the order is well-defined. It
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is also a partial order, since ∆R, and so ≤ is a preorder. Further, it is
anti-symmetric. For, if [a]θ ≤ [b]θ ≤ [a]θ, then a∆Rb∆Ra. Therefore,
by the definition of θ, [a]θ = [b]θ.

To see that the action is monotone, let [a] ≤ [b] and s ≤ t. Then
there exist a1, a

′
1, ..., an, a

′
n ∈ A such that a = a1Ra′1 = a2Ra′2 = · · · =

anRa′n = b, and by the definition of R, using the fact that S is a
pomonoid, this gives

as = a1sRa′1s = a2sRa′2s = · · · = ansRa′nsRa′nt = bt

which means as∆Rbt.
Now, we show that the natural map π : A → A/θ, a 7→ [a], is a

universal S-act map. Let f : A → B be any S-act map to an S-poset
B. Then, the map f : A/θ → B, defined by f([a]) = f(a), is the
unique S-poset map with f ◦π = f . To see this, notice that θ ⊆ Kerf .
For, if a∆Rb then f(a) ≤ f(b), by the definition of ∆R, the hypothesis
that f is an S-act map, and that B is an S-poset. Therefore, by the
Decomposition Theorem (Fundamental Homomorphism Theorem) of
S-acts, there exists the unique S-act map f as above. We further see
that f is an order-preserving map, since [a] ≤ [b] means a∆Rb, and so
f(a) ≤ f(b). �

5. Conclusion

In this final section, applying the investigations done in the above
sections, we consider the composition of forgetful functors given in all
the three squares, and consider the questions whether they have a left
or a right adjoint or do not have.

Remark 5.1. Applying the compositions of some of the free functors
in the above sections, we get:

(1) If S is a cpo-monoid in which the identity element is the bottom
element, then the free S-cpo over a set X is X⊥ × S.

(2) If S is a cpo-monoid in which the identity element is the bottom
element, then the free S-cpo over a poset P is (Id(P ) ∪ {∅})× S.

(3) If S is a good cpo-monoid in which the identity element is the
top element, the free S-cpo over an S-act A is Id(A/θ) ∪ {∅}, where
A/θ is the S-poset given in Theorem 4.1.

(4) If S is a good cpo-monoid in which the identity element is the
top element, the free S-cpo over an S-poset A is Id(A) ∪ {∅}.

(5) If S is an cpo-monoid in which the identity element is the bottom
element, then the free S-cpo over a dcpo A is (⊥⊕A)×S. While if the
identity element is the top element, then the free S-cpo over a dcpo A
is (A× S)⊥.
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(6) The free S-dcpo over a set X is X ×S, where X is considered as
a dcpo with the identity order.

(7) The free S-dcpo over a poset P is Id(P )× S.
(8) If S is a good S-dcpo, then the free S-dcpo over an S-act A is

Id(A/θ), where A/θ is the S-poset given in Theorem 4.1.
(9) The free cpo over a poset P is Id(P ) ∪ {∅}.
(10) The free cpo over a set X is ⊥⊕X.
(11) The free dcpo over a set X is (X, =).

Remark 5.2. About the cofree functors, we have:
(1) The cofree functor Set → Cpo-S does not necessarily exist. This

is because, considering S = {1}, the forgetful functor U : Cpo → Set
does not preserve coproducts. Let 2 denote the two elements chain
{0, 1} with 0 < 1, and let 3 denote the three elements chain {0, a, 1}
with 0 < a < 1. The coproduct of 2 and 3 in Cpo is their coalesced
sum 2]3 = ⊥⊕ ((2\{0})∪̇(3\{0})) which has four elements, whereas
the coproduct of U8(2) and U8(3) in Set is their disjoint union which
has five elements.

Also, similar to Remark 3.8, it is seen that U does not preserve the
initial object. And, similarly, the cofree S-cpo over a poset, a dcpo, an
S-poset, and an S-act, do not necessarily exist.

(2) The cofree S-dcpo over Act-S does not necessarily exist. Take
S = {1}, and see Theorem 5.3. Similarly, the same is true for the
cofree S-dcpos over a set and over a poset.

(3) The forgetful functors from Cpo to Pos and to Set do not have
right adjoints. This is because they do not preserve initial objects.
Notice that the initial object in Cpo is the singleton poset {Θ}, while
the initial objects in Pos and Set are both the empty set.

In the following, we see that the cofree dcpo over a set does not
necessarily exist.

Theorem 5.3. The cofree dcpo over set X exists if and only if |X| = 1.

Proof. If |X| = 1, then the cofree dcpo over X is (X, =). If |X| ≥ 2,
we show that the cofree dcpo over the set X does not exist. Assume
the contrary and let K(X) be the cofree dcpo over X with the cofree
map k : K(X) → X. First we see that k is one-one. This is because,
otherwise there exist x 6= y ∈ K(X) such that k(x) = k(y) = x0. Then,
considering the map f : {Θ} → X defined by f(Θ) = x0, we see that
there exist two dcpo maps f1, f2 : {Θ} → K(X), given by f1(Θ) = x,
and f2(Θ) = y, such that k ◦ f1 = f and k ◦ f2 = f . This contradicts
the universal property of k, and therefore k is one-one.
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Now, take x 6= y ∈ X and define the map f from the three-element
chain {0, a, 1} with 0 < a < 1, to X by f(0) = x = f(1), f(a) =
y. By the universal property of k, there exists a unique dcpo map
f : 3 → K(X) with k ◦ f = f . Now, k(f(0)) = f(0) = x and
k(f(1)) = f(1) = x. Since k is one-one, we get f(0) = f(1). By
monotonicity of f , f(0) ≤ f(a) ≤ f(1) holds. Whence f(a) = f(0),
and so x = k(f(0)) = k(f(a)) = y, which is a contradiction. �

Open problems.
(a) Are the conditions given on S for the existence of the free objects

F1, F3, and F6, necessary?
(b) Can we give a condition on S, under which the cofree vertical

functors on the side of the diagram exist?
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