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Abstract

In this paper, we introduce a concept of graph convergence for the H(·, ·)-co-accretive mapping in Banach

spaces and prove an equivalence theorem between graph convergence and resolvent operator convergence

for the H(·, ·)-co-accretive mapping. Further, we consider a system of generalized variational inclusions

involvingH(·, ·)-co-accretive mapping in real q-uniformly smooth Banach spaces. Using resolvent operator

technique, we prove the existence and uniqueness of solution and suggest an iterative algorithm for the

system of generalized variational inclusions under some suitable conditions. Further, we discuss the

convergence of iterative algorithm using the concept of graph convergence. Our results can be viewed as

a refinement and generalization of some known results in the literature.
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1 Introduction

Variational inclusion is an important and useful generalization of the variational inequality. One of

the most interesting and important problems in the theory of variational inclusion is the development

of an efficient and implementable iterative algorithm. Variational inclusions include variational, quasi-

variational, variational-like inequalities as special cases. For the application of variational inclusions, see

for example, [5]. Various kinds of iterative methods have been studied to find the approximate solutions for

variational inclusions, among these methods, the proximal point mapping method for solving variational

inclusions have been widely used by many authors for details, we refer to see, [7, 8, 11-17, 22-28, 31-33,

35-37, 40, 42, 43] and the references therein.

Recently, many authors have studied the perturbed algorithms for variational inequalities involving

maximal monotone mappings in Hilbert spaces. Using the concept of graph convergence for maximal
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monotone mappings, the equivalence between graph convergence and resolvent operator convergence

considered by Attouch [4], they constructed some perturbed algorithms for variational inequality and

proved the convergence of sequences generated by perturbed algorithm under some suitable conditions,

see for examples, [1, 9, 18-20, 30].

In 2001, Huang and Fang [22] introduce the generalize m-accretive mapping and gave the definition

of proximal point mapping for the generalized m-accretive mapping in the Banach spaces. Since then

many researchers investigated several class of generalized m-accretive mappings such as H-accretive,

(H, η)-accretive and (A, η)-accretive mappings, see for examples, [7, 10-12, 14-17, 22, 23, 26-28, 37, 40].

Zhang et al. [41] introduced a new system of nonlinear variational inclusions with (Ai, ηi)-accretive

operators in Banach spaces. By using the resolvent operator associated with (Ai, ηi)-accretive operator,

they constructed a Mann iterative algorithm with errors for finding the approximate solutions of the

system of nonlinear variational inclusions in Banach spaces. Sun et al. [36] introduced a new class

of M -monotone mapping in Hilbert spaces. Cai and Bu [6] introduced a new iterative algorithm for

finding a common element of the set of solutions of a general variational inequality problem for finite

inverse-strongly accretive mappings and the set of common fixed points of a countable family of strict

pseudo-contractive mappings in a Banach space. Onjai and Kumam [34] introduced a new iterative

scheme for finding a common element of the set of fixed points of strict pseudo-contractions, the set of

common solutions of a generalized mixed equilibrium problem and the set of common solutions of the

quasi-variational inclusion in Banach spaces.

Recently, Zou and Huang [42, 43] and Kazmi et al. [28] introduced and studied a class of H(·, ·)-

accretive mappings in Banach spaces. Very recently, Luo and Huang [31] introduced and studied a new

class of B-monotone mappings in Banach spaces, an extension of H-monotone mappings [14]. They

showed some properties of the proximal point mapping associated with B-monotone mapping and ob-

tained some applications for solving variational inclusions in Banach spaces. Very recently, Ahmad et al.

[2, 3] introduced and studied the concept of H(·, ·)-cocoercive and H(·, ·)-η-cocoercive operators. Very

recently, Li and Huang [29] studied the concept of graph convergence for the H(·, ·)-accretive mapping

in Banach spaces and show an application for solving a variational inclusion.

Motivated and inspired by the work above, in this paper, we introduce the concept of graph conver-

gence for the H(·, ·)-co-accretive mapping in q-uniformly smooth Banach spaces. We show an equivalence

theorem between graph convergence and resolvent operator convergence for the H(·, ·)-co-accretive map-

ping. Further, we prove the existence and uniqueness of solution and suggest an iterative algorithm for

the system of generalized variational inclusions under some mild conditions. Furthermore, we discuss the

convergence of iterative algorithm using the concept of graph convergence.
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2 Preliminaries

Let E be a real Banach space with its norm ∥ · ∥, E∗ be the topological dual of E, d is the metric

induced by the norm ∥ · ∥. Let ⟨·, ·⟩ be the dual pair between E and E∗ and CB(E)(respectively 2E)

be the family of all nonempty closed and bounded subsets(respectively, all non empty subsets) of E and

D(·, ·) be the Häusdorff metric on CB(E) defined by

D(A,B) = max{ sup
x∈A

d(x,B), sup
y∈B

d(A, y)},

where A,B ∈ CB(E), d(x,B) = inf
y∈B

d(x, y) and d(A, y) = inf
x∈A

d(x, y).

The generalized duality mapping Jq : E → 2E
∗
is defined by

Jq(x) = {f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥q, ∥f∗∥ = ∥x∥q−1}, ∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is well known

that Jq(x) = ∥x∥q−1J2(x), ∀x(̸= 0) ∈ E. In the sequel, we assume that E is a real Banach space such

that Jq is single-valued. If E is a real Hilbert space, then J2 becomes the identity mapping on E.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) = sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t

}
.

A Banach space E is called uniformly smooth, if

lim
t→0

ρE(t)

t
= 0;

E is called q-uniformly smooth, if there exists a constant C > 0 such that

ρE(t) ≤ Ctq, q > 1.

Note that Jq is single-valued, if E is uniformly smooth. In the study of characterstic inequalities in

q-uniformly smooth Banach spaces, Xu [39] proved the following lemma.

Lemma 2.1. Let q > 1 be a real number and let E be a real smooth Banach space. Then E is q-uniformly

smooth if and only if there exists a constant Cq > 0 such that for every x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ Cq∥y∥q.

3 H(·, ·)-co-accretive mapping

Throughout the paper unless otherwise specified, we take E to be q-uniformly smooth Banach space.

First, we recall the following definitions.

