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Abstract

In 2002 Markov interval maps were introduced by S. Holte. It was
shown that any two inverse limits with Markov interval bonding maps
with the same pattern were homeomorphic.

In this article we introduce generalized Markov interval functions,
which are a generalization of Markov interval maps to set-valued func-
tions, and show that any two generalized inverse limits with gener-
alized Markov interval bonding functions with the same pattern are
homeomorphic.

1 Introduction

In [7] Markov interval maps are defined as follows. Interval self-maps on
I = [a0, am] are Markov with respect to A = {a0, a1, . . . , am}, if

1. a0 < a1 < . . . < am,

2. f(A) ⊆ A,

3. f is injective on every component of I\A.
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Two interval self-maps, f and g, are Markov with the same pattern if f is
Markov with respect to A = {a0, a1, . . . , am}, g is Markov with respect to
B = {b0, b1, . . . , bm}, and f(aj) = ak if and only if g(bj) = bk.

The main theorem in [7] says that any two Markov interval maps with
the same pattern have homeomorphic inverse limits:

Theorem 1.1. Let {fn}∞n=0 be a sequence of surjective maps from I =

[a0, am] to I, which are all Markov interval maps with respect to A =

{a0, a1, . . . , am} and let {gn}∞n=0 be a sequence of surjective maps from
J = [b0, bm] to J , which are all Markov interval maps with respect to
B = {b0, b1, . . . , bm}. If for each n, fn and gn are Markov interval maps
with the same pattern, then (I, fn) is homeomorphic to (J, gn).

In this paper we introduce generalized Markov interval functions, which
generalize Markov interval maps from [7] (in such a way that every Markov
interval map is naturally interpreted as a generalized Markov interval func-
tion). In this generalization we allow a generalized Markov interval function
to be non single-valued only on points in A, and include a condition that
provides the injectivity of f on every component of I\A. The definition of
two generalized Markov interval functions with the same pattern will gener-
alize the definition of two Markov interval maps with the same pattern (as it
is defined in [7]). We prove the following theorem, which is a generalization
of Theorem 1.1, as the main result of the paper:

Theorem 1.2. Let {fn}∞n=0 be a sequence of u.s.c. functions from I =

[a0, am] to 2I with surjective graphs, which are all generalized Markov in-
terval functions with respect to A = {a0, a1, . . . , am} and let {gn}∞n=0 be a
sequence of u.s.c. functions from J = [b0, bm] to 2J with surjective graphs,
which are all generalized Markov interval functions with respect to B =

{b0, b1, . . . , bm}. If for each n, fn and gn are generalized Markov interval
functions with the same pattern, then (I, fn) is homeomorphic to (J, gn).

Since techniques we used in the proof of Theorem 1.2 are quite different
from the ones used in [7], our proof can serve as an alternative proof of
Holte’s result.

2 Definitions and notation

A map is a continuous function. In the case when X = Y = R, a ∈ R, and
f : X → Y is a map, we use lim

x↓a
f(x) to denote the right-hand limit and
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lim
x↑a

f(x) to denote the left-hand limit of a function f at the point a ∈ R. A
detailed introduction of such limits can be found in [17, p. 83–95].

Let X be a compact metric space, then 2X denotes the set of all nonempty
closed subsets of X.

If f : X → 2Y is a function, then the graph of f , Γ(f), is defined as
Γ(f) = {(x, y) ∈ X × Y | y ∈ f(x)}.

A function f : X → 2Y has a surjective graph, if for each y ∈ Y there is
an x ∈ X, such that y ∈ f(x).

Let f : X → 2Y be a function. If for each open set V ⊆ Y , the set
{x ∈ X | f(x) ⊆ V } is open in X, then f is an upper semicontinuous
function (abbreviated u.s.c.) from X to 2Y .

The following is a well-known characterization of u.s.c. functions between
metric compacta (for example, see [9, p. 120, Theorem 2.1]).

