# Applications of soft union sets in $h$-hemiregular and $h$-intra-hemiregular hemirings 

Jianming Zhan ${ }^{a}$, Kar Ping Shum ${ }^{b, *}$<br>${ }^{a}$ Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei Province, 445000, China<br>${ }^{b}$ Institute of Mathematics, Yunnan University, Kunming, 650091, China


#### Abstract

The aim of this paper is to lay a foundation for providing a soft algebraic tool in considering many problems that contain uncertainties. In order to provide these soft algebraic structures, we introduce the concepts of soft union $h$-bi-ideals and soft union $h$-quasi-ideals of hemirings by means of soft-intersection-union sum and soft-intersection-union product. Some related properties are obtained. Finally, we investigate some characterizations of $h$-hemiregular and $h$-intra-hemiregular hemirings by using some kinds of soft union $h$-ideals.


Keywords: Soft set; soft-intersection-union(product); $S U$-h-bi-ideal; $S U$-h-quasi-ideal; ( $h$-hemiregular semirings; $h$-intra-hemiregular) hemirings.

2012 Mathematics Subject Classification: 16Y60; 13E05.

## 1 Introduction

In order to model vagueness and uncertainty, Molodstov [25] introduced soft set theory and it has received much attention since its inception. Nowadays, many related concepts with soft sets, especially soft set operations, have undergone tremendous studies. Ali [3-5] proposed many new operations on soft sets. Maji [22] discussed further soft set theory. Sezgin [29] also investigated some new operations on soft sets. In the same time, this theory has been proven useful in many different fields such as decision making [ $7,8,10,12,23,27]$, data analysis [32,38], forecasting and so on. Recently, the algebraic structures of soft sets have been studied increasingly, such as, soft rings [1], soft groups [2], soft semirings [11], soft $B C K / B C I$-algebras [13, 15], soft ordered semigroups [14, 35], soft mappings [24], soft equality [26].

As a generalization of rings, semirings have been found useful for solving problems in different areas of applied mathematics and information sciences, since the structures of a semiring provides an algebraic framework for modelling and studying the key factors in these applied areas. We know that ideals in semirings do not in general coincide with the ideals of rings. For this reason, the usage of ideals in

[^0]semirings is somewhat limited. By a hemiring, we mean a special semiring with a zero and with a commutative addition. For hemirings, for more details, see [9, 16-21, 31, 33, 34, 37].

Recently, Çagman and Sezgin proposed the concepts of soft intersection and soft union theory in algebraic structures, see $[6,28,30]$. This theory was put forward an important research direction for soft set theory. In [36], we investigated some characterizations of $h$-hemiregular hemirings by means of soft union left(right) $h$-ideals of hemirings. As a continuation of this paper, we organize the present paper as follows. In section 2, we first recall some basic definitions and results on soft sets and hemirings. Then in sections 3 and 4, we introduce the concepts of soft union $h$-bi-ideals and soft union $h$-quasi-ideals, respectively. In section 5 , we investigate some characterizations of $h$-hemiregular hemirings by means of soft union $h$-bi-ideals( $h$-quasi-ideals). Finally, we consider some characterizations of $h$-intra-hemiregular hemirings in section 6 .

## 2 Preliminaries

A semiring is an algebraic system $(S,+, \cdot)$ consisting of a non-empty set $S$ together with two binary operations on $S$ called addition and multiplication (denoted in the usual manner) such that $(S,+)$ and $(S, \cdot)$ are semigroups and the following distributive laws:

$$
a(b+c)=a b+a c \text { and }(a+b) c=a c+b c
$$

are satisfied for all $a, b, c \in S$.
By zero of a semiring $(S,+, \cdot)$, we mean an element $0 \in S$ such that $0 \cdot x=x \cdot 0=0$ and $0+x=x+0=0$ for all $x \in S$. A semiring with zero and a commutative semigroup $(S,+)$ is called a hemiring. For the sake of simplicity, we shall write $a b$ for $a \cdot b(a, b \in S)$.

A subhemiring of a hemiring $S$ is a subset $A$ of $S$ closed under addition and multiplication. A subset $A$ of $S$ is called a left(right) ideal of $S$ if $A$ is closed under addition and $S A \subseteq A(A S \subseteq A)$. A subset $A$ is called an ideal if it is both a left ideal and a right ideal. A subset $B$ of $S$ is called a bi-ideal of $S$ if $B$ is closed under addition and multiplication such that $B S B \subseteq B$. A subset $Q$ of $S$ is called a quasi-ideal of $S$ if $Q$ is closed under addition and $S Q \cap Q S \subseteq Q$.

A subhemiring(left ideal, right ideal, ideal, bi-ideal) $A$ of $S$ is called an $h$-subhemiring(left $h$-ideal, right $h$-ideal, $h$-ideal, $h$-bi-ideal) of $S$, respectively, if for any $x, z \in S, a, b \in A$, and $x+a+z=b+z$ implies $x \in A$.

The $h$-closure $\bar{A}$ of a subset $A$ of $S$ is defined as

$$
\bar{A}=\{x \in S \mid x+a+z=b+z \text { for some } a, b \in A, z \in S\} .
$$

A quasi-ideal $Q$ of $S$ is called an $h$-quasi-ideal of $S$ if $\overline{S Q} \cap \overline{Q S} \subseteq Q$ and for any $x, z \in S$ and $a, b \in Q$ from $x+a+z=b+z$, it follows $x \in Q$.

From now on, $S$ is a hemiring, $U$ is an initial universe, $E$ is a set of parameters, $P(U)$ is the power set of $U$ and $A, B, C \subseteq E$.

Definition $2.1[25] A$ soft set $f_{A}$ over $U$ is defined as $f_{A}: E \rightarrow P(U)$ such that $f_{A}(x)=\emptyset$ if $x \notin A$. Here $f_{A}$ is also called an approximate function. A soft set over $U$ can be represented by the set of ordered pairs $f_{A}=\left\{\left(x, f_{A}(x)\right) \mid x \in E, f_{A}(x) \in P(U)\right\}$.

It is clear to see that a soft set is a parameterized family of subsets of $U$. Note that the set of all soft sets over $U$ will be defined by $S(U)$.

Definition 2.2 [7] Let $f_{A}, f_{B} \in S(U)$. Then
(i) $f_{A}$ is called soft subset of $f_{B}$ and denoted by $f_{A} \simeq f_{B}$ if $f_{A}(x) \subseteq f_{B}(x)$ for all $x \in E$.
(ii) The union of $f_{A}$ and $f_{B}$, is denoted by $f_{A} \cup f_{B}=f_{A \cup B}$, where $f_{A \cup B}(x)=f_{A}(x) \cup f_{B}(x)$ for all $x \in E$.
(iii) The intersection of $f_{A}$ and $f_{B}$, is denoted by $f_{A} \cap f_{B}=f_{A \cap B}$, where $f_{A \cap B}(x)=f_{A}(x) \cap f_{B}(x)$ for all $x \in E$.
(iv) The $\vee$-product of $f_{A}$ and $f_{B}$, is denoted by $f_{A} \vee f_{B}=f_{A \vee B}$, where $f_{A \vee B}(x, y)=f_{A}(x) \cup f_{B}(y)$ for all $(x, y) \in E \times E$.
(v) The $\wedge$-product of $f_{A}$ and $f_{B}$, is denoted by $f_{A} \wedge f_{B}=f_{A \wedge B}$, where $f_{A \wedge B}(x, y)=f_{A}(x) \cap f_{B}(y)$ for all $(x, y) \in E \times E$.

Definition $2.3[6]$ Let $f_{A}, f_{B} \in S(U), \Psi$ be a function from $A$ to $B$. Then the anti-image of $f_{A}$ under $\Psi$, denoted by $\Psi^{*}\left(f_{A}\right)$ is a soft set over $U$ by
$\left(\Psi^{*}\left(f_{A}\right)\right)(b)=\left\{\begin{array}{lc}\cap\left\{f_{A}(a) \mid a \in A \text { and } \Psi(a)=b\right\}, & \text { if } \Psi^{-1}(b) \neq \emptyset, \\ \emptyset & \text { otherwise },\end{array}\right.$
for all $b \in B$. And the soft pre-image of $f_{B}$ under $\Psi$, denoted by $\Psi^{-1}\left(f_{B}\right)$, is a soft set over $U$ by $\left(\Psi^{-1}\left(f_{B}\right)\right)(a)=f_{B}(\Psi(a))$ for all $a \in A$.

Definition $2.4[28]$ Let $f_{A} \in S(U)$ and $\alpha \subseteq U$. Then, lower $\alpha$-inclusion of $f_{A}$, denoted by $L\left(f_{A} ; \alpha\right)$, is defined as $L\left(f_{A} ; \alpha\right)=\left\{x \in A \mid f_{A}(x) \subseteq \alpha\right\}$.

Definition 2.5 [36] Let $f_{S}, g_{S} \in S(U)$. Then
(1) Soft-intersection-union sum $f_{S} \oplus g_{S}$ is defined by

$$
\left(f_{S} \oplus g_{S}\right)(x)=\bigcap_{\substack{x+a_{1}+b_{1}+z \\=a_{2}+b_{2}+z}}\left(f_{S}\left(a_{1}\right) \cup f_{S}\left(a_{2}\right) \cup g_{S}\left(b_{1}\right) \cup g_{S}\left(b_{2}\right)\right)
$$

and $\left(f_{S} \oplus g_{S}\right)(x)=U$ if $x$ cannot be expressed as $x+a_{1}+b_{1}+z=a_{2}+b_{2}+z$.
(2) Soft-intersection-union product $f_{S} \diamond g_{S}$ is defined by

$$
\left(f_{S} \diamond g_{S}\right)(x)=\bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right)
$$

for all $i=1,2, \ldots, m ; j=1,2, \ldots, n$,
and $\left(f_{S} \diamond g_{S}\right)(x)=U$ if $x$ cannot be expressed as $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$.

Definition 2.6 [28] Let $A$ be a subset of $S$. We denote by $\mathcal{S}_{A^{C}}$ the soft characteristic function of the complement of $A$ and define as
$\mathcal{S}_{A^{C}}(x)= \begin{cases}\emptyset & \text { if } x \in A, \\ U & \text { if } x \in S \backslash A .\end{cases}$
Definition $2.7[36](i) A$ soft set $f_{S}$ over $U$ is called a soft union hemiring(briefly, SU-hemiring) of $S$ if
$\left(S U_{1}\right) f_{S}(x+y) \subseteq f_{S}(x) \cup f_{S}(y)$, for all $x, y \in S$;
$\left(S U_{2}\right) f_{S}(x y) \subseteq f_{S}(x) \cup f_{S}(y)$, for all $x, y \in S$;
$\left(S U_{3}\right) f_{S}(x) \subseteq f_{S}(a) \cup f_{S}(b)$ with $x+a+z=b+z$ for all $x, a, b, z \in S$.
(ii) A soft set $f_{S}$ over $U$ is called a soft union left(right) h-ideal of $S$ over $U$ (briefly, $S U$-left(right) $h$-ideal) if it satisfies $\left(S U_{1}\right),\left(S U_{3}\right)$ and $\left(S U_{4}\right) f_{S}(x y) \subseteq f_{S}(y)\left(f_{S}(x y) \subseteq f_{S}(x)\right)$ for all $x, y \in S$.