Definition 3.1. A mapping A : E → E is said to be
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(i) accretive, if

⟨Ax−Ay, Jq(x− y)⟩ ≥ 0, ∀ x, y ∈ E;

(ii) strictly accretive, if

⟨Ax−Ay, Jq(x− y)⟩ > 0, ∀ x, y ∈ E,

and the equality holds if and only if x = y;

(iii) δ-strongly accretive, if there exists a constant δ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ δ∥x− y∥q, ∀ x, y ∈ E;

(iv) β-relaxed accretive, if there exists a constant β > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ (−β)∥x− y∥q, ∀ x, y ∈ E;

(iv) µ-cocoercive, if there exists a constant µ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ µ∥Ax−Ay∥q, ∀ x, y ∈ E;

(v) γ-relaxed cocoercive, if there exists a constant γ > 0 such that

⟨Ax−Ay, Jq(x− y)⟩ ≥ (−γ)∥Ax−Ay∥q, ∀ x, y ∈ E;

(vi) σ-Lipschitz continuous, if there exists a constant σ > 0 such that

∥Ax−Ay∥ ≤ σ∥x− y∥, ∀ x, y ∈ E;

(vi) η-expansive, if there exists a constant η > 0 such that

∥Ax−Ay∥ ≥ η∥x− y∥, ∀ x, y ∈ E;

if η = 1, then it is expansive.

Definition 3.2. A multi-valued mapping T : E → CB(E) is said to be D-Lipschitz continuous, if there

exists a constant λDT
> 0 such that

D(Tx, Ty) ≤ λDT ∥x− y∥, ∀ x, y ∈ E.

Definition 3.3. Let H : E × E → E and A,B : E → E be three single-valued mappings. Then

(i) H(A, ·) is said to be µ1-cocoercive with respect to A, if there exists a constant µ1 > 0 such that

⟨H(Ax, u)−H(Ay, u), Jq(x− y)⟩ ≥ µ1∥Ax−Ay∥q, ∀ x, y, u ∈ E;
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(ii) H(·, B) is said to be γ1-relaxed cocoercive with respect to B, if there exists a constant γ1 > 0 such

that

⟨H(u,Bx)−H(u,By), Jq(x− y)⟩ ≥ (−γ1)∥Bx−By∥q, ∀ x, y, u ∈ E;

(iii) H(A,B) is said to be symmetric cocoercive with respect to A and B, if H(A, ·) is cocoercive with

respect to A and H(·, B) is relaxed cocoercive with respect to B;

(iv) H(A, ·) is said to be α1-strongly accretive with respect to A, if there exists a constant α1 > 0 such

that

⟨H(Ax, u)−H(Ay, u), Jq(x− y)⟩ ≥ α1∥x− y∥q, ∀ x, y, u ∈ E;

(v) H(·, B) is said to be β1-relaxed accretive with respect to B, if there exists a constant β1 > 0 such

that

⟨H(u,Bx)−H(u,By), Jq(x− y)⟩ ≥ (−β1)∥x− y∥q, ∀ x, y, u ∈ E;

(vi) H(A,B) is said to be symmetric accretive with respect to A and B, if H(A, ·) is strongly accretive

with respect to A and H(·, B) is relaxed accretive with respect to B;

(vii) H(A, ·) is said to be ξ1-Lipschitz continuous with respect to A, if there exists a constant ξ1 > 0

such that

∥H(Ax, u)−H(Ay, u)∥ ≤ ξ1∥x− y∥, ∀ x, y, u ∈ E;

(viii) H(·, B) is said to be ξ2-Lipschitz continuous with respect to B, if there exists a constant ξ2 > 0

such that

∥H(u,Bx)−H(u,By)∥ ≤ ξ2∥x− y∥, ∀ x, y, u ∈ E.

Definition 3.4. Let f, g : E → E be two single-valued mappings and M : E×E ⇒ 2E be a multi-valued

mapping. Then

(i) M(f, ·) is said to be α-strongly accretive with respect to f , if there exists a constant α > 0 such

that

⟨u− v, Jq(x− y)⟩ ≥ α∥x− y∥q, ∀ x, y, w ∈ E and ∀u ∈ M(f(x), w),

v ∈ M(f(y), w);

(ii) M(·, g) is said to be β-relaxed accretive with respect to g, if there exists a constant β > 0 such that

⟨u− v, Jq(x− y)⟩ ≥ (−β)∥x− y∥q, ∀ x, y, w ∈ E and ∀u ∈ M(w, g(x)),

v ∈ M(w, g(y));

(iii) M(f, g) is said to be symmetric accretive with respect to f and g, if M(f, ·) is strongly accretive

with respect to f and M(·, g) is relaxed accretive with respect to g.

5



Now we define following H(·, ·)-co-accretive mapping.

Definition 3.5. Let A,B, f, g : E → E and H : E × E → E be single-valued mappings. Let M :

E × E ⇒ 2E be a multi-valued mapping. The mapping M is said to be H(·, ·)-co-accretive with respect

to A,B, f and g, if H(A,B) is symmetric cocoercive with respect to A and B, M(f, g) is symmetric

accretive with respect to f and g and (H(A,B) + λM(f, g))(E) = E, for every λ > 0.

Example 3.1. Let E = R2, we define inner product by

⟨(x1, x2), (y1, y2)⟩ = x1y1 + x2y2.

Let A,B : R2 → R2 be the mappings defined by

A(x1, x2) = (
x1

2
,
x2

3
), ∀ (x1, x2) ∈ R2,

B(x1, x2) = (−x1,−
3

2
x2), ∀ (x1, x2) ∈ R2.

Let H : R2 × R2 → R2 be a mapping defined by

H(A(x), B(x)) = A(x) +B(x), ∀ x ∈ R2.

Then for any u ∈ R2, we have

⟨H(A(x), u)−H(A(y), u), x− y⟩ = ⟨A(x)−A(y), x− y⟩

= ⟨(1
2
(x1 − y1),

1

3
(x2 − y2)), (x1 − y1, x2 − y2)⟩

=
1

2
(x1 − y1)

2 +
1

3
(x2 − y2)

2,

and

∥A(x)−A(y)∥2 = ⟨A(x)−A(y), A(x)−A(y)⟩

= ⟨(1
2
(x1 − y1),

1

3
(x2 − y2)), (

1

2
(x1 − y1),

1

3
(x2 − y2))⟩

=
1

4
(x1 − y1)

2 +
1

9
(x2 − y2)

2,

which implies that

⟨H(A(x), u)−H(A(y), u), x− y⟩ = 1

2
(x1 − y1)

2 +
1

3
(x2 − y2)

2

=
18(x1 − y1)

2 + 12(x2 − y2)
2

36

= 2[
9(x1 − y1)

2 + 6(x2 − y2)
2

36
]

≥ 2[
9(x1 − y1)

2 + 4(x2 − y2)
2

36
]

= 2∥A(x)−A(y)∥2
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That is,

⟨H(A(x), u)−H(A(y), u), x− y⟩ ≥ 2∥A(x)−A(y)∥2.