Theorem 2.1. Let X and Y be compact metric spaces and f : X → 2Y a
function. Then f is u.s.c. if and only if its graph Γ(f) is closed in X × Y .

Note that for any continuous function f : X → Y , where X and Y

are compact metric spaces, the graph of f is a closed subset of X × Y .
Therefore the function F : X → 2Y , defined by F (x) = {f(x)}, is an u.s.c.
function, since Γ(F ) = Γ(f). Also if F : X → 2Y is an u.s.c. function such
that F (x) = {yx} for each x ∈ X, then the function f : X → Y , defined
by f(x) = yx, is continuous. Such functions F will be addressed as single-
valued functions. In the paper we frequently deal with such u.s.c. functions.
Understanding them as mappings will simplify the notation and make the
proof more reader-friendly. That is why in this case we write y = F (x)

instead of y ∈ F (x). In addition, we say that F is injective if f is injective.
Let A be a subset of X and let f : X → 2Y be a function. The restriction

of f on the set A, f |A, is the function from A to 2Y such that f |A(x) = f(x)

for every x ∈ A.
Let f : [a, b] → 2[c,d] be a function. Then we say that f is single-valued

at some point x ∈ [a, b] if f(x) consists of a single point. We also say that f

is single-valued on some interval I ⊆ [a, b] if the above holds for each x ∈ I.
A sequence {Xk, fk}∞k=0 of compact metric spaces Xk and u.s.c. functions

fk : Xk+1 → 2Xk , is an inverse sequence with u.s.c. bonding functions .
The inverse limit of an inverse sequence {Xk, fk}∞k=0 with u.s.c. bonding

functions is defined as the subspace of
∏∞

k=0 Xk of all points (x0, x1, x2, . . .),
such that xk ∈ fk(xk+1) for each k. The inverse limit of an inverse sequence
{Xk, fk}∞k=0 is denoted by (Xk, fk).
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In this paper we deal only with the case when for each k, Xk is a closed
interval I and fk : I → 2I . So, we denote the inverse limit simply by (I, fk).

The notion of inverse limits of inverse sequences with upper semicon-
tinuous bonding functions (also known as generalized inverse limits) was
introduced by Mahavier in [12] and later by Ingram and Mahavier in [9].
Since then, inverse limits have appeared in many papers, such as [1, 2, 3, 4,
5, 6, 8, 10, 11, 13, 14, 15, 16, 18].

3 Proof of Theorem 1.2

In this section we introduce the notion of generalized Markov interval func-
tions and prove Theorem 1.2.

Definition 3.1. Let a, b ∈ R, a < b, and m a positive integer. We say that
an u.s.c. function f from I = [a, b] to 2I is a generalized Markov interval
function with respect to A, where A = {a0, a1, . . . , am} is a subset of I, if

1. a = a0 < a1 < . . . < am = b,

2. the restriction of f on every component of I\A is an injective single-
valued function,

3. for each j = 0, 1, . . . , m, the image f(aj) is an interval (possibly de-
generate)

[
ar1(j), ar2(j)

]
, where ar1(j), ar2(j) ∈ A (ar1(j) ≤ ar2(j)),

4. for each j = 0, 1, . . . , m− 1: lim
x↑aj+1

f(x), lim
x↓aj

f(x) ∈ A.

Obviously, f can be single-valued at some points aj in A. In this case
r1(j) = r2(j) for some 0 ≤ j ≤ m and f(aj) = {ar1(j)}. Additionally, taking
into account property 4. above, we see that:

1. if 0 < j < m, then lim
x↑aj

f(x) = lim
x↓aj

f(x) = ar1(j) = ar2(j),

2. if j = 0, lim
x↓aj

f(x) = ar1(j) = ar2(j),

3. if j = m, lim
x↑aj

f(x) = ar1(j) = ar2(j).

