Neighbor sum distinguishing edge colorings of graphs with small maximum average degree *

Yuping Gao, Guanghui Wang \dagger Jianliang Wu
School of Mathematics, Shandong University, Jinan 250100, China

Abstract

A proper edge- k-coloring of a graph G is an assignment of k colors $1,2, \cdots, k$ to the edges of G such that no two adjacent edges receive the same color. A neighbor sum distinguishing edge- k-coloring of G is a proper edge- k-coloring of G such that for each edge $u v \in E(G)$, the sum of colors taken on the edges incident with u is different from the sum of colors taken on the edges incident with v. By $n d i_{\sum}(G)$, we denote the smallest value k in such a coloring of G. The maximum average degree of G is $\operatorname{mad}(G)=\max \{2|E(H)| /|V(H)|\}$, where the maximum is taken over all the non-empty subgraphs H of G. In this paper, we obtain that if G is a graph without isolated edges and $\operatorname{mad}(G)<8 / 3$, then $n d i_{\sum}(G) \leq k$ where $k=\max \{\Delta(G)+1,6\}$. It partially confirms the conjecture proposed by Flandrin et al.

Keywords: proper edge coloring; neighbor sum distinguishing edge coloring; maximum average degree

1 Introduction

In this paper, all graphs considered are finite, simple and undirected. The terminology and notation used but undefined in this paper can be found in [1]. Let $G=(V, E)$ be a graph. We use $V(G), E(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree and minimum degree of G, respectively. Let $d_{G}(v)$ or simply $d(v)$, denote the degree of a vertex v in G. A vertex v is called a k-vertex (resp. k^{-}-vertex, or k^{+}-vertex) if $d(v)=k$ (resp. $d(v) \leq k$, or $d(v) \geq k$). A vertex is called a leaf of G if $d(v)=1$. A 2-vertex is called bad if it is adjacent to a 2 -vertex, otherwise we call it good. A 5 -vertex is called bad if it is adjacent to four bad 2-vertices, otherwise we call it good. The girth of a graph G is the length of a smallest cycle in G, and we denote it by $g(G)$. The maximum average degree of G is $\operatorname{mad}(G)=\max \{2|E(H)| /|V(H)|\}$, where the maximum is taken over all the non-empty subgraphs H of G.

A proper edge- k-coloring of a graph G is an assignment of k colors $1,2, \cdots, k$ to the edges of G such that no two adjacent edges receive the same color. Let c be a proper edge- k-coloring

[^0]of G. By $w(v)$ (resp. $S(v)$), we denote the sum (resp. set) of colors taken on the edges incident with v, i.e. $w(v)=\sum_{u v \in E(G)} c(u v)$ (resp. $\left.S(v)=\{c(u v) \mid u v \in E(G)\}\right)$. We call the coloring c such that $w(u) \neq w(v)$ (resp. $S(u) \neq S(v)$) for each edge $u v \in E(G)$ a neighbor sum distinguishing (resp. neighbor distinguishing) edge- k-coloring of G. For simplicity, we use $n s d$ - k-coloring (resp. $n d$ - k-coloring) to denote the neighbor sum distinguishing (resp. neighbor distinguishing) edge- k-coloring of G. By $n d i i_{\Sigma}(G)$ (resp. $n d i(G)$), we denote the smallest value k such that G has an $n s d$ - k-coloring (resp. $n d-k$-coloring) of G.

Obviously, a graph G has a neighbor sum distinguishing (neighbor distinguishing) coloring if and only if G has no isolated edges (we call it normal). Apparently, for any normal graph $G, \operatorname{ndi}(G) \leq n d i_{\Sigma}(G)$. In 2002, Zhang et al. [2] proposed the following conjecture.