A soft set $f_{S}$ over $U$ is called an $S U$ - $h$-ideal of $S$ over $U$ if it is both an $S U$-left $h$-ideal and an $S U$-right $h$-ideal of $S$ over $U$.

It is easy to see that if $f_{S}(x)=\emptyset$ for all $x \in S$, then $f_{S}$ is an $S U$-hemiring(left $h$-ideal, right $h$-ideal, $s$-ideal) of $S$ over $U$. We denote such a kind of $S U$-hemiring(left $h$-ideal, right $h$-ideal, $h$-ideal) by $\tilde{\theta}$ [36].

Proposition $2.8[36]$ Let $A \subseteq S$. Then $A$ is an $h$-subhemiring(left h-ideal, right $h$-ideal, $h$-ideal) of $S$ if and only if $\mathcal{S}_{A^{C}}$ is an $S U$-hemiring(left h-ideal, right h-ideal, h-ideal) of $S$ over $U$.

Theorem 2.9 [36] Let $f_{S}$ be a soft set over $U$. Then
(1) $f_{S}$ is an $S U$-hemiring of $S$ over $U$ if and only if it satisfies $\left(S U_{3}\right)$ and
$\left(S U_{5}\right) f_{S} \oplus f_{S} \cong f_{S}$;
$\left(S U_{6}\right) f_{S} \diamond f_{S} \cong f_{S}$.
(2) $f_{S}$ is an $S U$-left(right) $h$-ideal of $S$ over $U$ if and only if it satisfies $\left(S U_{3}\right)$, $\left(S U_{5}\right)$ and $\left(S U_{7}\right) \tilde{\theta} \diamond f_{S} \check{\supseteq} f_{S} \quad\left(f_{S} \diamond \tilde{\theta} \supseteq f_{S}\right)$.

## 3 SU-h-bi-ideals

In this section, we introduce the concept of soft union $h$-bi-ideals and investigate some related properties.

Definition 3.1 A soft set $f_{S}$ over $U$ is called a soft union h-bi-ideal (briefly, $S U$-h-bi-ideal) of $S$ over $U$ if it satisfies $\left(S U_{1}\right),\left(S U_{2}\right),\left(S U_{3}\right)$ and $\left(S U_{8}\right) f_{S}(x y z) \subseteq f_{S}(x) \cup f_{S}(z)$ for all $x, y, z \in S$.

Example 3.2 Assume that $U=D_{2}=\left\{<x, y>\mid x^{2}=y^{2}=e, x y=y x\right\}=\{e, x, y, y x\}$, Dihedral group, is the universal set. Let $S=\mathbb{Z}_{4}=\{0,1,2,3\}$ be the hemiring of non-negative integers modulo 4 .

Define a soft set $f_{S}$ over $U$ by $f_{S}(0)=\{y\}, f_{S}(1)=f_{S}(3)=\{e, y, y x\}$ and $f_{S}(2)=\{y, y x\}$.
One can easily check that $f_{S}$ is an $S U-h$-bi-ideal of $S$ over $U$.

Theorem 3.3 Let $f_{S}$ be a soft set over $U$. Then $f_{S}$ is an $S U-h-b i-i d e a l$ of $S$ over $U$ if and only if it satisfies $\left(S U_{3}\right),\left(S U_{5}\right),\left(S U_{6}\right)$ and $\left(S U_{9}\right) f_{S} \diamond \tilde{\theta} \diamond f_{S} \tilde{\supseteq} f_{S}$

Proof. By Theorem 2.9, we know that the conditions $\left(S U_{1}\right),\left(S U_{2}\right),\left(S U_{3}\right)$ are equivalent to the conditions $\left(S U_{3}\right),\left(S U_{5}\right)$ and $\left(S U_{6}\right)$.

Assume that $f_{S}$ is an $S U$ - $h$-bi-ideal of $S$ over $U$. Let $x \in S$. If $\left(f_{S} \diamond \tilde{\theta} \diamond f_{S}\right)(x)=U$, then it is clear that $f_{S} \diamond \tilde{\theta} \diamond f_{S} \tilde{\supseteq} f_{S}$. Otherwise, let $x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z$ for all $i=1,2, \ldots, m ; j=1,2, \ldots, n$. Thus,

$$
\begin{aligned}
& \left(f_{S} \diamond \tilde{\theta} \diamond f_{S}\right)(x)=\left(\left(f_{S} \diamond \tilde{\theta}\right) \diamond f_{S}\right)(x) \\
& =\bigcap \quad\left(\left(f_{S} \diamond \tilde{\theta}\right)\left(a_{i}\right) \cup\left(f_{S} \diamond \tilde{\theta}\right)\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z \\
& =\bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z}\left(\bigcap_{a_{i}+\sum_{k=1}^{m_{i}} a_{i_{k}} b_{i_{k}}+z_{1}}\left(f_{S}\left(a_{i_{k}}\right) \cup f_{S}\left(a_{j_{l}}^{\prime}\right) \cup \tilde{\theta}\left(b_{i_{k}}\right) \cup \tilde{\theta}\left(b_{j_{l}}^{\prime}\right)\right)\right. \\
& =\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z=\sum_{l=1}^{n_{j}} a_{j_{l}}^{\prime} b_{j_{l}}^{\prime}+z_{1} \\
& \left.\left(f_{S}\left(a_{i_{k}}\right) \cup f_{S}\left(a_{j_{l}}^{\prime}\right) \cup \tilde{\theta}\left(b_{i_{k}}\right) \cup \tilde{\theta}\left(b_{j_{l}}^{\prime}\right)\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& a_{j}^{\prime}+\sum_{k=1}^{m_{i}} a_{i_{k}} b_{i_{k}}+z_{2} \\
& =\sum_{l=1}^{n_{j}} a_{j_{l}}^{\prime} b_{j_{l}}^{\prime}+z_{2} \\
& =\bigcap_{x+\sum_{i=1}^{m^{\prime}} a_{i} c_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} c^{\prime}{ }_{j} b_{j}^{\prime}+z^{\prime}}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \supseteq \bigcap_{x+\sum_{i=1}^{m^{\prime}} a_{i} c_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} c_{j}^{\prime} b_{j}^{\prime}+z^{\prime}}\left(f_{S}\left(\sum_{i=1}^{m^{\prime}} a_{i} c_{i} b_{i}\right) \cup f_{S}\left(\sum_{j=1}^{n} a_{j}^{\prime} c_{j}^{\prime} b_{j}^{\prime}\right)\right) \\
& \supseteq \text { m }^{\prime} \quad \bigcap_{n} \quad\left(f_{S}(x)\right) \\
& x+\sum_{i=1}^{m^{\prime}} a_{i} c_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} c_{j}^{\prime} b_{j}^{\prime}+z^{\prime} \\
& =f_{S}(x),
\end{aligned}
$$

which implies, $f_{S} \diamond \tilde{\theta} \diamond f_{S} \check{\supseteq} f_{S}$. This proves that $\left(S U_{9}\right)$ holds.
Conversely, assume that the given conditions hold. Let $x, y, z \in S$, we have

$$
\begin{aligned}
f_{S}(x y z) & \subseteq\left(f_{S} \diamond \tilde{\theta} \diamond f_{S}\right)(x y z)=\left(f_{S} \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right)(x y z) \\
= & \bigcap_{x y+\sum_{i=1}^{m} a_{i} b_{i}+z^{\prime}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z^{\prime}}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup\left(\tilde{\theta} \diamond f_{S}\right)\left(b_{i}\right) \cup\left(\tilde{\theta} \diamond f_{S}\right)\left(b_{j}^{\prime}\right)\right) \\
& \subseteq f_{S}(0) \cup f_{S}(x) \cup\left(\tilde{\theta} \diamond f_{S}\right)(0) \cup\left(\tilde{\theta} \diamond f_{S}\right)(y z) \\
= & f_{S}(x) \cup \bigcap_{y z+\sum_{i=1}^{m} c_{i} d_{i}+z^{\prime \prime}=\sum_{j=1}^{n} c_{j}^{\prime} d_{j}^{\prime}+z^{\prime \prime}}\left(\tilde{\theta}\left(c_{i}\right) \cup \tilde{\theta}\left(c_{j}^{\prime}\right) \cup f_{S}\left(d_{i}\right) \cup f_{S}\left(d_{j}^{\prime}\right)\right) \\
& =f_{S}(x) \cup \tilde{\theta}(0) \cup \tilde{\theta}(y) \cup f_{S}(0) \cup f_{S}(z) \\
= & f_{S}(x) \cup f_{S}(z) .
\end{aligned}
$$

Thus, $\left(S U_{8}\right)$ holds. This proves that $f_{S}$ is an $S U$ - $h$-bi-ideal of $S$ over $U$.
The following proposition is obvious.

Proposition 3.4 $A$ non-empty subset $A$ of $S$ is an $h$-bi-ideal of $S$ if and only if the soft subset $f_{S}$ defined by

$$
f_{S}(x)= \begin{cases}\alpha & \text { if } x \in S \backslash A \\ \beta & \text { if } x \in S\end{cases}
$$

is an SU-h-bi-ideal of $S$ over $U$, where $\alpha, \beta \subseteq U$ such that $\alpha \supseteq \beta$.

Corollary 3.5 Let $A$ be a non-empty subset of $S$. Then $A$ is an h-bi-ideal of $S$ if and only if $\mathcal{S}_{A^{C}}$ is an SU-h-bi-ideal of $S$ over $U$.

Theorem 3.6 (i) Let $f_{S}$ be a soft set over $U$ and $\alpha \subseteq U$ such that $\alpha \in \mathrm{I}_{m}\left(f_{S}\right)$. If $f_{S}$ is an $S U$-h-bi-ideal of $S$ over $U$, then $L\left(f_{S} ; \alpha\right)$ is an h-bi-ideal of $S$.
(ii) Let $f_{S}$ be a soft set over $U, L\left(f_{S} ; \alpha\right)$ a lower $h$-bi-ideal of $f_{S}$ for each $\alpha \subseteq U$ and $\mathrm{I}_{m}\left(f_{S}\right)$ an ordered set by inclusion. Then $f_{S}$ is an h-bi-ideal of $S$ over $U$.