An example of a generalized Markov interval function can be seen in
Figure 1. We point out that many set-valued functions and their inverse
limits have already been studied and many of these functions are examples
of generalized Markov interval functions (for example, see [3]).
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Figure 1: A generalized Markov interval function with respect to A =
{a0, a1, a2, a3, a4, a5}.

Definition 3.2. Let A = {a0, a1, . . . , am} and B = {b0, b1, . . . , bm}, where
a0 < a1 < . . . < am and b0 < b1 < . . . < bm. Then we say that (a, b) ∈ A×B

is a pair of similar points (with respect to A and B), if a = ai and b = bi

for some i = 0, 1, . . . , m.

In the following definition we define what it means for two generalized
Markov interval functions to follow the same pattern.

Definition 3.3. Let f : I = [a0, am] → 2I be a generalized Markov in-
terval function with respect to A = {a0, a1, . . . , am} and let g : J =

[b0, bm] → 2J be a generalized Markov interval function with respect to
B = {b0, b1, . . . , bm}.

We say that f and g are generalized Markov interval function with the
same pattern if i) and ii) hold true:

i) for every j = 0, 1, . . . , m: f(aj) =
[
ar1(j), ar2(j)

]
if and only if g(bj) =[

br1(j), br2(j)

]
,

ii) for every j = 0, 1, . . . , m− 1: ( lim
x↑aj+1

f(x), lim
y↑bj+1

g(y)) and

(lim
x↓aj

f(x), lim
y↓bj

g(y)) are pairs of similar points.
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Finally we prove Theorem 1.2.

Proof. Since we have different functions fk, gk, we introduce functions rk
1 , r

k
2 :

{0, 1, . . . , m} → {0, 1, . . . , m} serving as r1, r2 from Definition 3.1, i.e. such
that fk(aj) = [ark

1 (j), ark
2 (j)] for each j = 0, 1, . . . , m and each k = 0, 1, 2, . . ..

According to Definition 3.3 the same functions rk
1 , rk

2 are also used for gk,
i.e. gk(bj) = [brk

1 (j), brk
2 (j)].

For each j = 0, 1, . . . ,m − 1 we define the subinterval Ij = [aj, aj+1] ⊆
I = [a0, am], and the subinterval Jj = [bj, bj+1] ⊆ J = [b0, bm]. We also
define a piecewise linear mapping h : I → J such that h(aj) = bj for all
j = 0, 1, . . . , m by

h(x) =





((b1 − b0)/(a1 − a0))(x− a0) + b0; if x ∈ I0,
((b2 − b1)/(a2 − a1))(x− a1) + b1; if x ∈ I1,
...
((bm − bm−1)/(am − am−1))(x− am−1) + bm−1; if x ∈ Im−1.

The mapping h : I → J is obviously continuous, monotone and surjec-
tive, therefore it is a homeomorphism.

Let xxx= (x0, x1, x2, . . .) be any element of (I, fn). We show first that
there is a uniquely determined point yyy= (y0, y1, y2, . . .) in (J, gn), where
y0 = h(x0), and for all i = 0, 1, 2, . . ., I(i) and II(i) hold true. Here for each
i, I(i) and II(i) are defined as the following statements:

I(i) . . . xi ∈ Int(Ij) if and only if yi ∈ Int(Jj), for each j = 0, 1, . . . ,m− 1,

II(i) . . . xi = aj if and only if yi = bj, for each j = 0, 1, . . . , m.

To determine the point yyy we construct inductively the coordinates yi of
yyy as follows.

First we construct y0 as y0 = h(x0). It follows from the definition of h

that I(0) and II(0) hold true.
Suppose we have already constructed y0, y1, y2, . . . , yk such that I(i) and

II(i) hold true for each i = 0, 1, . . . , k, and yi−1 ∈ gi−1(yi) holds true for
each i = 1, 2, . . . , k.

Now we construct yk+1 such that I(k + 1), II(k + 1), and yk ∈ gk(yk+1).
We consider the following two possible cases.