Hence, H(A,B) is 2-cocoercive with respect to A and

⟨H(u,B(x))−H(u,B(y)), x− y⟩ = ⟨B(x)−B(y), x− y⟩

= ⟨(−(x1 − y1),−
3

2
(x2 − y2)), (x1 − y1, x2 − y2)⟩

= −[(x1 − y1)
2 +

3

2
(x2 − y2)

2],

and

∥B(x)−B(y)∥2 = ⟨B(x)−B(y), B(x)−B(y)⟩

= ⟨(−(x1 − y1),−
3

2
(x2 − y2)), (−(x1 − y1),−

3

2
(x2 − y2))⟩

= (x1 − y1)
2 +

9

4
(x2 − y2)

2,

which implies that

⟨H(u,B(x))−H(u,B(y)), x− y⟩ = −[(x1 − y1)
2 +

3

2
(x2 − y2)

2]

= −[
4(x1 − y1)

2 + 6(x2 − y2)
2

4

≥ −[
4(x1 − y1)

2 + 9(x2 − y2)
2

4
]

= (−1)∥B(x)−B(y)∥2.
That is,

⟨H(u,B(x))−H(u,B(y)), x− y⟩ ≥ (−1)∥B(x)−B(y)∥2.

Hence, H(A,B) is 1-relaxed cocoercive with respect to B. Thus H(A,B) is symmetric cocoercive with

respect to A and B.

Now, we show symmetric accretivity of M(f, g).

Let f, g : R2 → R2 be the single-valued mappings such that

f(x1, x2) = (
1

3
x1 − x2, x1 +

1

4
x2), ∀ (x1, x2) ∈ R2,

g(x1, x2) = (
1

2
x1 +

1

2
x2,−

1

2
x1 +

1

3
x2), ∀ (x1, x2) ∈ R2.

Let M : R2 × R2× → R2 be a mapping defined by

M(f(x), g(x)) = f(x)− g(x).

Now for any w ∈ R2

⟨M(f(x), w)−M(f(y), w), x− y⟩ = ⟨f(x)− f(y), x− y⟩

= ⟨(1
3
(x1 − y1)− (x2 − y2), (x1 − y1) +

1

4
(x2 − y2)),

(x1 − y1, x2 − y2)⟩

= [
1

3
(x1 − y1)

2 +
1

4
(x2 − y2)

2],
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and

∥x− y∥2 = ⟨(x1 − y1, x2 − y2), (x1 − y1, x2 − y2)⟩ = (x1 − y1)
2 + (x2 − y2)

2,

which implies that

⟨M(f(x), w)−M(f(y), w), x− y⟩ = [
1

3
(x1 − y1)

2 +
1

4
(x2 − y2)

2]

≥ 1

4
[(x1 − y1)

2 + (x2 − y2)
2]

=
1

4
∥x− y∥2.

That is,

⟨u− v, x− y⟩ ≥ 1

4
∥x− y∥2, ∀ x, y ∈ R2, u ∈ M(f(x), w) and v ∈ M(f(y), w).

Hence, M(f, g) is 1
4 -strongly accretive with respect to f and

⟨M(w, g(x))−M(w, g(y)), x− y⟩ = −⟨g(x)− g(y), x− y⟩

= −⟨(1
2
(x1 − y1) +

1

2
(x2 − y2),−

1

2
(x1 − y1)

+
1

3
(x2 − y2)), (x1 − y1, x2 − y2)⟩

= −[
1

2
(x1 − y1)

2 +
1

3
(x2 − y2)

2],

and

∥x− y∥2 = ⟨(x1 − y1, x2 − y2), (x1 − y1, x2 − y2)⟩ = (x1 − y1)
2 + (x2 − y2)

2,

which implies that

⟨M(w, g(x))−M(w, g(y)), x− y⟩ = −[
1

2
(x1 − y1)

2 +
1

3
(x2 − y2)

2]

≥ −1

2
[(x1 − y1)

2 + (x2 − y2)
2]

= −1

2
∥x− y∥2.

That is,

⟨u− v, x− y⟩ ≥ −1

2
∥x− y∥2, ∀ x, y ∈ R2, u ∈ M(w, g(x)) and v ∈ M(w, g(y)).

Hence, M(f, g) is 1
2 -relaxed accretive with respect to g. Thus M(f, g) is symmetric accretive with respect

to f and g. Also for any x ∈ R2, we have

[H(A,B) + λM(f, g)](x) = H(A(x), B(x)) + λM(f(x), g(x))

= (A(x) +B(x)) + λ(f(x)− g(x))

= (−x1

2
,−7

6
x2) + λ(−1

6
x1 −

3

2
x2,

3

2
x1 −

1

12
x2)

=
[
− (

1

2
+

λ

6
)x1 − (

3λ

2
)x2, (

3λ

2
)x1 − (

7

6
+

λ

12
)x2

]
,
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it can be easily verify that the vector on right hand side generate the whole R2,

i.e., [H(A,B) + λM(f, g)](R2) = R2, ∀ λ > 0.

Hence, M is H(·, ·)-co-accretive with respect to A,B, f and g.

Example 3.2. Let E = C[0, 1] be the space of all real valued continuous functions defined on [0, 1] with

the norm

∥x∥ = max
t∈[0,1]

|x(t)|.

Let A,B, f, g : E → E be mappings defined, respectively by

A(x) = ex, B(x) = e−x, f(x) = x+ 1 and g(x) = sinx,∀ x ∈ E.

Let H : E × E → E be a single-valued mapping defined by

H(A(x), B(x)) = A(x) +B(x), ∀ x ∈ E,

and let M : E × E → 2E be a multi-valued mapping defined by

M(f(x), g(y)) = f(x)− g(y).

Then for λ = 1,

∥[H(A,B) +M(f, g)](x)∥ = ∥A(x) +B(x) + f(x)− g(x)∥

= max
t∈[0,1]

|ex(t) + e−x(t) + (x(t) + 1− sin(x(t)))| > 0,

which implies that 0 /∈ [H(A,B) + M(f, g)](E) and thus M is not H(·, ·)-co-accretive with respect to

A,B, f and g.

Note 3.1. Throughout rest of the paper, whenever we use M is H(·, ·)-co-accretive, means that H(A,B)

is symmetric cocoercive with respect to A and B with constants µ and γ, respectively and M(f, g) is

symmetric accretive with respect to f and g with constants α and β, respectively.

Theorem 3.1. Let A,B, f, g : E → E and H : E×E → E be single-valued mappings. Let M : E×E ⇒

2E be an H(·, ·)-co-accretive mapping with respect to A,B, f and g. Let A be η-expansive and B be

σ-Lipschitz continuous and let α > β, µ > γ and η > σ. Then the mapping [H(A,B) + λM(f, g)]−1 is

single-valued, for all λ > 0.