Proof. (i) Since $f_{S}(x)=\alpha$ for some $x \in S, \emptyset=L\left(f_{S} ; \alpha\right) \subseteq S$. Let $x, z \in L\left(f_{S} ; \alpha\right)$ and $y \in S$, then $f_{S}(x) \subseteq \alpha$ and $f_{S}(z) \subseteq \alpha$. Then

$$
\begin{aligned}
& f_{S}(x+z) \subseteq f_{S}(x) \cup f_{S}(z) \subseteq \alpha \cup \alpha=\alpha \\
& f_{S}(x z) \subseteq f_{S}(x) \cup f_{S}(z) \subseteq \alpha \cup \alpha=\alpha \\
& f_{S}(x y z) \subseteq f_{S}(x) \cup f_{S}(z) \subseteq \alpha \cup \alpha=\alpha
\end{aligned}
$$

which implies, $x+z, x z$ and $x y z \in L\left(f_{S} ; \alpha\right)$.
Now, let $x, z \in S$ and $a, b \in L\left(f_{S} ; \alpha\right)$ with $x+a+z=b+z$, then $f_{S}(a) \subseteq \alpha$ and $f_{S}(b) \subseteq \alpha$. Thus $f_{S}(x) \subseteq f_{S}(a) \cup f_{S}(b) \subseteq \alpha \cup \alpha=\alpha$, which implies, $x \in L\left(f_{S} ; \alpha\right)$. Hence, $L\left(f_{S} ; \alpha\right)$ is an $h$-bi-ideal of $S$.
(ii) Let $x, y, z \in S$ be such that $f_{S}(x)=\alpha_{1}$ and $f_{S}(z)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$. Then $x \in L\left(f_{S} ; \alpha_{1}\right)$ and $z \in L\left(f_{S} ; \alpha_{2}\right)$, and so $x \in L\left(f_{S} ; \alpha_{2}\right)$. Since $L\left(f_{S} ; \alpha_{2}\right)$ is an $h$-bi-ideal of $S$ for any $\alpha \subseteq U, x+z, x z, x y z \in$ $L\left(f_{S} ; \alpha_{2}\right)$. Hence, we have the following equalities
$f_{S}(x+z) \subseteq \alpha_{2} \subseteq \alpha_{1} \cup \alpha_{2}=f_{S}(x) \cup f_{S}(z)$,
$f_{S}(x z) \subseteq \alpha_{2} \subseteq \alpha_{1} \cup \alpha_{2}=f_{S}(x) \cup f_{S}(z)$,
$f_{S}(x y z) \subseteq \alpha_{2} \subseteq \alpha_{1} \cup \alpha_{2}=f_{S}(x) \cup f_{S}(z)$.

Now, let $x, z, a, b \in S$ with $x+a+z=b+z$ be such that $f_{S}(a)=\alpha_{1}$ and $f_{S}(b)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$, then $a \in L\left(f_{S} ; \alpha_{1}\right)$ and $b \in L\left(f_{S} ; \alpha_{2}\right)$ and so $a \in L\left(f_{S} ; \alpha_{2}\right)$. Since $L\left(f_{S} ; \alpha_{2}\right)$ is an $h$-bi-ideal of $S$ for each $\alpha \subseteq U, x \in L\left(f_{S} ; \alpha_{2}\right)$. Then $f_{S}(x) \subseteq \alpha_{2} \subseteq \alpha_{1} \cup \alpha_{2}=f_{S}(a) \cup f_{S}(b)$. Therefore, $f_{S}$ is an $S U$ - $-b i$-ideal of $S$ over $U$.

Proposition 3.7 Let $f_{S_{1}}$ and $f_{S_{2}}$ be two $S U$-h-bi-ideals over $U$. Then so is $f_{S_{1}} \vee f_{S_{2}}$ over $U$.
Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in S_{1} \times S_{2}$. Then
$(i) f_{S_{1} \vee S_{2}}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)=f_{S_{1} \vee S_{2}}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$

$$
\begin{aligned}
& =f_{S_{1}}\left(x_{1}+x_{2}\right) \cup f_{S_{2}}\left(y_{1}+y_{2}\right) \\
& \subseteq\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{1}}\left(x_{2}\right)\right) \cup\left(f_{S_{2}}\left(y_{1}\right) \cup f_{S_{2}}\left(y_{2}\right)\right) \\
& =\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{2}}\left(y_{1}\right)\right) \cup\left(f_{S_{1}}\left(x_{2}\right) \cup f_{S_{2}}\left(y_{2}\right)\right) \\
& =f_{S_{1} \vee S_{2}}\left(x_{1}, y_{1}\right) \cup f_{S_{1} \vee S_{2}}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$\left(\right.$ ii) $f_{S_{1} \vee S_{2}}\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=f_{S_{1} \vee S_{2}}\left(x_{1} x_{2}, y_{1} y_{2}\right)$

$$
=f_{S_{1}}\left(x_{1} x_{2}\right) \cup f_{S_{2}}\left(y_{1} y_{2}\right)
$$

$$
\subseteq\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{1}}\left(x_{2}\right)\right) \cup\left(f_{S_{2}}\left(y_{1}\right) \cup f_{S_{2}}\left(y_{2}\right)\right)
$$

$$
=\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{2}}\left(y_{1}\right)\right) \cup\left(f_{S_{1}}\left(x_{2}\right) \cup f_{S_{2}}\left(y_{2}\right)\right)
$$

$$
=f_{S_{1} \vee S_{2}}\left(x_{1}, y_{1}\right) \cup f_{S_{1} \vee S_{2}}\left(x_{2}, y_{2}\right)
$$

$\left(\right.$ iii) $f_{S_{1} \vee S_{2}}\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)\right)=f_{S_{1} \vee S_{2}}\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right)$

$$
\begin{aligned}
& =f_{S_{1}}\left(x_{1} x_{2} x_{3}\right) \cup f_{S_{2}}\left(y_{1} y_{2} y_{3}\right) \\
& \subseteq\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{1}}\left(x_{3}\right)\right) \cup\left(f_{S_{2}}\left(y_{1}\right) \cup f_{S_{2}}\left(y_{3}\right)\right) \\
& =\left(f_{S_{1}}\left(x_{1}\right) \cup f_{S_{2}}\left(y_{1}\right)\right) \cup\left(f_{S_{1}}\left(x_{3}\right) \cup f_{S_{2}}\left(y_{3}\right)\right) \\
& =f_{S_{1} \vee S_{2}}\left(x_{1}, y_{1}\right) \cup f_{S_{1} \vee S_{2}}\left(x_{3}, y_{3}\right)
\end{aligned}
$$

(iv) Let $\left(x_{1}, y_{1}\right),\left(z_{1}, z_{2}\right),\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in S_{1} \times S_{2}$ be such that $\left(x_{1}, y_{1}\right)+\left(a_{1}, a_{2}\right)+\left(z_{1}, z_{2}\right)=\left(b_{1}, b_{2}\right)+$ $\left(z_{1}, z_{2}\right)$, and so $x_{1}+a_{1}+z_{1}=b_{1}+z_{1}$ and $y_{1}+a_{2}+z_{2}=b_{2}+z_{2}$. Then

$$
\begin{aligned}
f_{S_{1} \vee S_{2}}\left(x_{1}, y_{1}\right) & =f_{S_{1}}\left(x_{1}\right) \cup f_{S_{2}}\left(y_{1}\right) \\
& \subseteq\left(f_{S_{1}}\left(a_{1}\right) \cup f_{S_{1}}\left(b_{2}\right)\right) \cup\left(f_{S_{2}}\left(a_{2}\right) \cup f_{S_{2}}\left(b_{2}\right)\right) \\
& =\left(f_{S_{1}}\left(a_{1}\right) \cup f_{S_{2}}\left(a_{2}\right)\right) \cup\left(f_{S_{1}}\left(b_{1}\right) \cup f_{S_{2}}\left(b_{2}\right)\right) \\
& =f_{S_{1} \vee S_{2}}\left(a_{1}, a_{2}\right) \cup f_{S_{1} \vee S_{2}}\left(b_{1}, b_{2}\right)
\end{aligned}
$$

Thus, $f_{S_{1}} \vee f_{S_{2}}$ is an $S U$-h-bi-ideal of $S_{1} \times S_{2}$ over $U$.
Remark 3.8 Note that if $f_{S_{1}}$ and $f_{S_{2}}$ are two $S U$-h-bi-ideals over $U$, then $f_{S_{1}} \wedge f_{S_{2}}$ is not always an $S U-h$-bi-ideal over $U$ as shown in the following example:

Example 3.9 Assume that $U=S_{4}$, symmetric group, is the universal set. Let $S_{1}=\mathbb{Z}_{4}=\{0,1,2,3\}$ be the hemiring of non-negative integers modulo 4 and the hemiring $S_{2}=\left\{\left.\left(\begin{array}{ll}x & y \\ x & y\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}_{2}=\{0,1\}\right\}$, $2 \times 2$ matrices with $\mathbb{Z}_{2}$ terms.

Defined two $S U$-h-bi-ideals $f_{S_{1}}$ and $f_{S_{2}}$ over $U$ by

$$
\begin{aligned}
& f_{S_{1}}(0)=\{(1234)\}, f_{S_{1}}(2)=\{(1234),(1324),(12)\} \\
& \text { and } f_{S_{1}}(1)=f_{S_{1}}(3)=\{(1234),(1324),(12),(14),(12)(34)\} \text {. } \\
& f_{S_{2}}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right)=\{e\}, f_{S_{2}}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right)=\{e,(13)\}, f_{S_{2}}\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right)=\{e,(13),(14)\} \text { and } \\
& f_{S_{2}}\left(\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)\right)=\{e,(14)\} \text {. } \\
& f_{S_{1} \wedge S_{2}}\left(\left(2,\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right)+\left(3,\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right)\right) \\
& =f_{S_{1} \wedge S_{2}}\left(1,\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right) \\
& =f_{S_{1}}(1) \cap f_{S_{2}}\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right) \\
& =\{(1234),(1324),(12),(14),(12)(34)\} \cap\{e,(14)\} \\
& =\{(14)\} \text {, } \\
& \text { but } \\
& f_{S_{1} \wedge S_{2}}\left(2,\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right) \\
& =f_{S_{1}}(2) \cap f_{S_{2}}\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right) \\
& =\{(1234),(1324),(12)\} \cap\{e,(13),(14)\} \\
& =\emptyset \text {, } \\
& \text { and } \\
& f_{S_{1} \wedge S_{2}}\left(\left(3,\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right)\right) \\
& =f_{S_{1}}(3) \cap f_{S_{2}}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right) \\
& =\{(1234),(1324),(12),(14),(12)(34)\} \cap\{e,(13)\} \\
& =\emptyset \text {, } \\
& \text { which implies, } f_{S_{1} \wedge S_{2}}\left(\left(2,\left(\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right)\right)\right) \cup f_{S_{1} \wedge S_{2}}\left(\left(3,\left(\begin{array}{cc}
0 & 1 \\
0 & 1
\end{array}\right)\right)\right)=\emptyset \text {. } \\
& \text { Hence } \\
& f_{S_{1} \wedge S_{2}}\left(\left(2,\left(\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right)\right)+\left(3,\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right)\right) \nsubseteq f_{S_{1} \wedge S_{2}}\left(2,\left(\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right)\right) \cup f_{S_{1} \wedge S_{2}}\left(3,\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right) \text {. }
\end{aligned}
$$

Thus, $f_{S_{1}} \wedge f_{S_{2}}$ is not an $S U$-h-bi-ideal of $S_{1} \times S_{2}$ over $U$.