1. xk+1 = aj for some j = 0, 1, . . . , m. In this case we define yk+1 =

bj. Obviously, I(k + 1) and II(k + 1) hold true. Next we show that
yk ∈ gk(yk+1). Since xk ∈ fk(xk+1) = fk(aj) = [ark

1 (j), ark
2 (j)] for some
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ark
1 (j), ark

2 (j) ∈ A, and since gk and fk have the same pattern, it follows
that gk(yk+1) = gk(bj) = [brk

1 (j), brk
2 (j)].

If ark
1 (j) 6= ark

2 (j), then fix an integer `0 such that xk ∈ I`0 ⊆ [ark
1 (j), ark

2 (j)].
Then yk ∈ J`0 ⊆ [brk

1 (j), brk
2 (j)] = gk(yk+1). If ark

1 (j) = ark
2 (j), then

xk = ark
1 (j). It follows from the induction assumption II(k) that

yk = brk
1 (j) and therefore yk ∈ [brk

1 (j), brk
2 (j)] = gk(yk+1).

2. xk+1 ∈ Int(Ij) for some j = 0, 1, . . . , m− 1. In this case, since fk|Int(Ij)

is single-valued,

xk = fk(xk+1) = fk|Int(Ij)(xk+1) ∈ fk(Int(Ij)) = (a`1 , a`2),

for some a`1 , a`2 ∈ A (where {a`1 , a`2} = {lim
x↓aj

f(x), lim
x↑aj+1

f(x)}). There-
fore yk ∈ (b`1 , b`2) = gk(Int(Jj)) since fk and gk follow the same pat-
tern. We choose yk+1 ∈ Int(Jj) such that yk = gk|Int(Jj)(yk+1). Such a
point yk+1 exists and is uniquely determined since gk|Int(Jj) : Int(Jj) →
(b`1 , b`2) is bijective.

Next we show, that if we fix y0 = h(x0), there is exactly one point yyy=

(y0, y1, y2, . . .) in (J, gn), such that for each nonnegative integer i, I(i) and
II(i) hold true. Suppose that yyy= (y0, y1, y2, . . .) and y′y′y′= (y0, y

′
1, y

′
2, . . .) ∈

(J, gn) are two such points. We show using induction on i that yi = y′i for any
i, hence it follows that y = y′y = y′y = y′. Suppose that for each k = 0, 1, 2, . . . , i − 1,
yk = y′k. We prove that yi = y′i. We examine the following two cases.

1. For some j = 0, 1, 2, . . . ,m − 1, xi ∈ Int(Ij). Then yi, y
′
i are both in

Int(Jj) by I(i).

Since yi−1 = y′i−1, it follows that gi−1|Int(Jj)(yi) = gi−1(yi) = yi−1 =

y′i−1 = gi−1(y
′
i) = gi−1|Int(Jj)(y

′
i). Since gi−1|Int(Jj) is injective, it follows

that yi = y′i.

2. For each j = 0, 1, 2, . . . ,m − 1, xi /∈ Int(Ij). This means that xi = aj

for some j = 0, 1, . . . , m. In this case yi = bj = y′i by II(i).

Next we define a function H : (I, fn) → (J, gn) and prove that it is a
homeomorphism.

For each xxx= (x0, x1, x2, . . .) ∈ (I, fn) we define H(xxx) to be the unique
point yyy= (y0, y1, y2, . . .) in (J, gn) such that y0 = h(x0) and for each i =

0, 1, 2, . . ., I(i) and II(i) hold true.
We have already seen that H is well defined. Next we show that H is

continuous, by proving that for any sequence {xxxi}∞i=0 in (I, fn) converging to
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xxx∈ (I, fn), the sequence {yyyi}∞i=0, where yyyi = H(xxxi) for each i, is convergent
and its limit equals H(xxx).

(I, fn) and (J, gn) are both compact metric spaces since I and J are
compact (for details see [9]).