Conjecture 1.1. [2] If G is a normal graph with at least 6 vertices, then $n d i(G) \leq \Delta(G)+2$.
Balister et al. [3] proved Conjecture 1.1 for bipartite graphs and for graphs G with $\Delta(G)=3$. If G is bipartite planar with maximum degree $\Delta(G) \geq 12$, Conjecture 1.1 was confirmed by Edwards et al. [4]. Hatami [5] showed that if G is a normal graph and $\Delta(G)>10^{20}$, then $n \operatorname{di}(G) \leq \Delta(G)+300$. Akbari et al. [6] proved that $n \operatorname{di}(G) \leq 3 \Delta(G)$ for any normal graph. Wang et al. [7], [8] confirmed Conjecture 1.1 for sparse graphs and K_{4}-minor free graphs. More precisely, in [7] they showed that if G is a normal graph and $\operatorname{mad}(G)<5 / 2$, then $\operatorname{ndi}(G) \leq \Delta(G)+1$. Furthermore, $\operatorname{ndi}(G)=\Delta(G)+1$ if and only if G has two adjacent maximum degree vertices. Recently, Hocquard et al. [9] proved that for every normal graph with $\Delta(G) \geq 5$ and $\operatorname{mad}(G)<13 / 5$, we have $n d i(G) \leq \Delta(G)+1$. Later, in [10] they proved that if G is a normal graph with $\Delta(G) \geq 5$ and $\operatorname{mad}(G)<3-2 / \Delta(G)$, then $n d i(G) \leq \Delta(G)+1$.

Recently, Flandrin et al. [11] studied the neighbor sum distinguishing colorings of cycles, trees, complete graphs and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 1.2. [11] If G is a connected graph on at least 3 vertices and $G \neq C_{5}$, then $n d i_{\sum}(G) \leq \Delta(G)+2$.

Flandrin et al. [11] also proved that for each connected graph G with maximum degree $\Delta \geq 2$, we have $n d i_{\Sigma}(G) \leq\lceil(7 \Delta-4) / 2\rceil$. Dong et al. [12] considered the neighbor sum distinguishing colorings of planar graphs and showed that if G is a normal planar graph, then $n d i_{\Sigma}(G) \leq \max \{2 \Delta(G)+1,25\}$. In [13], Dong et al. proved that if G is a normal graph and $\operatorname{mad}(G) \leq 5 / 2$, then $n d i_{\Sigma}(G) \leq k$ where $k=\max \{\Delta(G)+1,6\}$. Other results on graph coloring problems are referred to [15, 16, 17].

In this paper, we will prove the following results.

Theorem 1.3. Let G be a normal graph. If $\operatorname{mad}(G)<\frac{8}{3}$, then ndi $\sum_{\Sigma}(G) \leq k$ where $k=$ $\max \{\Delta(G)+1,6\}$.

Corollary 1.4. Let G be a normal graph. If $\operatorname{mad}(G)<\frac{8}{3}, \Delta(G) \geq 5$, then ndi $\sum_{\Sigma}(G) \leq$ $\Delta(G)+1$.

In [14], the authors obtained that $\operatorname{mad}(G)<2 g /(g-2)$ if G is a planar graph with girth g. The following corollary is obvious.

Corollary 1.5. Let G be a normal planar graph. If $g(G) \geq 8$ and $\Delta(G) \geq 5$, then $n d i_{\sum}(G) \leq \Delta(G)+1$.

We note that if G contains two adjacent vertices of maximum degree, then $n d i_{\sum}(G) \geq$ $\Delta(G)+1$. So the bound $\Delta(G)+1$ in Corollary 1.4 is sharp. Furthermore, Corollary 1.4 implies a result of Hocquard et al. [9] about the neighbor distinguishing coloring of sparse graphs.

2 Proof of Theorem 1.3

Firstly, we give two lemmas obtained by Dong et al. in [13], all the elements in each set are integers.

Lemma 2.1. [13] Let S_{1}, S_{2} be two sets and $S_{3}=\left\{\alpha+\beta \mid \alpha \in S_{1}, \beta \in S_{2}, \alpha \neq \beta\right\}$.
(i) If $\left|S_{1}\right|=2$ and $\left|S_{2}\right|=3$, then $\left|S_{3}\right| \geq 3$.
(ii) If $\left|S_{1}\right|=2$ and $\left|S_{2}\right|=4$, then $\left|S_{3}\right| \geq 4$.
(iii) If $\left|S_{1}\right|=\left|S_{2}\right|=2$ and $S_{1} \neq S_{2}$, then $\left|S_{3}\right| \geq 3$.

Lemma 2.2. [13] Let S be a set of size $k+1$. If $S_{1}=\left\{\sum_{i=1}^{k} x_{i} \mid x_{i} \in S, x_{i} \neq x_{j}\right.$ if $1 \leq i<$ $j \leq k\}$, then $\left|S_{1}\right| \geq k+1$.