Now, we give the following proposition.

Proposition 3.10 If $f_{S}$ and $h_{S}$ are two $S U$-h-bi-ideals over $U$, then so is $f_{S} \tilde{U} h_{S}$.

Theorem 3.11 Let $f_{S} \in S(U)$ and $h_{S}$ an $S U$-h-bi-ideal of $S$ over $U$. Then $f_{S} \diamond h_{S}$ and $h_{S} \diamond f_{S}$ are $S U$-h-bi-ideals of $S$ over $U$.

Proof. For any $x, y \in S$, we have
$(i)\left(f_{S} \diamond h_{S}\right)(x) \cup\left(f_{S} \diamond h_{S}\right)(y)$

$$
\supseteq \quad \cap \quad\left(f_{S}\left(x_{i}\right) \cup f_{S}\left(x_{j}^{\prime}\right) \cup h_{S}\left(y_{i}\right) \cup h_{S}\left(y_{j}^{\prime}\right)\right)
$$

$$
x+y+\sum_{i=1}^{k} x_{i} y_{i}+z_{1}+z_{2}=\sum_{j=1}^{l} x_{j}^{\prime} y_{j}^{\prime}+z_{1}+z_{2}
$$

$$
\left(k=\max \{m, p\}, l=\max \{n, q\}, x_{i} y_{i}=a_{i} b_{i}+c_{i} d_{i}, x_{j}^{\prime} y_{j}^{\prime}=a_{j}^{\prime} b_{j}^{\prime}+c_{j}^{\prime} d_{j}^{\prime}\right)
$$

$$
=\left(f_{S} \diamond h_{S}\right)(x+y)
$$

(ii) Let $x, a, b, z \in S$ with $x+a+z=b+z$. Then it is similar to check that $\left(f_{S} \diamond h_{S}\right)(a) \cup\left(f_{S} \diamond h_{S}\right)(a) \supseteq\left(f_{S} \diamond h_{S}\right)(x)$.
$(i i i)\left(f_{S} \diamond h_{S}\right) \diamond\left(f_{S} \diamond h_{S}\right)=f_{S} \diamond\left(h_{S} \diamond\left(f_{S} \diamond h_{S}\right)\right) \tilde{\supseteq} f_{S} \diamond\left(h_{S} \diamond\left(\tilde{\theta} \diamond h_{S}\right)\right)=f_{S} \diamond\left(h_{S} \diamond \tilde{\theta} \diamond h_{S}\right) \cong f_{S} \diamond h_{S}$. $\quad$ since $\left.h_{S} \diamond \tilde{\theta} \diamond h_{S} \tilde{\cong} h_{S}\right)$
$(i v)\left(f_{S} \diamond h_{S}\right) \diamond \tilde{\theta} \diamond\left(f_{S} \diamond h_{S}\right)=f_{S} \diamond\left(h_{S} \diamond\left(\tilde{\theta} \diamond f_{S}\right) \cong f_{S} \diamond\left(h_{S} \diamond \tilde{\theta} \diamond h_{S}\right) \cong f_{S} \diamond h_{S}\right.$.
(since $\tilde{\theta} \diamond h_{S} \tilde{\supseteq} h_{S}$ ). Thus, $f_{S} \diamond h_{S}$ is an $S U$ - $h$-bi-ideal of $S$ over $U$. Similarly, we can prove that $h_{S} \diamond f_{S}$ is also an $S U$ - $h$-h-ideal of $S$ over $U$.

## 4 SU-h-quasi-ideals

In this section, we introduce the concept of soft union $h$-quasi-ideals and investigate some related properties.

Definition 4.1 A soft set $f_{S}$ over $U$ is called a soft union h-quasi-ideal (briefly, SU-h-quasi-ideal) of $S$ over $U$ if it satisfies $\left(S U_{1}\right),\left(S U_{3}\right)$ and $\left(S U_{10}\right)\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \cong f_{S}$.

Example 4.2 Assume that $U=\mathbb{Z}^{-}$the set of all negative integers, is the universal set. Let the hemiring $S=\left\{\left.\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}_{2}\right\}, 2 \times 2$ matrices with $\mathbb{Z}_{2}$ terms, be the set of parameters.

$$
\begin{aligned}
& =\quad \bigcap \quad\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup h_{S}\left(b_{i}\right) \cup h_{S}\left(b_{j}^{\prime}\right)\right) \\
& x+\sum_{i=1}^{m} a_{i} b_{i}+z_{1}=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z_{1} \\
& \cup \quad \cap \quad\left(f_{S}\left(c_{i}\right) \cup f_{S}\left(c_{j}^{\prime}\right) \cup h_{S}\left(d_{i}\right) \cup h_{S}\left(d_{j}^{\prime}\right)\right) \\
& x+\sum_{i=1}^{p} c_{i} d_{i}+z_{2}=\sum_{j=1}^{q} c_{j}^{\prime} d_{j}^{\prime}+z_{2} \\
& =\bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z_{1}}^{\left(\bigcap_{i=1}^{p} c_{i} d_{i}+z_{2}\right.} \begin{array}{l}
\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup h_{S}\left(b_{i}\right) \cup h_{S}\left(b_{j}^{\prime}\right) \cup\right. \\
\left.f_{S}\left(c_{i}\right) \cup f_{S}\left(c_{j}^{\prime}\right) \cup h_{S}\left(d_{i}\right) \cup h_{S}\left(d_{j}^{\prime}\right)\right)
\end{array} \\
& =\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z_{1} \quad=\sum_{j=1}^{q} c^{\prime}{ }_{j} d^{\prime}{ }_{j}+z_{2}
\end{aligned}
$$

Define a soft set $f_{S}$ over $U$ by $f_{S}\left(\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)\right)=\{-1\}, f_{S}\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right)=\{-1,-2\}$, $f_{S}\left(\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\right)=f_{S}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\right)=\{-1,-2,-3\}$.

Then, one can easily check that $f_{S}$ is an $S U$-h-quasi-ideal of $S$ over $U$.

From Definition 4.1 and Theorem 2.9, we have following theorem.

Theorem 4.3 Let $f_{S}$ be a soft set over $U$. Then $f_{S}$ is an $S U$-h-quasi-ideal of $S$ over $U$ if and only if it satisfies $\left(S U_{3}\right),\left(S U_{5}\right)$ and $\left(S U_{10}\right)$.

Proposition 4.4 (i) Every $S U$-left(right) h-ideal of $S$ over $U$ is an $S U$-h-quasi-ideal of $S$ over $U$.
(ii) Every $S U$-h-quasi-ideal of $S$ over $U$ is an $S U$-h-bi-ideal of $S$ over $U$.

Proof. We only show that (ii) holds. Let $f_{S}$ be an $S U$-h-quasi-ideal of $S$ over $U$. Then $\left(S U_{3}\right)$ and $\left(S U_{5}\right)$ hold. Moreover, we have,

$$
f_{S} \diamond f_{S}=\left(f_{S} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond f_{S}\right) \tilde{\varrho}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\supseteq} f_{S}
$$

This proves that $\left(S U_{6}\right)$ holds. Finally, we have $f_{S} \diamond \tilde{\theta} \diamond f_{S} \tilde{\supseteq} \tilde{\theta} \diamond \tilde{\theta} \diamond f_{S} \tilde{\supseteq} \tilde{\theta} \diamond f_{S}$ and $f_{S} \diamond \tilde{\theta} \diamond f_{S} \cong f_{S} \diamond \tilde{\theta} \diamond \tilde{\theta} \supseteq f_{S} \diamond \tilde{\theta}$, which implies, $f_{S} \diamond \tilde{\theta} \diamond f_{S} \supseteq\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\cong} f_{S}$. This proves that $\left(S U_{9}\right)$ holds. It follows from Theorem 3.3 that $f_{S}$ is an $S U$-h-bi-ideal of $S$.

Remark 4.5 Note that the converse of Proposition 4.4 is not true as following example.

Example 4.6 Assume that $U=\mathbb{Z}^{-}$the set of all negative integers, is the universal set. Let the hemiring $S=\left\{\left.\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \right\rvert\, x, y \in \mathbb{Z}_{2}=\{0,1\}\right\}, 2 \times 2$ matrices with $\mathbb{Z}_{2}$ terms, be the set of parameters.

Define a soft set $f_{S}$ over $U$ by $h_{S}\left(\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)\right)=\{-1\}, h_{S}\left(\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)\right)=\{-1,-2\}$,
$h_{S}\left(\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\right)=\{-1,-2,-3\}, h_{S}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\right)=\{-1,-3\}$.
One can easily check that $f_{S}$ is an $S U$-h-bi-ideal of $S$ over $U$ but it is not an $S U$-left or right h-ideal of $S$ over $U$. In fact, $h_{S}\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)=h_{S}\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right) \nsubseteq\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Similar to Proposition 3.4 and Corollary 3.5, we have the following proposition.
Proposition 4.7 (i) A non-empty subset $A$ of $S$ is an h-quasi-ideal of $S$ if and only if the soft subset $f_{S}$ defined by $f_{S}(x)= \begin{cases}\alpha & \text { if } x \in S \backslash A, \\ \beta & \text { if } x \in A,\end{cases}$
is an SU-h-quasi-ideal of $S$ over $U$, where $\alpha, \beta \in U$ such that $\alpha \supseteq \beta$.
ii) Let $A \subseteq S$. Then $S$ is an h-quasi-ideal of $S$ if and only if $S_{A^{C}}$ is an $S U$-h-quasi-ideal of $S$ over $U$.

Theorem 4.8 (i) Let $f_{S}$ be a soft set over $U$ and $\alpha \subseteq U$ such that $\alpha \in \mathrm{I}_{m}\left(f_{S}\right)$. If $f_{S}$ is an $S U$-h-quasiideal of $S$ over $U$, then $L\left(f_{S} ; \alpha\right)$ is an $h$-quasi-ideal of $S$.
(ii) Let $f_{S}$ be a soft set over $U, L\left(f_{S} ; \alpha\right)$ a lower h-quasi-ideal of $f_{S}$ for each $\alpha \subseteq U$ and $\mathrm{I}_{m}\left(f_{S}\right)$ an ordered set by inclusion. Then $f_{S}$ is an h-quasi-ideal of $S$ over $U$.

Proof. (i) Let $x, y \in L\left(f_{S} ; \alpha\right)$. Then as in the proof of Theorem 3.6, we know $x+y \in L\left(f_{S} ; \alpha\right)$. Also, let $x, z \in S$ and $a, b \in L\left(f_{S} ; \alpha\right)$ with $x+a+z=b+z$, we know that $x \in L\left(f_{S} ; \alpha\right)$.

