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Abstract: A connected graph G is optimal-κ if the connectivity κ(G) = δ(G), where δ(G) is the minimum
degree of G. It is super-κ if every minimum vertex cut isolates a vertex. An optimal-κ graph G is m-
optimal-κ if for any vertex set S ⊆ V (G) with |S| ≤ m, G−S is still optimal-κ. The maximum integer of
such m, denoted by Oκ(G), is the vertex fault tolerance of G with respect to the property of optimal-κ.
The concept of vertex fault tolerance with respect to the property of super-κ, denoted by Sκ(G), is defined
in a similar way. In a previous paper, we have proved that min{κ1(G)−δ(G), δ(G)−1} ≤ Oκ(G) ≤ δ(G)−1
and min{κ1(G)− δ(G)− 1, δ(G)− 1} ≤ Sκ(G) ≤ δ(G)− 1. We also have Sκ(G) ≤ Oκ(G) ≤ δ(G)− 1. In
this paper, we study the realizability problems concerning with the above three bounds. By construction,
we proved that for any non-negative integers a, b, c with a ≤ b ≤ c, (i) there exists a graph G such that
κ1(G)− δ(G) = a, Oκ(G) = b, and δ(G)− 1 = c; (ii) there exists a graph G with κ1(G)− δ(G)− 1 = a,
Sκ(G) = b, and δ(G)−1 = c; (iii) there exists a graph G such that Sκ(G) = a, Oκ(G) = b and δ(G)−1 = c.
Keywords: fault tolerance, maximally connected, super-connected, super connectivity, realizability.

1 Introduction

Throughout this paper, all graphs are simple and finite.
We use a simple connected graph G = (V,E) to model an interconnection network, where V is the

set of processors and E is the set of communication links in the network. For a vertex set U ⊆ V (G),
G[U ] is the subgraph of G induced by U ; NG(U) = {v ∈ V (G) \ U | v is adjacent to some vertex in U}
is the neighborhood of U ; NG[U ] = NG(U) ∪ U is the the closed neighborhood of U . If U has exactly one
vertex v, we use NG(v) instead of NG({v}) etc. If U has exactly k vertices, we say that U is a k-set of
G. The degree of a vertex v in G is dG(v) = |NG(v)|. Denote by δ(G) the minimum degree of G. When
the graph under consideration is obvious, we use N(U), δ etc. instead of NG(U), δ(G) etc. Sometimes,
we use a graph itself to represent its vertex set. For example, N(C) = N(V (C)), where C is a subgraph
of G.

A vertex subset S ⊆ V (G) is a vertex cut of G if G−S is disconnected. The cardinality of a minimum
vertex cut of a non-complete graph G is called the connectivity of G, denoted by κ(G), and for complete
graphs, the connectivity κ(G) is denoted by |V (G)| − 1. The connectivity κ(G) of G is an important
measurement for fault-tolerance of the network. In general, the larger κ(G) is, the more reliable the
network is. Since κ(G) ≤ δ(G), a connected graph G with κ(G) = δ(G) is said to be maximally connected
(or optimal-κ for short), there are many studies on this subject (see a survey in [10] for example).
In the design of network topology, graphs of high symmetry are often used because they usually have
many desirable properties. For instance, edge transitive graphs are maximally connected. One might be
interested in more refined indices of reliability. Network reliability is one of the major factors in designing
the topology of an interconnection network. As more refined network reliability index than connectivity,
super connectivity was proposed in [1, 2].

It is super-connected (super-κ for short) if every minimum vertex cut of G isolates a vertex. A super-
κ graph is clearly optimal-κ. In recent years, there are many studies on this subject (see [9, 14] for
example). It has been shown that a network is more reliable if it is super-connected [4, 5, 16]. Some
important families of interconnection networks have been proven to be super-connected [4, 5, 16].