Proof. For any given u ∈ E, let x, y ∈ [H(A,B) + λM(f, g)]−1(u). It follows that

1

λ
(u−H(A(x), B(x))) ∈ M(f(x), g(x)),
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and
1

λ
(u−H(A(y), B(y))) ∈ M(f(y), g(y)).

Since M is H(·, ·)-co-accretive with respect to A,B, f and g, we have

(α− β)∥x− y∥q ≤ ⟨ 1
λ
(u−H(A(x), B(x)))− 1

λ
(u−H(A(y), B(y))), Jq(x− y)⟩

= − 1

λ
⟨H(A(x), B(x))− (H(A(y), B(y))), Jq(x− y)⟩

= − 1

λ
⟨H(A(x), B(x))−H(A(y), B(x)), Jq(x− y)⟩

− 1

λ
⟨H(A(y), B(x))−H(A(y), B(y)), Jq(x− y)⟩

≤ −µ

λ
∥A(x)−A(y)∥q + γ

λ
∥B(x)−B(y)∥q. (3.1)

Since A is η-expansive and B is σ-Lipschitz continuous, thus (3.1) becomes

0 ≤ (α− β)∥x− y∥q ≤ −µηq

λ
∥x− y∥q + γσq

λ
∥x− y∥q,

which implies that

0 ≤ [(α− β) +
(µηq − γσq)

λ
]∥x− y∥q ≤ 0.

Since α > β, µ > γ, η > σ and λ > 0, it follows that x = y and so

[H(A,B) + λM(f, g)]−1 is single-valued. This completes the proof.

Definition 3.6. Let A,B, f, g : E → E and H : E × E → E be single-valued mappings. Let M :

E × E ⇒ 2E be an H(·, ·)-co-accretive mapping with respect to A,B, f and g. The resolvent operator

R
H(·,·)
λ,M(·,·) : E → E is defined by

R
H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u), ∀u ∈ E, λ > 0.

Theorem 3.2. Let A,B, f, g : E → E and H : E × E → E be single-valued mappings. Suppose

M : E ×E ⇒ 2E is an H(·, ·)-co-accretive mapping with respect to A,B, f and g. Let A be η-expansive

and B be σ-Lipschitz continuous such that α > β, µ > γ and η > σ. Then the resolvent operator

R
H(·,·)
λ,M(·,·) : E → E is Lipschitz continuous with constant θ, that is,

∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥ ≤ θ∥u− v∥, ∀ u, v ∈ E and λ > 0,

where θ =
1

λ(α− β) + (µηq − γσq)
.

Proof. Let u, v be any given points in E. It follws that

R
H(·,·)
λ,M(·,·)(u) = [H(A,B) + λM(f, g)]−1(u)
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and

R
H(·,·)
λ,M(·,·)(v) = [H(A,B) + λM(f, g)]−1(v)

and so
1

λ
(u−H(A(R

H(·,·)
λ,M(·,·)(u)), B(R

H(·,·)
λ,M(·,·)(u)))) ∈ M(f(R

H(·,·)
λ,M(·,·)(u)), g(R

H(·,·)
λ,M(·,·)(u)))

and
1

λ
(v −H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v)))) ∈ M(f(R

H(·,·)
λ,M(·,·)(v)), g(R

H(·,·)
λ,M(·,·)(v))).

Since M is symmetric accretive with respect to f and g, we have

(α− β)∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥

q ≤ ⟨ 1
λ
(u−H(A(R

H(·,·)
λ,M(·,·)(u)), B(R

H(·,·)
λ,M(·,·)(u))))

− 1

λ
(v −H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v)))),

Jq(R
H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩

≤ 1

λ
⟨u− v, Jq(R

H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩

− 1

λ
⟨H(A(R

H(·,·)
λ,M(·,·)(u)), B(R

H(·,·)
λ,M(·,·)(u)))

−H(A(R
H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(u))),

Jq(R
H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩

− 1

λ
⟨H(A(R

H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(u)))

−H(A(R
H(·,·)
λ,M(·,·)(v)), B(R

H(·,·)
λ,M(·,·)(v))),

Jq(R
H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩.

Since H is symmetric cocoercive with respect to A and B, A is η-expansive and B is σ-Lipschitz contin-

uous, we have

(α− β)∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥

q ≤ 1

λ
⟨u− v, Jq(R

H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩

− 1

λ
(µηq − γσq)∥RH(·,·)

λ,M(·,·)(u)−R
H(·,·)
λ,M(·,·)(v)∥

q,

or

(α− β) +
1

λ
(µηq − γσq)∥RH(·,·)

λ,M(·,·)(u)−R
H(·,·)
λ,M(·,·)(v)∥

q

≤ 1

λ
⟨u− v, Jq(R

H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩.

It follows that

⟨u− v, Jq(R
H(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v))⟩ ≥ [λ(α− β) + (µηq − γσq)]∥RH(·,·)

λ,M(·,·)(u)−R
H(·,·)
λ,M(·,·)(v)∥

q,

∥u− v∥∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥

q−1 ≥ [λ(α− β) + (µηq − γσq)]∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥

q.
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That is,

∥RH(·,·)
λ,M(·,·)(u)−R

H(·,·)
λ,M(·,·)(v)∥ ≤ θ∥u− v∥,

where θ =
1

λ(α− β) + (µηq − γσq)
. This completes the proof.

4 Graph convergence for the H(·, ·)-co-accretive mapping

In this section, we study the graph convergence for the H(·, ·)-co-accretive mapping.

Let M : E × E ⇒ 2E be a multi-valued mapping. The graph of M is defined by

graph(M) = {((x, y), z) : z ∈ M(x, y)}.

Definition 4.1. Let A,B, f, g : E → E and H : E × E → E be single-valued mappings. Let Mn,M :

E × E ⇒ 2E be H(·, ·)-co-accretive mappings, for n = 0, 1, 2, · · · . The sequence Mn is said to be graph

convergence to M , denoted by MnG−→M , if for every ((f(x), g(x)), z) ∈ graph(M) there exists a sequence

((f(xn), g(xn)), zn) ∈ graph(Mn) such that

f(xn) → f(x), g(xn) → g(x) and zn → z as n → ∞.

Remark 4.1. If f = I and g ≡ 0 then Definition 4.1 reduces to Definition 3.1 of [29].