Now, let $x \in \overline{S \cdot L\left(f_{S} ; \alpha\right)} \cap \overline{L\left(f_{S} ; \alpha\right) \cdot S}$, then there exist $s_{1}, s_{2}, t_{1}, t_{2}, z_{1}, z_{2} \in S$ and $a_{1}, a_{2}, b_{1}, b_{2} \in$ $L\left(f_{S} ; \alpha\right)$ such that $x+s_{1} a_{1}+z_{1}=s_{2} a_{2}+z_{1}$ and $x+b_{1} t_{1}+z_{2}=b_{2} t_{2}+z_{2}$ and so, $f_{S}\left(a_{1}\right) \subseteq \alpha, f_{S}\left(a_{2}\right) \subseteq$ $\alpha, f_{S}\left(b_{1}\right) \subseteq \alpha$ and $f_{S}\left(b_{2}\right) \subseteq \alpha$. Then

$$
\begin{aligned}
\left(\tilde{\theta} \diamond f_{S}\right)(x) & =\bigcap_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\tilde{\theta}\left(a_{i}\right) \cup \tilde{\theta}\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq \tilde{\theta}\left(s_{1}\right) \cup \tilde{\theta}\left(s_{2}\right) \cup f_{S}\left(a_{1}\right) \cup f_{S}\left(a_{2}\right) \\
& =f_{S}\left(a_{1}\right) \cup f_{S}\left(a_{2}\right) \\
& \subseteq \alpha . \\
\left(f_{S} \diamond \tilde{\theta}\right)(x) & =\bigcap_{\substack{x+\\
\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\tilde{\theta}\left(a_{i}\right) \cup \tilde{\theta}\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq \tilde{\theta}\left(t_{1}\right) \cup \tilde{\theta}\left(t_{2}\right) \cup f_{S}\left(b_{1}\right) \cup f_{S}\left(b_{2}\right) \\
& =f_{S}\left(b_{1}\right) \cup f_{S}\left(b_{2}\right) \\
& \subseteq \alpha
\end{aligned}
$$

Since $f_{S}$ is an $S U$-h-quasi-ideal of $S$, we have $f_{S}(x) \subseteq\left(\tilde{\theta} \diamond f_{S}\right)(x) \cup\left(f_{S} \diamond \tilde{\theta}\right)(x) \subseteq \alpha \cup \alpha=\alpha$, and so, $x \in L\left(f_{S} ; \alpha\right)$. Hence $L\left(f_{S} ; \alpha\right)$ is an $h$-quasi-ideal of $S$.
(ii) Let $x, y \in S$ be such that $f_{S}(x)=\alpha_{1}$ and $f_{S}(y)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$. Then as in the proof of Theorem 3.6, we know that $f_{S}(x+y) \subseteq f_{S}(x) \cup f_{S}(y)$. Also, let $a, b, x, z \in S$ with $x+a+z=b+z$, we know $f_{S}(x) \subseteq f_{S}(a) \cup f_{S}(b)$.
Let $a \in S$ such that $\left(f_{S} \diamond \tilde{\theta}\right)(a)=\alpha_{1}$ and $\left(\tilde{\theta} \diamond f_{S}\right)(a)=\alpha_{2}$, where $\alpha_{1} \subseteq \alpha_{2}$, then $a \in L\left(f_{S} \diamond \tilde{\theta} ; \alpha_{1}\right)$ and $a \in L\left(\tilde{\theta} \diamond f_{S} ; \alpha_{2}\right)$. Since $\alpha_{1} \subseteq \alpha_{2}$, we have $a \in L\left(f_{S} \diamond \tilde{\theta} ; \alpha_{2}\right)$. We can deduce that $a \in \overline{S \cdot L\left(f_{S} ; \alpha_{2}\right)} \cap$ $\overline{L\left(f_{S} ; \alpha_{2}\right) \cdot S}$. Since $L\left(f_{S} ; \alpha\right)$ is an h-quasi-ideal of $S$ for all $\alpha \subseteq U, a \in L\left(f_{S} ; \alpha\right)$. Thus, $f_{S}(a) \subseteq$ $\alpha_{2} \subseteq \alpha_{1} \cup \alpha_{2}=\left(f_{S} \diamond \tilde{\theta}\right)(a) \cup\left(\tilde{\theta} \diamond f_{S}\right)(a)$, to this result implies that $f_{S} \tilde{\subseteq}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)$. Hence, $f_{S}$ is an $S U$-h-quasi-ideal of $S$ over $U$.

Proposition 4.9 Let $f_{S}$ and $h_{S}$ be two $S U$-h-quasi-ideals of $S$ over $U$. Then $f_{S} \diamond g_{S}$ is an $S U$-h-bi-ideal of $S$ over $U$.

Proof. This proposition is a consequence of Proposition 4.4 and Theorem 3.11.

The following two propositions are obvious.

Proposition 4.10 (1) Let $f_{S}$ and $h_{S}$ be an $S U$-right h-ideal and an $S U$-left h-ideal of $S$ over $U$, respectively, then $f_{S} \tilde{\cup} h_{S}$ is an $S U$-h-quasi-ideal of $S$ over $U$.
(2) Let $f_{S}$ and $h_{S}$ are two $S U$-h-quasi-ideals of $S$ over $U$. Then so is $f_{S} \tilde{\cup} h_{S}$.

Proposition 4.11 (1) Let $f_{S_{1}}, f_{S_{2}} \in S(U)$ and $\Psi$ be an isomorphism from $S_{1}$ to $S_{2}$. If $f_{S_{1}}$ is an $S U-h-$ quasi-ideal of $S_{1}$ over $U$. Then so is $\Psi\left(f_{S_{1}}\right)$ of $S_{2}$ over $U$.
(2) Let $f_{S_{1}}, f_{S_{2}} \in S(U)$ and $\Psi$ be a homomorphism from $S_{1}$ to $S_{2}$. If $f_{S_{2}}$ is an $S U$-h-quasi-ideal of $S_{2}$ over $U$. Then so is $\Psi^{-1}\left(f_{S_{2}}\right)$ of $S_{1}$ over $U$.

## $5 h$-hemiregular hemirings

In this section, we investigate some characterizations of $h$-hemiregular hemirings via $S U$ - $h$-ideals, $S U$-h-bi-ideals and $S U$-h-quasi-ideals.
Definition 5.1 [37] A hemiring $S$ is called h-hemiregular if for each $a \in S$, there exist $x_{1}, x_{2}, z \in S$ such that $a+a x_{1} a+z=a x_{2} a+z$.

Lemma 5.2 [37] If $A$ and $B$, are respectively, a right $h$-ideal and a left $h$-ideal of $S$, then $\overline{A B} \subseteq A \cap B$.
Lemma 5.3 [37] A hemiring $S$ is h-hemiregular if and only if for any right h-ideal $A$ and left $h$-ideal $B$, we have $\overline{A B}=A \cap B$.

Theorem 5.4 [36] For any hemiring $S$, the following statements are equivalent:
(1) $S$ is h-hemiregular;
(2) $f_{S} \diamond g_{S}=f_{S} \tilde{\cup} g_{S}$ for any $S U$-right $h$-ideal $f_{S}$ and any $S U$-left h-ideal $g_{S}$ of $S$ over $U$.

Lemma 5.5 [34] Let $S$ be a hemiring. Then the following statements are equivalent:
(1) $S$ is h-hemiregular;
(2) $B=\overline{B S B}$ for every h-bi-ideal $B$ of $S$;
(3) $Q=\overline{Q S Q}$ for every $h$-quasi-ideal $Q$ of $S$.

Theorem 5.6 For any hemiring $S$, the following conditions are equivalent:
(1) $S$ is h-hemiregular;
(2) $f_{S}=f_{S} \diamond \tilde{\theta} \diamond f_{S}$ for every $S U-h$-bi-ideal $f_{S}$ of $S$ over $U$;
(3) $f_{S}=f_{S} \diamond \tilde{\theta} \diamond f_{S}$ for every $S U$-h-quasi-ideal $f_{S}$ of $S$ over $U$.

Proof. (1) $\Longrightarrow(2)$ Let $f_{S}$ be an $S U$-h-bi-ideal of $S$ over $U$. For any $x \in S$, there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since $S$ is $h$-hemiregular. Then the following equalities hold:

$$
\begin{aligned}
&\left(f_{S} \diamond \tilde{\theta} \diamond f_{S}\right)(x)=\bigcap_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\left(f_{S} \diamond \tilde{\theta}\right)\left(a_{i}\right) \cup\left(f_{S} \diamond \tilde{\theta}\right)\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq\left(f_{S} \diamond \tilde{\theta}\right)(x a) \cup\left(f_{S} \diamond \tilde{\theta}\right)\left(x a^{\prime}\right) \cup f_{S}(x) \\
&=\bigcap_{x a+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup \tilde{\theta}\left(b_{i}\right) \cup \tilde{\theta}\left(b_{j}^{\prime}\right)\right) \\
& \cup \bigcap_{\substack{ \\
x a^{\prime}+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup \tilde{\theta}\left(b_{i}\right) \cup \tilde{\theta}\left(b_{j}^{\prime}\right)\right) \cup f_{S}(x) \\
& \subseteq\left(f_{S}(x a x) \cup f_{S}\left(x a^{\prime} x\right)\right) \cup\left(f_{S}(x a x) \cup f_{S}\left(x a^{\prime} x\right)\right) \cup f_{S}(x) \\
&\left(x a+x a x a+z a=x a^{\prime} x a+z a \text { and } x a^{\prime}+x a x a^{\prime}+z a^{\prime}=x a^{\prime} x a^{\prime}+z a^{\prime}\right) \\
& \subseteq f_{S}(x)
\end{aligned}
$$

This implies that $f_{S} \check{\subseteq} f_{S} \diamond \tilde{\theta} \diamond f_{S}$. Since $f_{S}$ is an $S U-h-b i$-ideal of $S$ over $U, f_{S} \diamond \tilde{\theta} \diamond f_{S} \check{\supseteq} f_{S}$. Hence $f_{S} \diamond \tilde{\theta} \diamond f_{S}=f_{S}$.
$(2) \Longrightarrow(3)$ This part is straightforward by Proposition 4.4.
$(3) \Longrightarrow(1)$ Let $Q$ be any $h$-quasi-ideal of $S$. Then by Proposition $4.7(i i), S_{Q^{C}}$ is an $S U$-h-quasiideal of $S$ over $U$. For any $x \in Q$ and $x \notin \overline{Q S Q}$. We have $S_{Q^{C}}=\emptyset$. By our assumption, we have $\left(S_{Q^{c}} \diamond \tilde{\theta} \diamond S_{Q^{c}}\right)(x)=\emptyset$. Since $x \notin \overline{Q S Q}$, it is clear that there do not exist $a_{1}, a_{2}, b_{1}, b_{2} \in Q$ and $s_{1}, s_{2}, z \in S$ such that $x+a_{1} s_{1} b+z=a_{2} s_{2} b_{2}+z$, and so, $\left(S_{Q^{C}} \diamond \tilde{\theta} \diamond S_{Q^{C}}\right)(x)=U$, a contradiction. Thus, we have proved that $Q \subseteq \overline{Q S Q}$. Since $Q$ is an $h$-quasi-ideal of $S, \overline{Q S Q} \subseteq \overline{S Q} \cap \overline{Q S} \subseteq Q$, and so, $Q=\overline{Q S Q}$. Hence, it follows from Lemma 5.5 that $S$ is $h$-hemiregular.