In [11], Hong and Meng first proposed the concept of edge fault tolerance for super edge connected
graphs, which was generalized to vertex fault tolerance for optimal-κ and super-κ graphs in [12]. An
optimal-κ (resp. super-κ) graph G is m-optimal-κ (resp. m-super-κ) if G − S is still optimal-κ (resp.
super-κ) for any vertex set S ⊆ V (G) with |S| ≤ m. The maximum integer of such m, denoted by Oκ(G)
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(resp. Sκ(G)), is the vertex fault tolerance with respect to the property of optimal-κ (resp. super-κ).
Denote by nδ(G) the number of vertices with degree δ(G) in G. In [12], the authors showed that

Theorem 1.1 ( [12]). Let G be an optimal-κ graph with minimum degree δ(G) and super connectivity
κ1(G). Suppose nδ(G) ≥ δ(G). Then min{κ1(G)− δ(G), δ(G)− 1} ≤ Oκ(G) ≤ δ(G)− 1.

Theorem 1.2 ( [12]). Let G be a super-κ graph with nδ(G) ≥ δ(G). Then min{κ1(G)− δ(G)− 1, δ(G)−
1} ≤ Sκ(G) ≤ δ(G)− 1.

In the above two theorems, κ1(G) is the super connectivity of G which was first proposed by Fàbrega
and Fiol [7, 8](1-extra connectivity is used in their paper). A graph is non-trivial if it contains at least
two vertices. A super cut of G is a vertex cut S of G such that each component of G− S is non-trivial.
The super connectivity κ1(G) is the minimum cardinality of all 1-extra cuts.

By κ(G) ≤ δ(G) and the observation that a super-κ graph is also optimal-κ, the following theorem is
ready to see, without requiring nδ(G) ≥ δ(G).

Theorem 1.3. Let G be a super-κ graph. Then Sκ(G) ≤ Oκ(G) ≤ δ(G)− 1.

The following realizability problem is natural.

Open Problem 1.4. For any integer k between the upper and the lower bounds, is there a graph G
satisfying Oκ(G) = k or Sκ(G) = k?

This problem is exactly the one studied in this paper. In Section 2, we obtain three realizability
theorems by construction (Theorems 2.1, 2.2, and 2.3). The following observation will be used frequently
in the proofs.

Observation 1.5. Let G be a connected graph. If nδ(G) ≥ δ(G), then δ(G−S) ≤ δ(G) for any S ⊆ V (G)
with |S| ≤ δ(G)− 1.

For more information on connectivity of graphs, we refer the reader to survey articles by Fàbrega and
Fiol [6], Mader [13], Oellermann [15], and Hellwig and Volkmann [10]. For terminology not given here,
we refer [3] for references.

2 Main Results

Theorem 2.1. For any non-negative integers a, b, c with a ≤ b ≤ c, there exists a graph G such that
κ1(G)− δ(G) = a, Oκ(G) = b and δ(G)− 1 = c.

Proof. In the case that a = b, a graph G satisfying Theorem 2.1 can be constructed as in Figure 1, where
B and D are two complete graphs on nb vertices, nb is sufficiently large; C consists of nc = a + c + 1
vertices, each of which is adjacent to every vertex in B ∪ D; A is an independent set of na = c + 1
vertices, each having degree na. It can be seen that δ(G) = nδ(G) = κ(G) = na, κ1(G) = nc. Hence
κ1(G) − δ(G) = a and δ(G) − 1 = c. By Theorem 1.1, Oκ(G) ≥ min{κ1 − δ, δ − 1} = a. On the other
hand, let S be a subset of C with |S| = a+ 1. Then κ(G−S) ≤ |C \S| = |C| − |S| = c < na = δ(G−S),
i.e., G− S is not optimal-κ. Hence Oκ(G) < a+ 1. It follows that Oκ(G) = a = b.

A

B
C

D

Knb
Knb

Figure 1: An illustration of graph G with κ1(G)− δ(G) = a, Oκ(G) = b and δ(G)− 1 = c, where a = b. In this
example, a = b = c = 1.