Theorem 4.1. Let Mn,M : E ×E ⇒ 2E be H(·, ·)-co-accretive mappings with respect to A,B, f and g

and H : E × E → E be a single-valued mapping such that

(i) H(A,B) is ξ1-Lipschitz continuous with respect to A and ξ2-Lipschitz continuous with respect to

B;

(ii) f is τ -expansive mapping.

Then MnG−→M if and only if

R
H(·,·)
λ,Mn(·,·)(u) → R

H(·,·)
λ,M(·,·)(u), ∀u ∈ E, λ > 0,

where R
H(·,·)
λ,Mn(·,·) = [H(A,B) + λMn(f, g)]

−1, R
H(·,·)
λ,M(·,·) = [H(A,B) + λM(f, g)]−1.

Proof. Suppose that MnG−→M . For any given x ∈ E, let

zn = R
H(·,·)
λ,Mn(·,·)(x), z = R

H(·,·)
λ,M(·,·)(x).

It follows that z = (H(A,B) + λM(f, g))−1(x),

i.e.,
1

λ
[x−H(A(z), B(z))] ∈ M(f(z), g(z))
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or

((f(z), g(z)),
1

λ
[x−H(A(z), B(z))]) ∈ graph(M).

By the definition of graph convergence, there exists a sequence {(f(z′n), g(z′n)), y′n} ∈ graph(Mn) such

that

f(z′n) → f(z), g(z′n) → g(z) and y′n → 1

λ
[x−H(A(z), B(z))] as n → ∞. (4.1)

Since y′n ∈ Mn(f(z
′
n), g(z

′
n), we have

H(A(z′n), B(z′n)) + λy′n ∈ [H(A,B) + λMn(f, g)](z
′
n)

and so

z′n = R
H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n].

Now using the Lipschitz continuity of R
H(·,·)
λ,Mn(·,·), we have

∥zn − z∥ ≤ ∥zn − z′n∥+ ∥z′n − z∥

= ∥RH(·,·)
λ,Mn(·,·)(x)−R

H(·,·)
λ,Mn(·,·)[H(A(z′n), B(z′n)) + λy′n]∥+ ∥z′n − z∥

≤ θ∥x−H(A(z′n), B(z′n))− λy′n∥+ ∥z′n − z∥

≤ θ[∥x−H(A(z), B(z))− λy′n∥+ ∥H(A(z), B(z))−H(A(z′n), B(z′n))∥]

+ ∥z′n − z∥, (4.2)

where θ = 1
λ(α−β)+(µηq−γσq) .

Since H is ξ1-Lipschitz continuous with respect to A and ξ2-Lipschitz continuous with respect to B,

we have

∥H(A(z), B(z))−H(A(z′n), B(z′n))∥ ≤ ∥H(A(z), B(z))−H(A(z), B(z′n))∥

+ ∥H(A(z), B(z′n))−H(A(z′n), B(z′n))∥

≤ (ξ1 + ξ2)∥z − z′n∥. (4.3)

From (4.2) and (4.3), we have

∥zn − z∥ ≤ θ∥x−H(A(z), B(z))− λy′n∥+ [1 + θ(ξ1 + ξ2)]∥z − z′n∥. (4.4)

Since f is τ -expansive mapping, we have

∥f(z′n)− f(z)∥ ≥ τ∥z′n − z∥ ≥ 0. (4.5)

Since f(z′n) → f(z) as n → ∞. By (4.5), we have z′n → z as n → ∞.

Also from (4.1), y′n → 1
λ [x−H(A(z), B(z))] as n → ∞.

It follows from (4.4) that

∥zn − z∥ → 0 as n → ∞,
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i.e., R
H(·,·)
λ,Mn(·,·)(x) → R

H(·,·)
λ,M(·,·)(x).

Conversely, suppose that

R
H(·,·)
λ,Mn(·,·)(x) → R

H(·,·)
λ,M(·,·)(x), ∀x ∈ E, λ > 0.

For any ((f(x), g(x)), y) ∈ graph(M), we have

y ∈ M(f(x), g(x)),

H(A(x), B(x)) + λy ∈ [H(A,B) + λM(f, g)](x)

and so

x = R
H(·,·)
λ,M(·,·)[H(A(x), B(x)) + λy].

Let xn = R
H(·,·)
λ,Mn(·,·)[H(A(x), B(x)) + λy], then

1
λ [H(A(x), B(x))−H(A(xn), B(xn)) + λy] ∈ Mn(f(xn), g(xn)).

Let yn = 1
λ [H(A(x), B(x))−H(A(xn), B(xn)) + λy].

Now,

∥yn − y∥ = ∥ 1
λ
[H(A(x), B(x))−H(A(xn), B(xn)) + λy]− y∥

=
1

λ
∥H(A(x), B(x))−H(A(xn), B(xn))∥

=
(ξ1 + ξ2)

λ
∥xn − x∥. (4.6)

Since R
H(·,·)
λ,Mn(·,·)(x) → R

H(·,·)
λ,M(·,·)(x), ∀x ∈ E, we know that ∥xn − x∥ → 0, thus (4.6) implies that yn → y

as n → ∞ and so MnG−→M . This completes the proof.

5. System of generalized variational inclusions

Let for each i = 1, 2, Ei be qi-uniformly smooth Banach spaces with norm ∥.∥i. Let Ai, Bi, fi, gi :

Ei → Ei be non linear mappings; let Fi,Hi : E1 × E2 → Ei be non linear mappings; let Pi : Ei → Ei

be single-valued mappings and let Qi : Ei → 2Ei be multi-valued mappings. Let M1 : E1 × E1 → 2E1

be an H1(·, ·)-co-accretive mapping with respect to A1, B1, f1 and g1 and M2 : E2 × E2 → 2E2 be an

H2(·, ·)-co-accretive mapping with respect to A2, B2, f2 and g2. We consider the following system of

generalized variational inclusions (in short SGVI):

Find (x, y) ∈ E1 × E2, u ∈ Q1(x), v ∈ Q2(y) such that

{
0 ∈ F1(P1(x), v) +M1(f1(x), g1(x));
0 ∈ F2(u, P2(y)) +M2(f2(y), g2(y)).

(5.1)

Remark 5.1. For suitable choices of the mappings A1, A2, B1, B2, f1, f2, g1, g2, G1, G2,

H1,H2, P1, P2, Q1, Q2,M1,M2 and the spaces E1, E2, SGVI (5.1) reduces to various classes of system of
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variational inclusions and system of variational inequalities, see for examples [10, 14-17, 21, 22-25, 27,

32, 33, 35-37, 38, 40].