Let $k=\max \{\Delta(G)+1,6\}$ and $[k]=\{1,2, \cdots, k\}$. Suppose to the contrary that G is a counterexample to Theorem 1.3, such that $|E(G)|$ is minimum. By the choice of G, it is clear that G is connected and any normal subgraph G^{\prime} has an $n s d$ - k-coloring c. We use $w(v)$ and $S(v)$ to denote the sum and the set of colors taken on the edges incident with v in the coloring c of G^{\prime}, i.e. $w(v)=\sum_{v \in e, e \in E\left(G^{\prime}\right)} c(e)$ and $S(v)=\left\{c(e) \mid v \in e, e \in E\left(G^{\prime}\right)\right\}$. In the following, we will extend c to the whole graph G.

Let H be the graph obtained by removing all the leaves of G. Obviously, H is a connected graph and $\operatorname{mad}(H)<8 / 3$. In the following, we give some properties of H.

Claim 2.3. H has the following properties:
(i) [13] $\delta(H) \geq 2$, where $\delta(H)$ is the minimum degree of H.
(ii) [13] Let $v \in V(H)$ such that $d_{H}(v)=2$, then $d_{G}(v)=2$.
(iii) Let uvxy be a path in H such that $d_{H}(v)=d_{H}(x)=2$, then $d_{G}(u)=d_{H}(u)$ and $d_{G}(y)=d_{H}(y)$.

Figure 2.1: Illustration of Claim 2.3(iii)

Proof. (iii) Let uvxy be a path in H such that $d_{H}(v)=d_{H}(x)=2$. By Claim 2.3(ii), $d_{G}(v)=d_{G}(x)=2$. By contradiction suppose $d_{G}(u) \neq d_{H}(u)$ (it follows from Claim 2.3(i) and construction of H that $\left.d_{G}(u) \geq 3\right)$. Hence there exits at least one 1 -vertex adjacent to u in G, say u_{1}. Consider $G^{\prime}=G \backslash\{v x\}$. By the minimality of G, G^{\prime} admits an $n s d-k$-coloring c. If $c(u v) \neq c(x y)$, then we color $v x$ with a color distinct from $c(u v), c(x y), w(u)-w(v), w(y)-$ $w(x)$, then we obtain an $n s d-k$-coloring of G. Otherwise, we permute the colors assigned to $u u_{1}$ and $u v$. The obtained coloring is still an $n s d$ - k-coloring of G^{\prime}. We then extend this coloring to G as previously. This is a contradiction.

Claim 2.4. Let $u \in V(H), d_{H}(u)=l, u u_{i} \in E(H), i=1,2, \cdots, l$.
(i) [13] If $l=2$, then u is adjacent to at most one 2-vertex.
(ii) (a) [13] If $l=3$ and $d_{H}(u)<d_{G}(u)$, then u is adjacent to at most one 2-vertex.
(b) If $l=3$, then u is not adjacent to any bad 2-vertex. Furthermore, u is adjacent to at most one good 2-vertex.
(iii) If $l=4$, then u is adjacent to at most one bad 2-vertex. Furthermore, if u is adjacent to one bad 2-vertex, then u is adjacent to at most two good 2-vertices.
(iv) If $l \geq 5$ and u is adjacent to $(l-1)$ bad 2-vertices, then u is adjacent to at most ($l-1$) 2-vertices.

Figure 2.2: Illustration of Claim 2.4

Proof. (ii) (b) Firstly, we prove that u is not adjacent to any bad 2-vertex. Suppose to the contrary that u_{1} is a bad 2-vertex. Let x be the other neighbor of u_{1} with $d_{H}(x)=2$, and $x y \in E(H), y \neq u_{1}$. By Claim 2.3 (iii), $d_{G}(u)=d_{H}(u)=3$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}\right\}$, then G^{\prime} admits an $n s d-k$-coloring c. Color $u u_{1}$ with a color α in $S=$ $[k] \backslash\left(\{c(x y)\} \bigcup\left\{c\left(u u_{2}\right), c\left(u u_{3}\right)\right\} \bigcup\left\{w\left(u_{2}\right)-w(u)\right\} \bigcup\left\{w\left(u_{3}\right)-w(u)\right\}\right)$. Recolor $u_{1} x$ with a color distinct from $\alpha, c(x y), w(y)-c(x y), c\left(u u_{2}\right)+c\left(u u_{3}\right)$ and we obtain an $n s d-k$-coloring of G, a contradiction.