Theorem 5.7 Let $S$ be a hemiring. Then the following conditions are equivalent:
(1) $S$ is $h$-hemiregular;
(2) $f_{S} \cup g_{S}=f_{S} \diamond g_{S} \diamond f_{S}$ for every $S U$ - $h$-bi-ideal $f_{S}$ and every $S U$ - $h$-ideal $g_{S}$ of $S$ over $U$;
$S U$-h-ideal $g_{S}$ of $S$ over $U$.
Proof. (1) $\Longrightarrow(2)$ Let $f_{S}$ and $g_{S}$ be any $S U$ - $h$ - $b i$-ideal and any $S U$ - $h$-ideal of $S$ over $U$, respectively. For any $x \in S$, then there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since $S$ is $h$-hemiregular. Then

$$
\begin{aligned}
\left(f_{S} \diamond g_{S} \diamond f_{S}\right)(x) & =\bigcap_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\left(f_{S} \diamond g_{S}\right)\left(a_{i}\right) \cup\left(f_{S} \diamond g_{S}\right)\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq\left(f_{S} \diamond g_{S}\right)(x a) \cup\left(f_{S} \diamond g_{S}\right)\left(x a^{\prime}\right) \cup f_{S}(x) \\
& =\bigcap_{x a+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\alpha_{j}^{\prime} b_{j}^{\prime}+z}}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right) \cup
\end{aligned}
$$

we have

$$
\begin{aligned}
& \quad \cap \bigcap_{\substack{ \\
x a^{\prime}+\\
i=1 \\
i=a_{i} b_{i}+z=\\
\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}} f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right) \cup f_{S}(x) \\
& \left.\left.\subseteq\left(f_{S}(x) \cup g_{S}(a x a)\right) \cup g_{S}\left(a^{\prime} x a\right)\right) \cup\left(f_{S}(x) \cup g_{S}\left(a x a^{\prime}\right)\right) \cup g_{S}\left(a^{\prime} x a^{\prime}\right)\right) \cup f_{S}(x) \\
& \left(x a+x a x a+z a=x a^{\prime} x a+z a \text { and } x a^{\prime}+x a x a^{\prime}+z a^{\prime}=x a^{\prime} x a^{\prime}+z a^{\prime}\right) \\
& \subseteq f_{S}(x) \cup g_{S}(x) \\
& \\
& =\left(f_{S} \tilde{\cup} g_{S}\right)(x),
\end{aligned}
$$

The above result implies that $f_{S} \diamond g_{S} \diamond f_{S} \simeq f_{S} \tilde{\cup} g_{S}$.
Since $f_{S}$ is an $S U$-h-bi-ideal of $S$ over $U, f_{S} \diamond g_{S} \diamond f_{S} \check{\cong} f_{S} \diamond \tilde{\theta} \diamond f_{S} \supseteq f_{S}$. (*)
Since $g_{S}$ is an $S U$-h-ideal of $S$ over $U$, we have $f_{S} \diamond g_{S} \diamond f_{S} \supseteq \tilde{\theta} \diamond g_{S} \diamond \tilde{\theta}=\left(\tilde{\theta} \diamond g_{S}\right) \diamond \tilde{\theta} \supseteq g_{S} \diamond \tilde{\theta} \supseteq g_{S} .(* *)$ $\mathrm{By}(*)$ and $(* *)$, we have $f_{S} \diamond g_{S} \diamond f_{S} \cong f_{S} \tilde{\cup} g_{S}$. Hence, $f_{S} \diamond g_{S} \diamond f_{S}=f_{S} \tilde{\cup} g_{S}$.
$(2) \Longrightarrow(3)$ This is straightforward by Proposition 4.4.
$(3) \Longrightarrow(1)$ Since $\tilde{\theta}$ is an $S U$ - $h$-ideal of $S$ over $U$, by the assumption, we have $f_{S}=f_{S} \tilde{\cup} \tilde{\theta}=f_{S} \diamond \tilde{\theta} \diamond f_{S}$. It follows from Theorem 5.6 that $S$ is $h$-hemiregular.

Theorem 5.8 Let $S$ be a hemiring. Then the following conditions are equivalent:
(1)S is h-hemiregular;
(2) $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S}$ for every $S U$-h-bi-ideal $f_{S}$ and every $S U$-left $h$-ideal $g_{S}$ of $S$ over $U$;
(3) $f_{S} \tilde{\cup} g_{S} \tilde{\beth} f_{S} \diamond g_{S}$ for every $S U$-h-quasi-ideal $f_{S}$ and every $S U$-left h-ideal $g_{S}$ of $S$ over $U$;
(4) $f_{S} \tilde{\cup} g_{S} \supseteq f_{S} \diamond g_{S}$ for every $S U$-h-bi-ideal $g_{S}$ and every $S U$-right h-ideal $f_{S}$ of $S$ over $U$;
(5) $f_{S} \tilde{\cup} g_{S} \tilde{\cong} f_{S} \diamond g_{S}$ for every $S U$-h-quasi-ideal $g_{S}$ and every $S U$-right $h$-ideal $f_{S}$ of $S$ over $U$;
(6) $f_{S} \tilde{\cup} g_{S} \tilde{\cup} h_{S} \tilde{\cong} f_{S} \diamond g_{S} \diamond h_{S}$ for every $S U$-h-bi-ideal $g_{S}$ and every $S U$-right $h$-ideal $f_{S}$ and every $S U$ left $h$-ideal $h_{S}$ of $S$ over $U$;
(7) $f_{S} \tilde{\cup} g_{S} \tilde{\cup} h_{S} \tilde{\supseteq} f_{S} \diamond g_{S} \diamond h_{S}$ for every $S U$-h-quasi-ideal $g_{S}$ and every $S U$-right $h$-ideal $f_{S}$ and every $S U$-left $h$-ideal $h_{S}$ of $S$ over $U$.

Proof. (1) $\Longrightarrow(2)$ Let $f_{S}$ and $g_{S}$ be an $S U$ - $h$-bi-ideal and an $S U$-left $h$-ideal of $S$ over $U$, respectively. For any $x \in S$, there exists $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since $S$ is $h$-hemiregular. Hence, the following equalities hold.

$$
\begin{aligned}
\left(f_{S} \diamond g_{S}\right)(x) & =\bigcap_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(\left(f_{S}\right)\left(a_{i}\right) \cup\left(f_{S}\right)\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq f_{S}(x) \cup g_{S}(a x) \cup g_{S}\left(a^{\prime} x\right) \\
& \subseteq f_{S}(x) \cup g_{S}(x) \\
& =\left(f_{S} \tilde{\cup} g_{S}\right)(x),
\end{aligned}
$$

This implies that $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S}$.
$(2) \Longrightarrow(1)$ Let $f_{S}$ and $g_{S}$ be an $S U$ - $h$-bi-ideal and an $S U$-left $h$-ideal of $S$ over $U$, respectively. Then by Proposition 4.4, $f_{S}$ is an $S U$-h-bi-ideal of $S$ over $U$. By our assumption, we have $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S} \tilde{\supseteq}\left(f_{S} \tilde{\cup} \tilde{\theta}\right) \tilde{\cup}\left(\tilde{\theta} \tilde{\cup} f_{S}\right) \supseteq$ $f_{S} \tilde{\cup} g_{S}$. Hence, $f_{S} \tilde{\cup} g_{S}=f_{S} \diamond g_{S}$. It follows from Theorem 5.4 that $S$ is $h$-hemiregular.

Similarly, we can show that $(1) \Longrightarrow(3),(1) \Longrightarrow(4)$ and $(1) \Longrightarrow(5)$.
$(1) \Longrightarrow(6)$. Let $f_{S}, g_{S}$ and $h_{S}$ be any $S U$-right $h$-ideal, $S U$ - $h$-bi-ideal, $S U$-left $h$-ideal of $S$ over $U$, respectively. For any $x \in S$, there exist $a, a^{\prime}, z \in S$ such that $x+x a x+z=x a^{\prime} x+z$ since $S$ is $h$-hemiregular, we have the following equalities:

$$
\begin{aligned}
\left(f_{S} \diamond g_{S} \diamond h_{S}\right)(x) & =\bigcap_{\substack{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{b}^{\prime} b_{j}+z}}\left(\left(f_{S} \diamond g_{S}\right)\left(a_{i}\right) \cup\left(f_{S} \diamond g_{S}\right)\left(a_{j}^{\prime}\right) \cup h_{S}\left(b_{i}\right) \cup h_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq\left(f_{S} \diamond g_{S}\right)(x) \cup h_{S}(a x) \cup h_{S}\left(a^{\prime} x\right) \\
& =\bigcap_{x a+}^{\substack{i=1 \\
i=1 \\
a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right) \cup h_{S}(a x) \cup h_{S}\left(a^{\prime} x\right) \\
& \subseteq f_{S}(x a) \cup f_{S}\left(x a^{\prime}\right) \cup g_{S}(x) \cup h_{S}(a x) \cup h_{S}\left(a^{\prime} x\right) \\
& \subseteq f_{S}(x) \cup g_{S}(x) \cup h_{S}(x) \\
& =\left(f_{S} \tilde{\cup} g_{S} \cup \cup h_{S}\right)(x) .
\end{aligned}
$$

This implies that $f_{S} \cup \tilde{g_{S}} g_{S} h_{S} \cong f_{S} \diamond g_{S} \diamond h_{S}$.
$(6) \Longrightarrow(7)$ This part is straightforward by Proposition 4.4.
$(7) \Longrightarrow(1)$ Let $f_{S}$ and $h_{S}$ be any $S U$-right $h$-ideal and any $S U$-left $h$-ideal of $S$ over $U$, respectively. Since $\tilde{\theta}$ is an $S U$-h-quasi-ideal of $S$ over $U$, we have $f_{S} \tilde{\cup} h_{S}=f_{S} \tilde{\cup} \tilde{\cup} \tilde{\cup} h_{S} \check{\supseteq} f_{S} \diamond \tilde{\theta} \diamond h_{S} \tilde{\supseteq} f_{S} \diamond h_{S} \tilde{\cong}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\cup}\left(\tilde{\theta} \diamond h_{S}\right) \tilde{\cong} f_{S} \tilde{\cup} h_{S}$. Then $f_{S} \tilde{\cup} h_{S}=f_{S} \diamond h_{S}$, and hence, it follows from Theorem $5.4 S$ is $h$-hemiregular.

Lemma 5.9 [36] A hemiring $S$ is $h$-hemiregular if and only if every $S U$-left(right) $h$-ideal of $S$ is idempotent.

Theorem 5.10 Let $f_{S}$ be an $S U$-h-quasi-ideal of an h-hemiregular hemiring $S$ over $U$. Then $\left(\tilde{\theta} \diamond f_{S}\right) \tilde{U}\left(f_{S} \diamond \tilde{\theta}\right)=$ $f_{S}$.