Let {xxxi}∞i=0 be a convergent sequence of elements in (I, fn), where xxxi =

(xi
0, x

i
1, x

i
2, . . .) for all i = 0, 1, . . .. Let xxx= (x0, x1, x2, . . .) be the limit of this

sequence. This means that xj is the limit of the sequence {xi
j}∞i=0 for each

j.
Let sss= (s0, s1, s2, . . .) ∈ (J, gn) be any accumulation point of the sequence

{yyy i}∞i=0. Let ki be a strictly increasing sequence of nonnegative integers such
that lim

i→∞
yyyki =sss, see Figure 2.

(I, fn) 3 (xk0
0 , xk0

1 , xk0
2 , . . .) (yk0

0 , yk0
1 , yk0

2 , . . .) ∈ (J, gn)

(I, fn) 3 (xk1
0 , xk1

1 , xk1
2 , . . .) (yk1

0 , yk1
1 , yk1

2 , . . .) ∈ (J, gn)

(I, fn) 3 (xk2
0 , xk2

1 , xk2
2 , . . .) (yk2

0 , yk2
1 , yk2

2 , . . .) ∈ (J, gn)

(s0, s1, s2, . . .) ∈ (J, gn)

(I, fn) 3 (x0, x1, x2, . . .) (y0, y1, y2, . . .) ∈ (J, gn)

Â //
H

Â //
H

Â //
H

²²

i→∞
²²

i→∞

Â //
H

Figure 2: The diagram.

Let yyy= (y0, y1, . . .) = H(xxx). We prove that s = ys = ys = y.
One can easily see, that

s0 = lim
i→∞

yki
0 = lim

i→∞
h(xki

0 ) = h( lim
i→∞

xki
0 ) = h(x0) = y0.

Suppose we have already shown that yk = sk for each k = 0, 1, 2, . . . , `− 1.
We show that y` = s` by distinguishing the following cases.

1. s` ∈ Int(Jj) for some 0 ≤ j ≤ m − 1. The point s` is the limit of the
sequence {yki

` }∞i=0. This means that there exists a nonnegative integer
i0 such that yki

` ∈ Int(Jj), for all i ≥ i0. Therefore xki
` ∈ Int(Ij), for all
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i ≥ i0 by I(`). Since x` = lim
i→∞

xki
` , it follows that x` ∈ Ij. We consider

the following two subcases.

(a) If x` ∈ Int(Ij), then y` ∈ Int(Jj) by I(`). Then

g`−1|Int(Jj)(y`) = y`−1 = s`−1 = g`−1|Int(Jj)(s`)

and since g`−1|Int(Jj) is single-valued and injective, y` = s` follows.

(b) If x` ∈ A, then x` = aj or x` = aj+1 (recall that x` ∈ Ij). Without
loss of generality, assume that x` = aj. It follows from

i. lim
i→∞

xki
` = aj, and aj is the left-hand endpoint of Ij, and

ii. for all i ≥ i0, xki
` ∈ Int(Ij) and f`−1 is single-valued on

Int(Ij),

that

x`−1 = lim
i→∞

xki
`−1

ii.
= lim

i→∞
f`−1(x

ki
` )

i.
= lim

t↓aj

f`−1(t) = ar

where ar ∈ [ar`−1
1 (j), ar`−1

2 (j)] = f`−1(aj) (recall that f`−1 is a gen-
eralized Markov interval function with respect to A). Therefore,
x`−1 = ar and by the definition of H, it follows that y`−1 = br.
We also know that (lim

t↓aj

f`−1(t), lim
t↓bj

g`−1(t)) is a pair of similar

points since f`−1 and g`−1 follow the same pattern and therefore
lim
t↓bj

g`−1(t) = br.

Using the fact that g`−1 is injective on Int(Jj) and that s` ∈
Int(Jj), we conclude that

s`−1 = g`−1(s`) 6= lim
t↓bj

g`−1(t) = br = y`−1.

Therefore y`−1 6= s`−1 which contradicts the inductive assump-
tion.