In the following, we prove that u is adjacent to at most one good 2 -vertex. Suppose to the contrary that $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=2, v_{i} u_{i} \in E(H), v_{i} \neq u, i=1,2$.

Case $1 d_{G}(u)>d_{H}(u)=3$.
By Claim 2.4 (ii) (a), this claim holds.
Case $2 d_{G}(u)=d_{H}(u)=3$.
Subcase $2.1 k \geq 7$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}\right\}$, then G^{\prime} has an $n s d-k$ coloring c. Let $S_{i}=[k] \backslash\left(\left\{c\left(u_{i} v_{i}\right)\right\} \bigcup\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{w\left(v_{i}\right)-w\left(u_{i}\right)\right\} \bigcup\left\{w\left(u_{3-i}\right)-c\left(u u_{3}\right)\right\}\right), i=$ 1,2 , then $\left|S_{i}\right| \geq 3, i=1,2$. By Lemma 2.1 (ii), we can choose $\alpha_{i} \in S_{i}, i=1,2$ such that $\alpha_{1} \neq \alpha_{2}, \alpha_{1}+\alpha_{2}+c\left(u u_{3}\right) \neq w\left(u_{3}\right)$. We obtain an $n s d$ - k-coloring of G, which is a contradiction.

Subcase 2.2 $k=6$. From the above discussion, $d_{G}\left(v_{i}\right) \geq 3, i=1,2$. If $d_{G}\left(v_{1}\right)=5$, then u_{1} can be distinguished from v_{1} under an arbitrary proper edge coloring of G. Consider $G^{\prime}=$ $G \backslash\left\{u u_{1}, u u_{2}\right\}$, then G^{\prime} has an $n s d-6$-coloring c. The colors in $\left\{c\left(u_{1} v_{1}\right)\right\} \bigcup\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{c\left(u_{2} v_{2}\right)-\right.$ $\left.c\left(u u_{3}\right)\right\}$ are forbidden for $u u_{1}$. Let $S_{1}=[6] \backslash\left(\left\{c\left(u_{1} v_{1}\right)\right\} \bigcup\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{c\left(u_{2} v_{2}\right)-c\left(u u_{3}\right)\right\}\right), S_{2}=$ $[6] \backslash\left(\left\{c\left(u_{2} v_{2}\right)\right\} \bigcup\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{w\left(v_{2}\right)-w\left(u_{2}\right)\right\} \bigcup\left\{c\left(u_{1} v_{1}\right)-c\left(u u_{3}\right)\right\}\right)$, then $\left|S_{1}\right| \geq 3,\left|S_{2}\right| \geq 2$. By Lemma 2.1 (ii), we can choose $\alpha_{i} \in S_{i}, i=1,2$ such that $\alpha_{1} \neq \alpha_{2}, \alpha_{1}+\alpha_{2}+c\left(u u_{3}\right) \neq w\left(u_{3}\right)$. We obtain an $n s d$ - 6 -coloring of G, which is a contradiction. Therefore, $d_{G}\left(v_{1}\right) \neq 5$. Similarly, $d_{G}\left(v_{2}\right) \neq 5$.

If $d_{G}\left(v_{1}\right)=3$ and x_{1}, y_{1} are the other two neighbors of v_{1}. Consider $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u_{1} v_{1}\right\}$, then G^{\prime} has an $n s d-6$-coloring c. Let $S_{1}=[6] \backslash\left(\left\{c\left(v_{1} x_{1}\right)+c\left(v_{1} y_{1}\right)\right\} \bigcup\left\{c\left(u u_{3}\right)\right\}\right), S_{2}=$ $[6] \backslash\left(\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{c\left(u_{2} v_{2}\right)\right\} \bigcup\left\{w\left(v_{2}\right)-w\left(u_{2}\right)\right\}\right), S_{3}=[6] \backslash\left(\left\{c\left(v_{1} x_{1}\right), c\left(v_{1} y_{1}\right)\right\} \bigcup\left\{w\left(x_{1}\right)-w\left(v_{1}\right)\right\} \bigcup\right.$ $\left.\left\{w\left(y_{1}\right)-w\left(v_{1}\right)\right\}\right)$, then $\left|S_{1}\right| \geq 4,\left|S_{2}\right| \geq 3,\left|S_{3}\right| \geq 2$. We can choose $\alpha_{i} \in S_{i}, i=1,2,3$ such that $\alpha_{1} \neq \alpha_{2}, \alpha_{1} \neq \alpha_{3}, u$ can be distinguished from u_{1}, u_{2}, u_{3}, and v_{1} can be distinguished from x_{1}, y_{1}. We obtain an $n s d-6$-coloring of G, a contradiction. Therefore, $d_{G}\left(v_{1}\right) \neq 3$. Similarly, $d_{G}\left(v_{2}\right) \neq 3$.