Next, suppose a+1 ≤ b ≤ c. The constructed graph G is illustrated in Figure 2, where C is a complete
graph on a+c+1 vertices; B is an independent set on (2c+2) ·

(
a+c+1
b−a

)
vertices; there are

(
a+c+1
b−a

)
subsets
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of C containing b − a vertices, in which each subset corresponds to a distinct set of (2c + 2) vertices in
B, and the edge set between them forms a complete bipartite graph (for instance, in Figure 2, {u1, u2}
is a subset of C containing b − a = 2 vertices, which corresponds to the upper 2c + 2 = 6 vertices of B,
and the edge set between them is a complete bipartite graph K2,6; {u1, u3} corresponds to the middle six
vertices of B; {u2, u3} corresponds to the lower six vertices of B); A is a complete graph on a+ c+ 1− b
vertices, and the edge set between A and B forms a complete bipartite graph; D and E are symmetric
to B and A, respectively. Next, we prove that G is as desired.

u1

u2

u3

A

B
C

D

E

Figure 2: An illustration of graph G with κ1(G)−δ(G) = a, Oκ(G) = b and δ(G)−1 = c, where a+1 ≤ b.
In this example, a = 0 and b = c = 2.

(i) δ(G)− 1 = c.
Every vertex in A and E has degree |A| − 1 + |B| = a+ c− b+ (2c+ 2) ·

(
a+c+1
b−a

)
. Every vertex in B

and D has degree |A|+ b− a = c+ 1. For any vertex u ∈ C, u is contained in
(
a+c
b−a−1

)
subsets with order

b − a. By the construction of G, u is adjacent to (2c + 2) ·
(
a+c
b−a−1

)
vertices in B. Since D is symmetric

to B, we have dG(u) = 2(2c+ 2) ·
(
a+c
b−a−1

)
+ |C| − 1 for u ∈ C. Then it is easy to see that δ(G) = c+ 1,

which is reached by vertices in B and D.
From the proof of (i), we see that nδ(G) = |B ∪D| = 2(2c + 2) ·

(
a+c+1
b−a

)
> c + 1 = δ(G). Hence by

Observation 1.5, we have

δ(G− S) ≤ δ(G) for any S ⊆ V (G) with |S| ≤ c. (1)

(ii) κ1(G)− δ(G) = a.
Since C is a super cut of G, we have κ1(G) ≤ |C| = a+ c+ 1 = a+ δ. Suppose κ1(G) < a+ δ, we will

derive a contradiction.
Let S be a minimum super cut of G. Then |S| = κ1(G) and G − S has at least two nontrivial

components. Since C is complete, C − S is contained in exactly one component of G − S. Thus there
must exist a nontrivial component of G − S disjoint from C, say X. Since X is a component of G − S,
we have N(X) ⊆ S. Hence

|N(X)| ≤ |S| = κ1(G) < a+ δ = a+ c+ 1. (2)

Furthermore, by the structure of G, we see that X lies completely to the left or completely to the right
of C. Assume, without loss of generality, that X lies to the left of C, that is,

X ⊆ A ∪B. (3)

Then X ∩ A 6= ∅, since otherwise X ⊆ B is an independent set, contradicting the fact that X induces a
non-trivial connected subgraph. It follows that

A ∪B ⊆ N [X]. (4)

In fact, we can prove that
N [X] = A ∪B ∪ C. (5)
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It is clear that N [X] ⊆ A ∪ B ∪ C. Suppose there exists a vertex u ∈ C such that u 6∈ N [X]. Then
N(u) ∩X = ∅. It follows that X ⊆ A ∪B −N(u) ∩B, and thus

|X| ≤ |A ∪B| − |N(u) ∩B|. (6)

By (4), we have |A ∪B| ≤ |X|+ |N(X)|. Combining this with (6), we have

|N(X)| ≥ |N(u) ∩B| = (2c+ 2) ·
(

a+ c

b− a− 1

)
≥ 2c+ 2 (7)

(recall b ≥ a + 1). Inequalities (2) and (7) yield c + 1 < a, contradicting a ≤ c. Hence equation (5) is
proved.