Definition 5.1. A mapping F : E1 × E2 → E1 is said to be (β, γ)-mixed Lipschitz continuous, if there

exist constants β > 0, γ > 0 such that

∥F (x1, y1)− F (x2, y2)∥1 ≤ β∥x1 − x2∥1 + γ∥y1 − y2∥2, ∀ x1, x2 ∈ E1, y1, y2 ∈ E2.

Lemma 5.1. For any (x, y) ∈ E1 × E2, u ∈ Q1(x), v ∈ Q2(y), (x, y) is a solution of SGVI (5.1) if and

only if (x, y) satisfies

x = R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)],

y = R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))],

where λ1, λ2 > 0 are constants; R
H1(·,·)
λ1,M1(·,·)(x) ≡ [H1(A1, B1) + λ1M1(f1, g1)]

−1(x);

R
H2(·,·)
λ2,M2(·,·)(y) ≡ [H2(A2, B2) + λ2M2(f2, g2)]

−1(y), ∀ x ∈ E1, y ∈ E2.

Proof. Proof of the above lemma follows directly from the definition of resolvent operators R
H1(·,·)
λ1,M1(·,·)

and R
H2(·,·)
λ2,M2(·,·).

Next, we prove the existence and uniqueness theorem for SGVI (5.1).

Theorem 5.1. Let for each i = 1, 2, Ei be qi-uniformly smooth Banach spaces with norm ∥.∥i. Let

Ai, Bi, fi, gi : Ei → Ei be single-valued mappings such that Ai be ηi-expansive and Bi be σi-Lipschitz

continuous. Let Hi : E1 × E2 → Ei be symmetric cocoercive mappings with respect to Ai and Bi with

constants µi and γi, respectively and (vi, δi)-mixed Lipschitz continuous. Let Pi : Ei → Ei be single-

valued mappings and Qi : Ei → 2Ei be D-Lipschitz continuous multi-valued mappings with constants

λDQi
. Let F1 : E1 × E2 → E1 be ρ1-strongly accretive mapping in the first argument, λF1

-Lipschitz

continuous in the second argument and TF1 -Lipschitz continuous with respect to P1 in the first argument

and let F2 : E1 × E2 → E2 be ρ2-strongly accretive mapping in the second argument, λF2
-Lipschitz

continuous in the first argument and SF2 -Lipschitz continuous with respect to P2 in the second argument.

Let M1 : E1 × E1 → 2E1 be an H1(·, ·)-co-accretive mapping with respect to A1, B1, f1 and g1 and

M2 : E2 ×E2 → 2E2 be an H2(·, ·)-co-accretive mapping with respect to A2, B2, f2 and g2. Suppose that

there exist constants λ1, λ2 > 0 satisfying{
L1 = m1 + θ2λ2λF2λDQ1

< 1;
L2 = m2 + θ1λ1λF1

λDQ2
< 1,

(5.2)

where

m1 = θ1[
q1

√
1− 2q1(µ1η

q1
1 − γ1σ

q1
1 ) + Cq1(v1 + δ1)q1 + q1

√
1− 2λ1q1ρ1 + Cq1λ

q1
1 T q1

F1
];

m2 = θ2[
q2

√
1− 2q2(µ2η

q2
2 − γ2σ

q2
2 ) + Cq2(v2 + δ2)q2 + q2

√
1− 2λ2q2ρ2 + Cq2λ

q2
2 Sq2

F2
];
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θ1 =
1

λ1(α1 − β1) + (µ1η
q
1 − γ1σ

q
1)
; θ2 =

1

λ2(α2 − β2) + (µ2η
q
2 − γ2σ

q
2)
.

Then SGVI (5.1) has a unique solution.

Proof. For each i = 1, 2, it follows that for (x, y) ∈ E1 × E2, the resolvent operators R
H1(·,·)
λ1,M1(·,·) and

R
H2(·,·)
λ2,M2(·,·) are

1
λ1(α1−β1)+(µ1η

q1
1 −γ1σ

q1
1 )

and 1
λ2(α2−β2)+(µ2η

q2
2 −γ2σ

q2
2 )

-Lipschitz continuous respectively.

Now, we define a mapping N : E1 × E2 → E1 × E2 by

N(x, y) = (T (x, y), S(x, y)), ∀ (x, y) ∈ E1 × E2; (5.3)

where T : E1 × E2 → E1 and S : E1 × E2 → E2 are defined by

T (x, y) = R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)], λ1 > 0; (5.4)

S(x, y) = R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))], λ2 > 0. (5.5)

For any (x1, y1), (x2, y2) ∈ E1 × E2, using (5.4) and (5.5) and Lipschitz continuity of R
H1(·,·)
λ1,M1(·,·) and

R
H2(·,·)
λ2,M2(·,·), we have

∥T (x1, y1)− T (x2, y2)∥1 = ∥RH1(·,·)
λ1,M1(·,·)[H1(A1(x1), B1(x1))− λ1F1(P1(x1), v1)]

−R
H1(·,·)
λ1,M1(·,·)[H1(A1(x2), B1(x2))− λ1F1(P1(x2), v2)]∥1

≤ θ1∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))

− λ1(F1(P1(x1), v1))− F1(P1(x2), v1)∥1

+ θ1λ1∥F1(P1(x2), v1)− F1(P1(x2), v2)∥1

≤ θ1∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))− (x1 − x2)∥1

+ ∥(x1 − x2)− λ1(F1(P1(x1), v1))− F1(P1(x2), v1)∥1

+ θ1λ1∥F1(P1(x2), v1)− F1(P1(x2), v2)∥1. (5.6)

Since H1 is symmetric cocoercive with respect to A1 and B1 with constants µ1 and γ1, respectively and

(v1, δ1)-mixed Lipschitz continuous, then using Lemma 2.1, we have

∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))− (x1 − x2)∥q11

≤ ∥x1 − x2∥q11 − 2q1⟨H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2)),

Jq1(x1 − x2)⟩1 + Cq1∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))∥q11

≤ ∥x1 − x2∥q11 − 2q1(µ1∥A1(x1)−A1(x2)∥q11

− γ1∥B1(x1)−B1(x2)∥q11 ) + Cq1(v1 + δ1)
q1∥x1 − x2∥q11 .