2. s` = bj for some 0 ≤ j ≤ m.
If there exists a nonnegative integer i1 such that yki

` = bj, for all
i ≥ i1, then by II(`), xki

` = aj holds true for all i ≥ i1. This means
that x` = aj, since it is the limit of the sequence {xki

` }∞i=0. Therefore,
y` = bj = s`.
If such an integer i1 does not exist, then we consider the following two
possible cases:

(a) 0 < j < m. We chose a strictly increasing sequence of positive
integers ni, such that
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- {ykni
` }∞i=0 is a subsequence of {yki

` }∞i=0,

- y
kni
` 6= bj for all i,

- y
kni
` ∈ Int(Jj−1) for all i or y

kni
` ∈ Int(Jj) for all i.

Assume without loss of generality that y
kni
` ∈ Int(Jj) for all i.

Recall that lim
i→∞

y
kni
` = s` = bj and that by I(`), xkni

` ∈ Int(Ij) for
all i. This means that x` ∈ Ij and we distinguish the following
possibilities:

i. If x` ∈ A, then either x` = aj or x` = aj+1. One can see,
using similar arguments as in 1.(b), that

s`−1 = lim
i→∞

y
kni
`−1 = lim

i→∞
g`−1(y

kni
` ) = lim

t↓bj

g`−1(t) = br

where br ∈ [br`−1
1 (j), br`−1

2 (j)] = g`−1(bj). By inductive assump-
tion y`−1 = s`−1 = br. By the definition of H, it follows
that x`−1 = ar. Since f`−1 and g`−1 follow the same pat-
tern and f`−1 is injective on Int(Ij) it follows that x`−1 =

ar = lim
t↓aj

f`−1(t) 6= lim
t↑aj+1

f`−1(t). Therefore, x` cannot equal

aj+1, hence x` = aj. By the definition of H, it follows that
y` = bj = s`.

ii. If x` ∈ Int(Ij), then

x`−1 = lim
i→∞

x
kni
`−1 = lim

i→∞
f`−1(x

kni
` ) 6= lim

t↓aj

f`−1(t)

since f`−1 is single-valued and injective on Int(Ij). Using the
same arguments as in i. we conclude that also in this case
s`−1 = br where br ∈ [br`−1

1 (j), br`−1
2 (j)] = g`−1(bj). Since f`−1

and g`−1 follow the same pattern, lim
t↓aj

f`−1(t) = ar follows

from lim
t↓bj

g`−1(t) = br. Therefore x`−1 6= ar. It follows that

y`−1 6= br = s`−1, which contradicts our inductive assump-
tion.

(b) j = 0 or j = m. Assume without loss of generality that j = 0.
We chose a strictly increasing sequence of positive integers ni,
such that

- {ykni
` }∞i=0 is a subsequence of {yki

` }∞i=0,

- y
kni
` 6= bj for all i,

- y
kni
` ∈ Int(J0) for all i.

The rest of the proof is similar to the proof of (a), replacing j

with 0.
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We can define H−1 : (J, gn) → (I, fn) in the same fashion as we did
with H. Every element yyy= (y0, y1, . . .) of (J, gn) has the unique image xxx=

(x0, x1, . . .) in (I, fn), such that x0 = h−1(y0) and for each i = 0, 1, 2, . . .,
I(i) and II(i) hold true. Therefore H is a homeomorphism.

We conclude the paper with the following corollary that easily follows
from Theorem 1.2.

Corollary 3.4. Let f : I = [a0, am] → 2I be a generalized Markov interval
function with respect to A = {a0, a1, . . . , am} with a surjective graph and
g : J = [b0, bm] → 2J be a generalized Markov interval function with respect
to B = {b0, b1, . . . , bm} with a surjective graph. If f and g are generalized
Markov interval functions with the same pattern, then (I, f) is homeomor-
phic to (J, g).

Remark 3.5. Theorem 1.1 is a corollary of Theorem 1.2.
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