By assumption (3) and equation (5), we have

|N(X)| = |N [X]| − |X| ≥ |A ∪B ∪ C| − |A ∪B| = |C| = a+ c+ 1,

which contradicts inequality (2). Thus (ii) is proved.
(iii) Oκ(G) = b.
Let S ⊆ C be a vertex set with |S| = b+ 1. We first show that

δ(G− S) = a+ c+ 1− b. (8)

For each vertex u ∈ A ∪ E, dG−S(u) = dG(u) = a + c − b + (2c + 2) ·
(
a+c+1
b−a

)
> a + c + 1 − b. For each

vertex u ∈ C, dG−S(u) = dG(u)− |S| = 2(2c+ 2) ·
(
a+c
b−a−1

)
+ a+ c− b− 1 > a+ c+ 1− b. For each vertex

u ∈ B ∪D, when S is deleted, its degree is decreased by at most b − a (since every vertex in B ∪D is
adjacent to exactly b − a vertices of C). Furthermore, if u is in a subset of 2c + 2 vertices of B which
corresponds to a (b−a)-subset of S (recall the construction of G and notice that |S| = b+ 1 > b−a), the
degree of u is decreased by exactly b− a. Thus dG−S(u) ≥ dG(u)− (b− a) = a+ c+ 1− b and equality
can be reached. Then equation (8) follows.

Combining equation (8) with κ(G− S) ≤ |C − S| = a+ c+ 1− (b+ 1) = a+ c− b, we see that G− S
is not optimal-κ. Hence

Oκ(G) ≤ b. (9)

Suppose Oκ(G) < b. Then there exists a vertex set S ⊆ V (G) such that |S| ≤ b and G − S is
not optimal-κ. Let S1 be a minimum vertex cut of G − S. Then |S1| = κ(G − S) < δ(G − S). As a
consequence, every component of G− S − S1 is non-trivial. Let X be a component of (G− S)− S1 such
that X ∩ C = ∅ (such X exists by the same reason as in the proof of (ii)). Then

|NG−S(X)| ≤ |S1| < δ(G− S) ≤ δ(G) = c+ 1, (10)

where the second inequality follows from (1) by noticing that |S| ≤ b ≤ c. Assume that X lies to the left
of C, that is,

X ⊆ A ∪B − S. (11)

Similar to the proof of (5), it can be proved that

NG−S [X] = A ∪B ∪ C − S. (12)

In fact, since X induces a non-trivial connected subgraph of G, A∪B−S ⊆ NG−S [X], and if there exists
a vertex u ∈ C − S such that u 6∈ NG−S [X], then similar to the proof of (7), we have

|NG−S(X)| ≥ |NG−S(u) ∩B| ≥ |NG(u) ∩B| − |S| ≥ (2c+ 2)− b ≥ c+ 2, (13)

which contradicts (10).
By assumption (11) and equation (12), we have

|NG−S(X)| = |NG−S [X]| − |X| ≥ |A ∪B ∪ C − S| − |A ∪B − S| = |C − S|. (14)

We consider two cases:
Case 1. |S ∩ C| ≤ b− a.
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In this case, there exist
(
a+c+1−|S∩C|
(b−a)−|S∩C|

)
distinct (b − a)-sets in C containing S ∩ C. Let Y be such

a (b − a)-set containing S ∩ C, and Z = N(Y ) ∩ B. According to the structure of G, we see that
|Z| = 2c+ 2 > b ≥ |S|, and thus there is a vertex u ∈ Z \S. Since u is adjacent to every vertex in S ∩C,
we have

δ(G− S) ≤ dG−S(u) ≤ dG(u)− |S ∩ C| = c+ 1− |S ∩ C|. (15)

Combining inequalities (10), (14) and (15), we see that

|C| = |C − S|+ |C ∩ S| ≤ |NG−S(X)|+ c+ 1− δ(G− S) < c+ 1 ≤ a+ c+ 1 = |C|,

a contradiction.
Case 2. |S ∩ C| > b− a.
In this case, there is a (b−a)-set Y contained in S∩C. Let Z = N(Y )∩B. Then |Z| = 2c+2 > b = |S|,

and thus there is a vertex u ⊆ Z \ S. Similar to the above

δ(G− S) ≤ dG−S(u) ≤ dG(u)− (b− a) = c+ 1− (b− a) = a+ c+ 1− b. (16)

Combining inequalities (10), (14) and (16), we have

a+ c+ 1− b ≥ δ(G− S) > |NG−S(X)| ≥ |C − S| ≥ |C| − |S| ≥ a+ c+ 1− b,

a contradiction.
In both cases, we derive contradictions, which implies the equality in (9). Thus (iii) is proved.