Since A1 is η1-expansive and B1 is σ1-Lipschitz continuous, we have

∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))− (x1 − x2)∥q11

≤ [1− 2q1(µ1η
q1
1 − γ1σ

q1
1 ) + Cq1(v1 + δ1)

q1 ]∥x1 − x2∥q11 ,
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which implies that

∥H1(A1(x1), B1(x1))−H1(A1(x2), B1(x2))− (x1 − x2)∥1

≤ q1

√
[1− 2q1(µ1η

q1
1 − γ1σ

q1
1 ) + Cq1(v1 + δ1)q1 ]∥x1 − x2∥1. (5.7)

Again, since F1 is ρ1-strongly accretive and TF1 -Lipschitz continuous with respect to P1 in the first

argument, then using Lemma 2.1, we have

∥(x1 − x2)− λ1(F1(P1(x1), v1))− F1(P1(x2), v1)∥q11

≤ ∥x1 − x2∥q11 − 2λ1q1⟨F1(P1(x1), v1))− F1(P1(x2), v1),

Jq1(x1 − x2)⟩1 + Cq1λ
q1
1 ∥F1(P1(x1), v1))− F1(P1(x2), v1)∥q11

≤ (1− 2λ1q1ρ1 + Cq1λ
q1
1 T q1

F1
)∥x1 − x2∥q11 ,

which implies that

∥(x1−x2)−λ1(F1(P1(x1), v1))−F1(P1(x2), v1)∥1 ≤ q1

√
1− 2λ1q1ρ1 + Cq1λ

q1
1 T q1

F1
∥x1−x2∥1 (5.8)

Also, F1 is λF1-Lipschitz continuous in the second argument and Q2 is D-Lipschitz continuous with

constant λDQ2
, we have

∥F1(P1(x2), v1))− F1(P1(x2), v2)∥1 ≤ λF1∥v1 − v2∥ ≤ λF1D(Q2(y1), Q2(y2))

≤ λF1λDQ2
∥y1 − y2∥2. (5.9)

From (5.6),(5.7),(5.8) and (5.9), we have

∥T (x1, y1)− T (x2, y2)∥1 ≤ θ1[
q1

√
1− 2q1(µ1η

q1
1 − γ1σ

q1
1 ) + Cq1(v1 + δ1)q1

+ q1

√
1− 2λ1q1ρ1 + Cq1λ

q1
1 T q1

F1
]∥x1 − x2∥1

+ θ1λ1λF1λDQ2
∥y1 − y2∥2. (5.10)

Now

∥S(x1, y1)− S(x2, y2)∥2 = ∥RH2(·,·)
λ2,M2(·,·)[H2(A2(y1), B2(y1))− λ2F2(u1, P2(y1))]

−R
H2(·,·)
λ2,M2(·,·)[H2(A2(y2), B2(y2))− λ2F2(u2, P2(y2))]∥2

≤ θ2∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))

− λ2(F2(u1, P2(y1)))− F2(u1, P2(y2))∥2

+ θ2λ2∥F2(u1, P2(y2))− F2(u2, P2(y2))∥2

≤ θ2[∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))− (y1 − y2)∥2

+ ∥(y1 − y2)− λ2(F2(u1, P2(y1)))− F2(u1, P2(y2))∥2]

+ θ2λ2∥F2(u1, P2(y2))− F2(u2, P2(y2))∥2. (5.11)

Since H2 is symmetric cocoercive with respect to A2 and B2 with constants µ2 and γ2, respectively and
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(v2, δ2)-mixed Lipschitz continuous, then using Lemma 2.1, we have

∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))− (y1 − y2)∥q22

≤ ∥y1 − y2∥q22 − 2q2⟨H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2)),

Jq2(y1 − y2)⟩2 + Cq2∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))∥q22

≤ ∥y1 − y2∥q22 − 2q2(µ2∥A2(y1)−A2(y2)∥q22

− γ2∥B2(y1)−B2(y2)∥q22 ) + Cq2(v2 + δ2)
q2∥y1 − y2∥q22 .

Since A2 is η2-expansive and B2 is σ2-Lipschitz continuous, we have

∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))− (y1 − y2)∥q22

≤ [1− 2q2(µ2η
q2
2 − γ2σ

q2
2 ) + Cq2(v2 + δ2)

q2 ]∥y1 − y2∥q22 ,

which implies that

∥H2(A2(y1), B2(y1))−H2(A2(y2), B2(y2))− (y1 − y2)∥2

≤ q2

√
[1− 2q2(µ2η

q2
2 − γ2σ

q2
2 ) + Cq2(v2 + δ2)q2 ]∥y1 − y2∥2. (5.12)

Also, F2 is ρ2-strongly accretive and SF2-Lipschitz continuous with respect to P2 in the second argument,

then using Lemma 2.1, we have

∥(y1 − y2)− λ2(F2(u1, P2(y1))− F2(u1, P2(y2))∥q22

≤ ∥y1 − y2∥q22 − 2λ2q2⟨F2(u1, P2(y1)))− F2(u1, P2(y2)),

Jq2(y1 − y2)⟩2 + Cq2λ
q2
2 ∥F2(u1, P2(y1))− F2(u1, P2(y2))∥q22

≤ (1− 2λ2q2ρ2 + Cq2λ
q2
2 Sq2

F2
)∥y1 − y2∥q22 ,

which implies that

∥(y1−y2)−λ2(F2(u1, P2(y1))−F2(u1, P2(y2))∥2 ≤ q2

√
1− 2λ2q2ρ2 + Cq2λ

q2
2 Sq2

F2
∥y1−y2∥2. (5.13)

Also, F2 is λF2
-Lipschitz continuous in the first argument and Q1 is D-Lipschitz continuous with

constant λDQ1
, we have

∥F2(u1, P2(y2))− F2(u2, P2(y2))∥2 ≤ λF2∥u1 − u2∥1 ≤ λF2D(Q1(x1), Q1(x2))

≤ λF2
λDQ1

∥x1 − x2∥1. (5.14)

From (5.11),(5.12),(5.13) and (5.14), we have

∥S(x1, y1)− S(x2, y2)∥2 ≤ θ2[
q2

√
1− 2q2(µ2η

q2
2 − γ2σ

q2
2 ) + Cq2(v2 + δ2)q2

+ q2

√
1− 2λ2q2ρ2 + Cq2λ

q2
2 Sq2

F2
]∥y1 − y2∥2

+ θ2λ2λF2λDQ1
∥x1 − x2∥1. (5.15)

From (5.10) and (5.15), we have

∥T (x1, y1)− T (x2, y2)∥1 + ∥S(x1, y1)− S(x2, y2)∥2 ≤ L1∥x1 − x2∥1 + L2∥y1 − y2∥2

≤ max {L1, L2}(∥x1 − x2∥1 + ∥y1 − y2∥2), (5.16)
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where {
L1 = m1 + θ2λ2λF2λDQ1

;
L2 = m2 + θ1λ1λF1λDQ2

,
(5.17)

and

m1 = θ1[
q1

√
1− 2q1(µ1η

q1
1 − γ1σ

q1
1 ) + Cq1(v1 + δ1)q1 + q1

√
1− 2λ1q1ρ1 + Cq1λ

q1
1 T q1

F1
];

m2 = θ2[
q2

√
1− 2q2(µ2η

q2
2 − γ2σ

q2
2 ) + Cq2(v2 + δ2)q2 + q2

√
1− 2λ2q2ρ2 + Cq2λ

q2
2 Sq2

F2
],

Now, we define the norm ∥.∥∗ on E1 × E2 by

∥(x, y)∥∗ = ∥x∥1 + ∥y∥2, ∀(x, y) ∈ E1 × E2. (5.18)

We see that (E1 × E2, ∥.∥∗) is a Banach space. Hence, from (5.3), (5.16) and (5.18), we have

∥N(x1, y1)−N(x2, y2)∥∗ ≤ max {L1, L2}∥(x1, y1)− (x2, y2)∥∗. (5.19)

Since max {L1, L2} < 1 by condition (5.2), then from (5.19), it follows that N is a contraction mapping.