Proof. Let $f_{S}$ be any $S U$-h-quasi-ideal of $S$. Then $\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond \tilde{\theta}\right) \cong f_{S}$. We show that $\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\subseteq} f_{S}$. We know $f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)$ is an $S U$-left $h$-ideal of $S$ over $U$. In fact,we have the following equalities.

$$
\begin{aligned}
\tilde{\theta} \diamond\left(f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right) & =\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right) \\
& \left.=\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}(\tilde{\theta} \diamond \tilde{\theta}) \diamond f_{S}\right) \\
& =\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \\
& =\tilde{\theta} \diamond f_{S} \\
& \tilde{\subseteq} f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) .
\end{aligned}
$$

By Lemma 5.9 , we can easily see that $f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)$ is idempotent. Then we have the following equalities.

$$
\begin{aligned}
& \left.f_{S} \tilde{\supseteq} f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)=\left(f_{S} \tilde{\cup} \tilde{\theta} \diamond f_{S}\right)\right) \diamond\left(f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right) \\
& =\left(\left(f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right) \diamond f_{S}\right) \tilde{\cup}\left(\left(f_{S} \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right) \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right) \\
& \left.=\left(\left(f_{S} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \diamond f_{S}\right)\right) \tilde{\cup}\left(\left(f_{S} \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right) \tilde{\cup}\left(\left(\tilde{\theta} \diamond f_{S}\right) \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right)\right) \\
& =\left(( f _ { S } \diamond f _ { S } ) \tilde { \cup } \left(( \tilde { \theta } \diamond ( f _ { S } \diamond f _ { S } ) ) \tilde { \cup } \left(\left(f_{S} \diamond\left(\tilde{\theta} \diamond f_{S}\right)\right) \tilde{\cup}\left(\left(\tilde{\theta} \diamond f_{S}\right)^{2}\right)\right.\right.\right. \\
& \tilde{\supseteq}\left(\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right) \tilde{\cup}\left(\tilde{\theta} \diamond\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\left(\tilde{\theta} \diamond f_{S}\right)^{2}\right)\right. \\
& \tilde{\supseteq}\left(\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(\tilde{\theta} \diamond f_{S}\right)\right. \\
& \cong \tilde{\theta} \diamond f_{S},
\end{aligned}
$$

This implies that $f_{S} \supseteq \tilde{\theta} \diamond f_{S}$.

Similarly, we can prove that $f_{S} \check{\cong} f_{S} \diamond \tilde{\theta}$, and so, $\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond \tilde{\theta}\right) \tilde{\subseteq} f_{S}$. Thus, $\left(\tilde{\theta} \diamond f_{S}\right) \tilde{\cup}\left(f_{S} \diamond \tilde{\theta}\right)=f_{S}$.

Theorem 5.11 Let $f_{S} \in S(U)$ and $S$ an h-hemiregular hemiring. Then the following statements are equivalent:
(1) $f_{S}$ is an $S U$-h-quasi-ideal of $S$ over $U$;
(2) $f_{S}$ may be presented in the form $f_{S}=g_{S} \diamond h_{S}$, where $g_{S}$ is an $S U$-right $h$-ideal and $h_{S}$ is an SU-left h-ideal of $S$ over $U$.

Proof. (1) $\Longrightarrow(2)$ By Theorem 5.7, we have $f_{S}=f_{S} \diamond \tilde{\theta} \diamond f_{S}$, for any $S U$-h-quasi-ideal $f_{S}$ of $S$ over $U$. Then, we have $f_{S}=f_{S} \diamond \tilde{\theta} \diamond f_{S}=f_{S} \diamond(\tilde{\theta} \diamond \tilde{\theta}) \diamond f_{S}=\left(f_{S} \diamond \tilde{\theta}\right) \diamond\left(\tilde{\theta} \diamond f_{S}\right)$.

We know that $f_{S} \diamond \tilde{\theta}$ and $\tilde{\theta} \diamond f_{S}$ are an $S U$-right $h$-ideal and an $S U$-left $h$-ideal of $S$ over $U$, respectively. $(2) \Longrightarrow(1)$ By Proposition 4.10, we know that $f_{S}=g_{S} \tilde{U} h_{S}$ is an $S U$ - $h$-quasi-ideal of $S$ over $U$. Since $S$ is $h$-hemiregular, by Theorem 5.4, we know that $g_{S} \diamond h_{S}=g_{S} \tilde{\cup} h_{S}$, then $f_{S}=g_{S} \diamond h_{S}$.

## $6 h$-intra-hemiregular hemirings

In this section, we investigate some characteristics of the $h$-intra-hemiregular hemirings by mean of $S U$ - $h$-ideals, $S \mathrm{U}$ - $h$-bi-ideals and $S U$ - $h$-quasi-ideals.
Definition 6.1 [34] A hemiring $S$ is said to be a h-intra-hemiregular hemiring if for each $x \in S$, there exist $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, z \in S$ such that $x+\sum_{i=1}^{m} a_{i} x^{2} a_{i}^{\prime}+z=\sum_{j=1}^{n} b_{j} x^{2} b_{j}^{\prime}+z$. Equivalently,
(1) $x \in \overline{S x^{2} S}, \forall x \in S$;
(2) $A \subseteq \overline{S A^{2} S}, \forall A \subseteq S$.

Lemma 6.2 [34] Let $S$ be a hemiring. Then the following statements are equivalent:
(1) $S$ is h-intra-hemiregular;
(2) $L \cap R \subseteq \overline{L R}$ for every left $h$-ideal $L$ and every right $h$-ideal $R$ of $S$.

Theorem 6.3 For any hemiring $S$, the following statements are equivalent:
(1) $S$ is h-intra-hemiregular;
(2) $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S}$ for every $S U$-left h-ideal $f_{S}$ and every $S U$-right h-ideal of $S$ over $U$.

Proof. (1) $\Rightarrow(2)$ Let $f_{S}$ and $g_{S}$ be any $S U$-left $h$-ideal and any $S U$-right $h$-ideal of $S$, respectively. For any $x \in S$, there exist $a_{i}, a_{i}^{\prime}, b_{j}, b_{j}^{\prime}, z \in S$ such that $x+\sum_{i=1}^{m} a_{i} x^{2} a_{i}^{\prime}+z=\sum_{j=1}^{n} b_{j} x^{2} b_{j}^{\prime}+z$.

Then we have the following properties:

$$
\begin{aligned}
\left(f_{S} \diamond g_{S}\right)(x) & =\bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq f_{S}\left(a_{i} x\right) \cup f_{S}\left(b_{j} x\right) \cup g_{S}\left(x a_{i}^{\prime}\right) \cup g_{S}\left(x b_{j}^{\prime}\right) \\
& \subseteq f_{S}(x) \cup g_{S}(x) \\
& =\left(f_{S} \tilde{\cup} g_{S}\right)(x),
\end{aligned}
$$

Thus, this leads to $f_{S} \diamond g_{S} \tilde{\subseteq} f_{S} \tilde{\cup} g_{S}$.
$(2) \Rightarrow(1)$ Let $L$ and $R$ be any left $h$-ideal and right $h$-ideal of $S$, respectively. Then by Proposition 2.8, $S_{L^{c}}$ and $S_{R^{c}}$ are an $S U$-left $h$-ideal and an $S U$-right $h$-ideal of $S$ over $U$, respectively. If there exists $a \in$ $L \cap R$ such that $a \notin \overline{L R}$, then there exist $a_{1}, a_{2} \in L, b_{1}, b_{2} \in R$ and $z \in S$ such that $a+a_{1} b_{1}+z=a_{2} b_{2}+z$. Then we have $\left(S_{L^{c}} \diamond S_{R^{c}}\right)(a)=U$. Since $a \in L \cap R, a \in L$ and $a \in R$, and so $S_{L^{c}}(a)=S_{R^{c}}(a)=\emptyset$, by our assumptions, we have the following equality: $\left(S_{L^{c}} \diamond S_{R^{c}}\right)(a)=S_{L^{c}}(a) \cup S_{R^{c}}(a)=\emptyset$, contradiction. This means that $L \cap R \subseteq \overline{L R}$. It follows from Lemma 6.2 that $S$ is $h$-intra-hemiregular.

Lemma 6.4 [34] Let $S$ be a hemiring. Then the following statements are equivalent:
(1) $S$ is both $h$-hemiregular and h-intra-hemiregular;
(2) $B=\overline{B^{2}}$ for every h-bi-ideal $B$ of $S$;
(3) $Q=\overline{Q^{2}}$ for every h-quasi-ideal $Q$ of $S$.

Theorem 6.5 Let $S$ be a hemiring. Then the following statements are equivalent:
(1) $S$ is both $h$-hemiregular and h-intra-hemiregular;
(2) $f_{S}=f_{S} \diamond f_{S}$ for every $S U$-h-bi-ideal $f_{S}$ of $S$ over $U$ (that is, every $S U$-h-bi-ideal of $S$ over $U$ is idempotent);
(3) $f_{S}=f_{S} \diamond f_{S}$ for every $S U$-h-quasi-ideal $f_{S}$ of $S$ over $U$ (that is, every $S U$-h-quasi-ideal of $S$ over $U$ is idempotent).

Proof. (1) $\Rightarrow(2)$ Let $f_{S}$ be any $S U$-h-bi-ideal of $S$ over $U$. Then it is easy to see that $f_{S} \diamond_{S} \tilde{\cong} f_{S}$. For any $x \in S$, then there exist $a_{1}, a_{2}, p_{i}, p_{i}^{\prime}, q_{j}, q_{j}^{\prime}, z \in S$ such that

$$
\begin{aligned}
x & +\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right) \\
& +\sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+z \\
= & \sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right) \\
& +\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+z .
\end{aligned}
$$

Hence, we deduce the following equality.

$$
\begin{aligned}
&\left(f_{S} \diamond f_{S}\right)(x)= \bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup f_{S}\left(b_{i}\right) \cup f_{S}\left(b_{j}^{\prime}\right)\right) \\
& \subseteq f_{S}\left(x a_{2} q_{j} x\right) \cup f_{S}\left(x q_{j}^{\prime} a_{1} x\right) \cup f_{S}\left(x a_{1} q_{j} x\right) \cup f_{S}\left(x q_{j}^{\prime} a_{2} x\right) \\
& \cup f_{S}\left(x a_{1} p_{i} x\right) \cup f_{S}\left(x p_{i}^{\prime} a_{1} x\right) \cup f_{S}\left(x a_{2} p_{i} x\right) \cup f_{S}\left(x p_{i}^{\prime} a_{2} x\right) \\
& \subseteq f_{S}(x)
\end{aligned}
$$

This leads to $f_{S} \diamond f_{S} \tilde{\subseteq} f_{S}$ and so $f_{S} \diamond f_{S}=f_{S}$.
$(2) \Rightarrow(3)$ This part is straightforward by Proposition 4.4.
$(3) \Rightarrow(1)$ Let $Q$ be any $h$-quasi-ideal of $S$. Then $\overline{Q^{2}} \subseteq Q$ always holds. To show that $Q \subseteq \overline{Q^{2}}$. If there exists $x \in Q$ and $x \notin \overline{Q^{2}}$, then there do not exist $a_{1}, a_{2}, b_{1}, b_{2} \in Q$ and $z \in S$ such that $x+a_{1} b_{1}+z=a_{2} b_{2}+z$, and so $\left(S_{Q^{c}} \diamond S_{Q^{c}}\right)(x)=U$. Since $Q$ is an $h$-quasi-ideal of $S$, by Proposition 4.7, $S_{Q^{c}}$ is an $S U$-h-quasi-ideal of $S$ over $U$, and so $S_{Q^{c}}(x)=\emptyset$. Thus, by our assumption, we have $\left(S_{Q^{c}} \diamond S_{Q^{c}}\right)(x)=S_{Q^{c}}(x)=\emptyset$, a contradiction. Thus, we have proved that $Q \subseteq \overline{Q^{2}}$. Then $Q=\overline{Q^{2}}$. It follows from Lemma 6.4 that $S$ is both $h$-hemiregular and $h$-intra-hemiregular.