Theorem 2.2. For any non-negative integers a, b, c with a ≤ b ≤ c, there exists a graph G such that
κ1(G)− δ(G)− 1 = a, Sκ(G) = b and δ(G)− 1 = c.

Proof. The graph constructed in this theorem is similar to that in Theorem 2.1. The difference here
is that C has a + c + 2 vertices and |B| = |D| = (2c + 2) ·

(
a+c+2
b−a

)
, since there are

(
a+c+2
b−a

)
distinct

(b−a)-subsets of C. The proof is also similar to that of Theorem 2.1, using super-κ instead of optimal-κ.
This is feasible from the two clear observations: a graph G is optimal-κ if and only if κ1(G) ≥ δ(G) and
is super-κ if and only if κ1(G) ≥ δ(G) + 1.

In the following, we consider the realizability problem for Theorem 1.3

Theorem 2.3. For any non-negative integers a, b, c with a ≤ b ≤ c, there exists a graph G such that
Sκ(G) = a, Oκ(G) = b and δ(G)− 1 = c.

We prove the theorem by distinguishing the case a+ 1 ≤ b (Lemma 2.4) and the case a = b (Lemma
2.5), since the graph G constructed differs a lot in these two cases.

Lemma 2.4. For any non-negative integers a, b, c with a + 1 ≤ b ≤ c, there exists a graph G such that
Sκ(G) = a, Oκ(G) = b and δ(G)− 1 = c.

Proof. When b = a+ 1, the graph G is as in Theorem 2.2, taking a, b, c in Theorem 2.2 to be a− 1, a, c of
this theorem, respectively. By Theorem 2.2, we have Sk(G) = a and δ(G)−1 = c. By a similar argument
as in the proof of (iii) in Theorem 2.1, it can be proved that Oκ(G) = a+ 1 = b.

When b ≥ a+ 2, the graph G is illustrated in Figure 3, where C is a complete graph on c+ 1 vertices;
B is an independent set on (2c+2) ·

(
c+1

b−a−1

)
vertices; there are

(
c+1

b−a−1

)
subsets of C with exactly b−a−1

vertices (recall that b ≥ a+2, hence such subset is not empty), each subset corresponds to 2c+2 vertices in
B, and the edge set between them forms a complete bipartite graph; A is a complete graph on a+c+2−b
vertices, and the edge sets between A and B forms a complete bipartite graph; D and E are symmetric
to B and A, respectively; F is a complete graph on a + 1 vertices, each of which is adjacent to every
vertex in A ∪ C ∪ E.

(i) δ(G)− 1 = c.
Let u be a vertex of G. By the construction of G, we see that

dG(u) =


2a+ c− b+ 2 + (2c+ 2) ·

(
c+1

b−a−1

)
, u ∈ A ∪ E,

c+ 1, u ∈ B ∪D,
a+ c+ 1 + 2(2c+ 2) ·

(
c

b−a−2

)
, u ∈ C,

3c+ 3a− 2b+ 5, u ∈ F.

(17)
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A
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F

Figure 3: An illustration of graph G with Sκ(G) = a, Oκ(G) = b and δ(G)− 1 = c, where b ≥ a+ 2. In
this example, a = 0, b = c = 2.

Hence δ(G) = c+ 1, which is reached by vertices in B ∪D. (i) is proved.
By the proof of (i), we have nδ(G) = |B ∪D| = 2(2c + 2) ·

(
c+1

b−a−1

)
> c + 1 = δ(G). By Observation

1.5, δ(G− S) ≤ δ(G) for any subset S ⊆ V (G) with |S| ≤ c, i.e., inequality (1) holds.
(ii) Sκ(G) = a.
By (17), we have δ(G−F ) = c+ 1. Since κ1(G−F ) ≤ |C| = c+ 1, we see that G−F is not super-κ.