Hence by Banach Contraction Principle, there exists a unique point (x, y) ∈ E1 × E2 such that

N(x, y) = (x, y);

which implies that

x = R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)],

y = R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))].

Then by Lemma 5.1, (x, y) is a unique solution of SGVI (5.1). This completes the proof.

For i = 1, 2; let Min : E1 ×E2 → 2Ei be Hi(·, ·)-co-accretive mappings for n = 0, 1, 2, · · · . Based on

Lemma (5.1), we suggest the following iterative algorithm for finding an approximate solution for SGVI

(5.1).

Algorithm 5.1. For any (x0, y0) ∈ E1 × E2, compute (xn, yn) ∈ E1 × E2 by the following iterative

scheme:

xn+1 = R
H1(·,·)
λ1,M1n(·,·)[H1(A1(xn), B1(xn))− λ1F1(P1(xn), vn)], (5.20)

yn+1 = R
H2(·,·)
λ2,M2n(·,·)[H2(A2(yn), B2(yn))− λ2F2(un, P2(yn))], (5.21)

where n = 0, 1, 2, · · · ;λ1, λ2 > 0 are constants.

Theorem 5.2. Let for each i = 1, 2, Ai, Bi, fi, gi, Hi, Fi, Pi, Qi,Mi be the same as in Theorem 5.1,

Min,Mi : E1×E2 → 2Ei be Hi(·, ·)-co-accretive mappings such that MinG−→Mi and the condition (5.2) of

Theorem 5.1 holds. Then approximate solution (xn, yn) generated by Algorithm 5.1 converges strongly

to unique solution (x, y) of SGVI (5.1).
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Proof. By Algorithm 5.1, there exists a unique solution (x, y) of SGVI (5.1). It follows from Algorithm

5.1 and Theorem 3.2 that

∥xn+1 − x∥1 = ∥RH1(·,·)
λ1,M1n(·,·)[H1(A1(xn), B1(xn))− λ1F1(P1(xn), vn)]

−R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)]∥1

≤ ∥RH1(·,·)
λ1,M1n(·,·)[H1(A1(xn), B1(xn))− λ1F1(P1(xn), vn)]

−R
H1(·,·)
λ1,M1n(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)]∥1

+ ∥RH1(·,·)
λ1,M1n(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)]

−R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1F1(P1(x), v)]∥1, (5.22)

and

∥yn+1 − y∥2 = ∥RH2(·,·)
λ2,M2n(·,·)[H2(A2(yn), B2(yn))− λ2F2(un, P2(yn))]

−R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))]∥2

≤ ∥RH2(·,·)
λ2,M2n(·,·)[H2(A2(yn), B2(yn))− λ2F2(un, P2(yn))]

−R
H2(·,·)
λ2,M2n(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))]∥2

+ ∥RH2(·,·)
λ2,M2n(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))]

−R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2F2(u, P2(y))]∥2. (5.23)

Following the similar arguments from (5.6)-(5.10), we have

∥RH1(·,·)
λ1,M1n(·,·)[H1(A1(xn), B1(xn))− λ1F1(P1(xn), vn)]−R

H1(·,·)
λ1,M1n(·,·)[H1(A1(x), B1(x))

− λ1F1(P1(x), v)]∥1 ≤ m1∥xn − x∥1 + θ1λ1λF1λDq2
∥yn − y∥2, (5.24)

and using the same arguments from (5.11)-(5.15), we have

∥RH2(·,·)
λ2,M2n(·,·)[H2(A2(yn), B2(yn))− λ2F2(un, P2(yn))]−R

H2(·,·)
λ2,M2n(·,·)[H2(A2(y), B2(y))

− λ2F2(u, P2(y))]∥2 ≤ m2∥yn − y∥2 + θ2λ2λF2λDq1
∥xn − x∥1. (5.25)

By Theorem 4.1, we have

R
H1(·,·)
λ1,M1n(·,·)[H1(A1(x), B1(x))−λ1F1(P1(x), v)] → R

H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))−λ1F1(P1(x), v)], (5.26)

and

R
H2(·,·)
λ2,M2n(·,·)[H2(A2(y), B2(y))−λ2F2(u, P2(y))] → R

H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))−λ2F2(u, P2(y))]. (5.27)

Let

bn = R
H1(·,·)
λ1,M1n(·,·)[H1(A1(x), B1(x))−λ1F1(P1(x), v)]−R

H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))−λ1F1(P1(x), v)], (5.28)

and

cn = R
H2(·,·)
λ2,M2n(·,·)[H2(A2(y), B2(y))−λ2F2(u, P2(y))]−R

H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))−λ2F2(u, P2(y))]. (5.29)

Then

bn, cn → 0 as n → ∞ (5.30)
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From (5.22),(5.23),(5.24),(5.25),(5.28) and (5.29), we have

∥xn+1 − x∥1 + ∥yn+1 − y∥2 ≤ L1∥xn − x∥1 + L2∥yn − y∥2 + bn + cn

≤ {L1, L2}(∥xn − x∥1 + ∥yn − y∥2) + bn + cn. (5.31)

Since (E1 × E2, ∥.∥∗) is a Banach space defined by (5.18), then we have

∥(xn+1, yn+1)− (x, y)∥∗ = ∥(xn+1 − x), (yn+1 − y)∥∗ = ∥xn+1 − x∥1 + ∥yn+1 − y∥2

≤ max{L1, L2}(∥(xn, yn)− (x, y)∥∗) + bn + cn (5.32)

From (5.2) and (5.30), (5.32) implies that

∥(xn+1, yn+1)− (x, y)∥∗ → 0 as n → ∞.

Thus {(xn, yn)} converges strongly to the unique solution (x, y) of SGVI (5.1). This completes the proof.
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