Theorem 6.6 Let $S$ be a hemiring. Then the following statements are equivalent:
(1) $S$ is both h-hemiregular and h-intra-hemiregular;
(2) $f_{S} \tilde{\cup} g_{S} \tilde{\supseteq} f_{S} \diamond g_{S}$ for all $S U-h$-bi-ideals $f_{S}$ and $g_{S}$ of $S$ over $U$;
(3) $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S}$ for every $S U-h$-bi-ideal $f_{S}$ and every $S U$-h-quasi-ideal $g_{S}$ of $S$ over $U$;
(4) $f_{S} \tilde{\cup} g_{S} \check{\supseteq} f_{S} \diamond g_{S}$ for every $S U$-h-quasi-ideal $f_{S}$ and every $S U-h$-bi-ideal $g_{S}$ of $S$ over $U$;
(5) $f_{S} \tilde{\cup} g_{S} \cong f_{S} \diamond g_{S}$ for all $S U$-h-quasi-ideals $f_{S}$ and $g_{S}$ of $S$ over $U$.

Proof. $\quad(1) \Rightarrow(2)$ Let $f_{S}$ and $g_{S}$ be any two $S U$ - $h$-bi-ideals of $S$ over $U$. For any $x \in S$,there exist $a_{1}, a_{2}, p_{i}, p_{i}^{\prime}, q_{j}, q_{j}^{\prime}, z \in S$ such that

$$
\begin{aligned}
x & +\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right) \\
& +\sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+z \\
= & \sum_{i=1}^{m}\left(x a_{2} p_{i} x\right)\left(x p_{i}^{\prime} a_{1} x\right)+\sum_{i=1}^{m}\left(x a_{1} p_{i} x\right)\left(x p_{i}^{\prime} a_{2} x\right)+\sum_{j=1}^{n}\left(x a_{1} q_{j} x\right)\left(x q_{j}^{\prime} a_{1} x\right) \\
& +\sum_{j=1}^{n}\left(x a_{2} q_{j} x\right)\left(x q_{j}^{\prime} a_{2} x\right)+z .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left(f_{S} \diamond f_{S}\right)(x)= & \bigcap_{x+\sum_{i=1}^{m} a_{i} b_{i}+z=\sum_{j=1}^{n} a_{j}^{\prime} b_{j}^{\prime}+z}\left(f_{S}\left(a_{i}\right) \cup f_{S}\left(a_{j}^{\prime}\right) \cup g_{S}\left(b_{i}\right) \cup g_{S}\left(b_{j}^{\prime}\right)\right) \\
\subseteq & f_{S}\left(x a_{2} q_{j} x\right) \cup f_{S}\left(x a_{1} q_{j} x\right) \cup f_{S}\left(x a_{1} p_{i} x\right) \cup f_{S}\left(x a_{2} p_{i} x\right) \\
& \cup g_{S}\left(x q_{j}^{\prime} a_{1} x\right) \cup g_{S}\left(x q_{j}^{\prime} a_{2} x\right) \cup g_{S}\left(x p_{i}^{\prime} a_{1} x\right) \cup g_{S}\left(x p_{i}^{\prime} a_{2} x\right) \\
\subseteq & f_{S}(x) \cup g_{S}(x) \\
= & \left(f_{S} \tilde{\cup} g_{S}\right)(x),
\end{aligned}
$$

This implies that $f_{S} \diamond g_{S} \tilde{\subseteq} f_{S} \tilde{\cup} g_{S}$.
$(2) \Rightarrow(3) \Rightarrow(5)$ and $(2) \Rightarrow(4) \Rightarrow(5)$ are clear.
$(5) \Rightarrow(1)$ Let $Q$ be any $h$-quasi-ideal of $S$ over $U$. Then by Proposition 4.7, $S_{Q^{c}}$ is an $S U$ - $h$-quasi-ideal of $S$ over $U$, and so $S_{Q^{c}}=\emptyset$. Thus, by our assumption, we have $\left(S_{Q^{c}} \diamond S_{Q^{c}}\right)(x) \tilde{\subseteq} S_{Q^{c}} \tilde{U} S_{Q^{c}}=\emptyset \cup \emptyset=\emptyset$, and so $\left(S_{Q^{c}} \diamond S_{Q^{c}}\right)(x)=\emptyset$.

If there exists $x \in Q$ and $x \notin \overline{Q^{2}}$, then there do not exist $a_{1}, a_{2}, b_{1}, b_{2} \in Q$ and $z \in S$ such that $x+a_{1} b_{1}+z=a_{2} b_{2}+z$, and so, $\left(S_{Q^{c}} \diamond S_{Q^{c}}\right)(x)=U$, a contradiction. This means that $Q \subseteq \overline{Q^{2}}$. Since $Q \supseteq \overline{Q^{2}}$ always holds.

Thus, we deduce that $Q=\overline{Q^{2}}$. It follows from Lemma 6.4 that $S$ is both $h$-hemiregular and $h$-intrahemiregular.

## 7 Conclusions

In order to give a foundation for providing a soft algebraic tool in considering varios problems related with the uncertainties, we now investigate some characteristics of $h$-hemiregular and $h$-intra-hemiregular hemirings by using the $S U$ - $h$-ideals, $S U$ - $h$ - $b i$-ideals and $S U$ - $h$-quasi-ideals. In our future study of soft hemirings, we will try to apply the above new soft hemirings to some other fields such as decision making, data analysis and forecasting and so on.

## References

[1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458-3463.
[2] H. Aktaş, N. Çağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
[3] M.I. Ali, Another view on reduction of parameters in soft sets, Appl. Soft Comput. 12(2012) 18141821.
[4] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547-1553.
[5] M.I. Ali, M. Shabir, M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl. 61(2011) 2647-2654.
[6] N. Çağman, F. Citak, H. Aktas, Soft-int group and its applications to group theory, Neural Comput. Appl. 21(2012)(Suppl1) 151-158.
[7] N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (10) (2010) 3308-3314.
[8] N. Çağman, S. Enginoğlu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2) (2010) 848-855.
[9] W. A. Dudek, M. Shabir, R. Anjum, Characterizations of hemirings by their h-ideals, Comput. Math. Appl., 59(2010) 3167-3179.
[10] F. Feng, Y.B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. 234 (2010) 10-20.
[11] F. Feng, Y.B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl. 56(2008) 2621-2628.
[12] F. Feng, C. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14(2010) 899-911.
[13] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413.
[14] Y. B. Jun, K.J. Lee, A. Khan, Soft ordered semigroups, Math Logic Q. 56(2010) 42-50.
[15] Y.B. Jun, K. J. Lee, J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58(2009) 2060-2068.
[16] Y. B. Jun, M. A. Ozturk, S. Z. Song, On fuzzy h-ideals in hemirings, Inform. Sci. 162(2004) 211-226.
[17] J. S. Han, H.S. Kim, J. Neggers, Semiring orders in a semiring, Appl. Math. \& Inform. Sci. 6(2012) 99-102.
[18] X. Ma, Y. Yin, J. Zhan, Characterizations of $h$-intra- and $h$-quasi-hemiregular hemirings, Comput. Math. Appl. 63(2012) 783-793.
[19] X. Ma, J. Zhan, Generalized fuzzy $h$-bi-ideals of $h$-bi-ideals and $h$-quasi-ideals of hemirings, Inform. Sci. 179(2009) 1249-1268.
[20] X. Ma, J. Zhan, New fuzzy $h$-ideals in hemirings, UPB Scientific Bulletin, Series A 74(2012) 11-24.
[21] X. Ma, J. Zhan, K.P. Shum, Generalized fuzzy h-ideals of hemirings, Bull. Malays. Math. Sci. Soc. (2) 34 (2011) 561-574.
[22] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl. 45(2003) 555-562.
[23] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44(2002) 1077-1083.
[24] P. Majumdar, S. K. Samanta, On soft mapping, Comput. Math. Appl., 60(2010) 2666-2672.
[25] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (4-5) (1999) 19-31.
[26] K. Y. Qin, Z. Hong, On soft equality, J. Comput. Appl. Math. 234(2010) 1347-1355.
[27] A. R. Roy, P. K. Maji, A fuzzy soft set theoreties approach to decision making problems, J. Comput. Appl. Math. 203(2007) 214-418.
[28] A. Sezgin, A new view to ring theory via soft unit rings, ideals and bi-ideals, Knowledge-Based Systems 36(2010) 300-314.
[29] A. Sezgin, A. O. Atagun, On operations of soft sets, Comput. Math. Appl. 61(2011) 1457-1467.
[30] A. Sezgin, A. O. Atagun, N. Çağman, Union soft substructures of near-rings and $N$-groups, Neural Comput. Appli. 20(2012) 133-143.
[31] D. R. La. Torre, On $h$-ideals and $k$-ideals in hemirings, Publ. Math. Debrecen 12(1965) 219-226.
[32] Z. Xiao, K. Gong, S. Xia, Y. Zou, Exlusive disjunctive soft sets, Comput. Math. Appl. 59(2010) 2128-2137.
[33] Y. Yin, X. Huang, D. Xu, H. Li, The characterizations of $h$-semisimple hemirings, Int. J. Fuzzy Systems 11(2009) 116-122.
[34] Y. Yin, H. Li, The characterizations of $h$-hemiregular hemirings and $h$-intra-hemiregular hemirings, Inform. Sci. 178(2008) 3451-3464.
[35] Y. Yin, Zhan, Characterization of ordered semigroups in terms of fuzzy soft ideals, Bull. Malays. Math. Sci. Soc. (2) 35 (2012) 997-1015.
[36] J. Zhan, N. Cagman, A. Sezgin Sezer, Applications of soft union sets to hemirings via $S U$ - $h$-ideals, J. Intell. \& Fuzzy Sys. DOI:10.3233/IFS-130822.
[37] J. Zhan, W.A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci. 177(2007) 876-886.
[38] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete imformation, KnowledgeBased Systems 21(2008) 941-945.


[^0]:    E-mail address: zhanjianming@hotmail.com(J. Zhan), kpshum@ynu.edu.cn (K.P. Shum)