Hence Sκ(G) ≤ |F | − 1 = a.
Suppose Sκ(G) < a. Then there exists a vertex set S ⊆ V (G) with |S| ≤ a such that G − S is not

super-κ. Let S1 be a minimum vertex cut of G−S such that each component of (G−S)−S1 is non-trivial.
Let X be a non-trivial component of G− S which is disjoint from C ∪ F (such X exists because C ∪ F
is complete). Since G− S is not super-κ, we have |S1| = κ1(G− S) = κ(G− S) ≤ δ(G− S). Hence

|NG−S(X)| ≤ |S1| ≤ δ(G− S) ≤ δ(G) = c+ 1, (18)

where the third inequality holds by (1).
Suppose X lies to the left of C ∪ F , that is,

X ⊆ A ∪B − S. (19)

Similar to the proof of (5), it can be proved that

NG−S [X] = A ∪B ∪ C ∪ F − S. (20)

In fact, as X induces a non-trivial connected subgraph, A ∪ B ∪ F − S ⊆ N [X]. If there is a vertex
u ∈ C − S such that u 6∈ NG−S [X], then by the same line as in proving (7), we have

|NG−S(X)| ≥ |F − S|+ |NG−S(u) ∩B|. (21)

Combining this with (18), we arrive at a contradiction that

|F − S| ≤ c+ 1− (2c+ 2) ·
(

c

b− a− 2

)
+ a ≤ a− c− 1 < 0.

By (18), (19) and (20), we have

c+ 1 ≥ |NG−S(X)| = |NG−S [X]| − |X|
≥ |A ∪B ∪ C ∪ F − S| − |A ∪B − S| = |C ∪ F − S|
≥ |C|+ |F | − |S| ≥ c+ 1 + a+ 1− a = c+ 2,
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a contradiction. Thus (ii) is proved.
(iii) Oκ(G) = b.
Let S0 be a vertex subset of C with order b− a. Set S = S0 ∪ F . Then G− S is not optimal-κ, since

δ(G− S) = δ(G)− (b− a− 1) = a+ c− b+ 2 (recall that each vertex in B has b− a− 1 neighbors in C)
and κ(G− S) ≤ |C − S0| = a+ c− b+ 1. Thus Oκ(G) ≤ |S| − 1 = b.

Suppose Oκ(G) < b. Then there exists a vertex set S with |S| ≤ b such that G− S is not optimal-κ.
Let S1 be a minimum vertex cut of G− S. Then

|S1| = κ(G− S) < δ(G− S). (22)

As a consequence, every component of (G− S)− S1 is non-trivial. Consider a non-trivial component X
of (G− S)− S1 which is disjoint from C ∪ F . Suppose X lies to the left of C ∪ F . Similar to the above,
it can be proved that NG−S [X] = A ∪B ∪ C ∪ F − S, and thus

δ(G− S) > |S1| ≥ |NG−S(X)| = |NG−S [X]| − |X|
≥ |A ∪B ∪ C ∪ F − S| − |A ∪B − S| = |C ∪ F − S| (23)
≥ |C|+ |F | − |S| ≥ a+ c− b+ 2. (24)

Case 1. |S ∩ C| ≤ b− a− 1.
Similar to Case 1 in the proof of Theorem 2.1, by considering (b− a− 1)-sets in C containing S ∩C,

we have inequality (15). Combing inequalities (15), (22), and (23), we have

|C ∪ F | = |C ∪ F − S|+ |C ∩ S|+ |F ∩ S| < δ(G− S) +
(
c+ 1− δ(G− S)

)
+ |F | = a+ c+ 2,

which contradicts that |C ∪ F | = |C|+ |F | = a+ c+ 2.
Case 2. |S ∩ C| > b− a− 1.
Similar to the proof of (16), it can be proved that δ(G− S) ≤ a+ c− b+ 2, contradicting inequality

(24).

Lemma 2.5. For any non-negative integers a, c with a ≤ c, there exists a graph G such that Sκ(G) =
Oκ(G) = a and δ(G)− 1 = c.

Proof. The case a = 0 is illustrated in Figure 4, where D is an independent set on c + 2 vertices, each
vertex in D has c+ 2 neighbors in A; B is a complete graph on c+ 1 vertices; A and C are two complete
graphs containing large enough number of vertices; the edges between B and A∪C∪{u} form a complete
bipartite graph.

A B C

D

u

Kn Kn

Figure 4: An illustration of graph G with Sκ(G) = Oκ(G) = a = 0 and δ(G) − 1 = c. In this example,
c = 1.

It is easy to see that κ1(G) = |B ∪ {u}| = c + 2 and δ(G) = d(u) = c + 1. Hence G is super-κ and
thus Sκ(G) ≥ 0. By noticing that G− u is not optimal-κ since κ(G− u) = c + 1 and δ(G− u) = c + 2,
we have Oκ(G) = 0. Hence Sκ(G) = Oκ(G) = 0 and δ(G)− 1 = c.

In the case that a = c, the graph in Theorem 2.2 satisfies the requirement (by setting b = c).
Next, we consider the case that 1 ≤ a < c. In this case c ≥ 2. The constructed graph G is illustrated

in Figure 5, where B is an independent set on c vertices; C is a complete graph on c vertices; E is a
complete graph on a+ 1 vertices; A and D are two complete graphs containing large enough number of
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vertices. Each vertex x ∈ E is joined to a set Ax of bc/2c vertices in A and a set Dx of dc/2e vertices in
D. For x, y ∈ E with x 6= y, Ax ∩Ay = Dx ∩Dy = ∅. The vertex u has degree c+ 1 and has at least one
neighbor in each Ax. Each vertex x ∈ B is joined to a set Ãx of c vertices in A, and for x, y ∈ B with
x 6= y, Ãx ∩ Ãy = ∅. The edge set between A ∪D and C forms a complete bipartite graph and the edge
set between B and C forms a perfect matching.

u

x y

Dx

Dy
Ax

Ay

Ãz
Ãw

z w

A

C

E D

B

Figure 5: A graph with Sκ(G) = Oκ(G) = a, δ(G)− 1 = c. In this example, a = 1, c = 2.

(i) δ(G)− 1 = c.
Let x be a vertex of G \ {u}. If x ∈ A, then d(x) ≥ |A| − 1 + |C| > c+ 1. If x ∈ B, then d(x) = c+ 1.

If x ∈ C, then d(x) = 1 + |A| + |D| + |C| − 1 > c + 1. If x ∈ D, then d(x) ≥ |D| − 1 + |C| > c + 1. If
x ∈ E, then d(x) = bc/2c + dc/2e + |E| − 1 = a + c ≥ c + 1. The vertex u has degree d(u) = c + 1. It
follows that δ(G) = c+ 1, which is reached by vertices in B ∪ {u} and vertices in E if a = 1.

(ii) Sκ(G) = Oκ(G) = a.
Let S0 be a minimum super cut of G. We claim that
Claim. κ1(G) = a+ c+ 1, and S0 has the structure that either S0 = C ∪ E, or [S0 ⊆ C ∪ E ∪N(E)

and c = 2], or [S0 ⊆ C ∪ E ∪ (N(E) ∩A) and c ≤ 3].
Since C ∪ E is a super cut of G, we have

κ1(G) ≤ |C ∪ E| = a+ c+ 1. (25)

Since |D| is sufficiently large, we have D 6⊆ S0, and thus there exists a non-trivial component X of G−S0

intersecting D. We consider two cases.
Case 1. X ∩A 6= ∅.
In this case, A∪C ∪D ⊆ N [X] ⊆ X ∪S0. Let Y be another non-trivial component of G−S0 disjoint

from X. Then Y ⊆ B ∪ E ∪ {u}. But by the connectedness of Y , we can only have Y ⊆ E. Thus

κ1(G) = |S0| ≥ |N(Y )| = (bc/2c+ dc/2e)|Y |+ |E \ Y | = a+ 1 + (c− 1)|Y |.

Combining this with inequality (25) and the assumption that Y is non-trivial, we have 2 ≤ |Y | ≤ c/(c− 1).
It follows that c = 2, a = 1 (since 1 ≤ a < c), κ1(G) = a + c + 1, Y = E (since |Y | = 2 = a + 1 = |E|),
and S0 = N(Y ) = N(E).

Case 2. X ∩A = ∅.
In this case, X ∩ C = ∅, since otherwise A ⊆ N(X) and thus κ1(G) = |S0| ≥ |N(X)| ≥ |A| > κ1(G),

a contradiction. Then we see that X ⊆ D ∪ E. Denote

F = {v ∈ E \X : N(v) ∩X = ∅}.

Then N(F ) ∩D ⊆ D \X. It follows from c ≥ 2 and

a+ c+ 1 ≥ κ1(G) ≥ |N(X)|
= |C|+ |D \X|+ |N(X) ∩ E|+ |N(X) ∩A|
≥ c+ |N(F ) ∩D|+ |E \ (F ∪X)|+ |X ∩ E| · bc/2c
= c+ |F | · dc/2e+ |E| − |F | − |E ∩X|+ |X ∩ E| · bc/2c
= a+ c+ 1 + |F |(dc/2e − 1) + |X ∩ E|(bc/2c − 1)
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that κ1(G) = a+ c+ 1 and all the above equalities holds, which implies N(F ) ∩D = D \X and

|F |(dc/2e − 1) = 0 = |X ∩ E|(bc/2c − 1). (26)

If F = X ∩ E = ∅, then X = D and S0 = N(X) = C ∪ E.
If F = ∅ and X ∩ E 6= ∅, then D ⊆ X and S0 = N(X) ⊆ E ∪ (N(E) ∩A). Also, by (26), c ≤ 3.
If F 6= ∅, then S0 = N(X) = C ∪ (D \X)∪

(
N(X ∩E) \X

)
= C ∪

(
N(F )∩D

)
∪
(
N(X ∩E) \X

)
⊆

C ∪ E ∪N(E). In this case, by (26), c = 2. The claim is proved.
By noting that G − E is not optimal-κ since κ(G − E) = c < c + 1 = δ(G − E), we have Oκ(G) ≤

|E| − 1 = a. By Theorem 1.3, Sκ(G) ≤ Oκ(G) ≤ a. Next, we show that Sκ(G) ≥ a.
Suppose, to the contrary, that Sκ(G) < a. Then there exists a vertex subset S with |S| ≤ a such that

G− S is not super-κ. Let S1 be a minimum super cut of G− S. Then |S1| = κ1(G− S) = κ(G− S) ≤
δ(G−S) ≤ δ(G) = c+1. Since S∪S1 is a super cut of G, we have κ1(G) ≤ |S∪S1| = |S|+ |S1| ≤ a+c+1.
Combining this with the claim, we see that all inequalities in the deduction become equalities. In
particular,

|S| = a, δ(G− S) = δ(G), and κ1(G) = κ1(G− S) + a. (27)

It follows that S is contained in some minimum super cut of G. Furthermore, if N(S) contains some
vertex of minimum degree, then δ(G− S) would be strictly less than δ(G), contradicting (25). Hence

N(S) does not contain any vertex of minimum degree. (28)

As a consequence, C∩S = ∅ since B ⊆ N(C) and every vertex in B has minimum degree. Then it follows
from the claim that either S ⊆ E or [S ⊆ E ∪N(E) and c = 2], or [S ⊆ E ∪

(
N(E) ∩A

)
and c ≤ 3].

In fact, if S ⊆ E, then by |S| = a (see (27)) and |E| = a+ 1, we have |E \S| = 1. Let x be the unique
vertex in E \ S. Then δ(G− S) ≤ dG−S(x) = dc/2e+ bc/2c = c < δ(G), contradicting (27). So, we may
further assume S \E 6= ∅, and thus either [S ∩N(E) 6= ∅ and c = 2] or [S ∩

(
N(E) ∩A

)
6= ∅ and c ≤ 3].

If S ∩N(E) 6= ∅ and c = 2, then we have a = 1 (as 1 ≤ a < c = 2), and |E| = 2, and for any vertex
x ∈ E, d(x) = c + 1 = δ(G). But this implies that S is adjacent to a vertex having minimum degree,
contradicting (28). If S ∩

(
N(E)∩A

)
6= ∅ and c ≤ 3. Then each vertex in E has exactly one neighbor in

A. By the construction of G, we have (N(E) ∩ A) ⊆ N(u), which also implies S is adjacent to a vertex
(which is u) with minimum degree, contradicting (28).

(ii) is proved.

Theorem 2.3 follows directly from Lemma 2.4 and Lemma 2.5.
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