Now we assume that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=4, x_{i}, y_{i}, z_{i}$ are the other three neighbors of v_{i}, $i=1,2$. Consider $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}\right\}$, then G^{\prime} has an $n s d-6$-coloring c. If $c\left(v_{1} x_{1}\right)+c\left(v_{1} y_{1}\right)+$ $c\left(v_{1} z_{1}\right)>6$, then u_{1} and v_{1} can be distinguished. Let $S_{1}=[6] \backslash\left(\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{c\left(u_{1} v_{1}\right)\right\} \bigcup\left\{w\left(u_{2}\right)-\right.\right.$ $\left.\left.c\left(u u_{3}\right)\right\}\right), S_{2}=[6] \backslash\left(\left\{c\left(u u_{3}\right)\right\} \bigcup\left\{c\left(u_{2} v_{2}\right)\right\} \bigcup\left\{w\left(v_{2}\right)-w\left(u_{2}\right)\right\} \bigcup\left\{w\left(u_{1}\right)-c\left(u u_{3}\right)\right\}\right)$, then $\left|S_{1}\right| \geq$ $3,\left|S_{2}\right| \geq 2$. We can choose $\alpha_{i} \in S_{i}, i=1,2$ such that $\alpha_{1} \neq \alpha_{2}, \alpha_{1}+\alpha_{2}+c\left(u u_{3}\right) \neq w\left(u_{3}\right)$.

We obtain an $n s d-6$-coloring of G, which is a contradiction. Therefore, $c\left(v_{1} x_{1}\right)+c\left(v_{1} y_{1}\right)+$ $c\left(v_{1} z_{1}\right)=6$. Similarly, $c\left(v_{2} x_{2}\right)+c\left(v_{2} y_{2}\right)+c\left(v_{2} z_{2}\right)=6$. Without loss of generality we assume that $c\left(v_{i} x_{i}\right)=1, c\left(v_{i} y_{i}\right)=2, c\left(v_{i} z_{i}\right)=3, i=1,2$. Suppose that $c\left(u_{1} v_{1}\right) \neq c\left(u_{2} v_{2}\right)$ or $c\left(u u_{3}\right)=$ 6 , then we can obtain an $n s d-6$-coloring of G as previously. Hence, $c\left(u_{1} v_{1}\right)=c\left(u_{2} v_{2}\right)$, $c\left(u u_{3}\right) \neq 6$. From the above discussion, $d_{G}\left(u_{3}\right) \geq 3$. If $d_{G}\left(u_{3}\right)=3$, let x_{3}, y_{3} be the neighbors of u_{3} distinct from u. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u u_{3}\right\}$, then G^{\prime} has an nsd-6coloring c. Let $S_{1}=[5] \backslash\left\{c\left(u_{1} v_{1}\right)\right\}, S_{2}=[5] \backslash\left\{c\left(u_{2} v_{2}\right)\right\}, S_{3}=[6] \backslash\left(\left\{c\left(v_{3} x_{3}\right), c\left(v_{3} y_{3}\right)\right\} \bigcup\left\{w\left(x_{3}\right)-\right.\right.$ $\left.\left.w\left(u_{3}\right)\right\} \bigcup\left\{w\left(y_{3}\right)-w\left(u_{3}\right)\right\}\right)$, then $\left|S_{1}\right| \geq 4,\left|S_{2}\right| \geq 4,\left|S_{3}\right| \geq 2$. From the above discussion we know that $S_{1}=S_{2}=\{1,2,3,4\}$ or $\{1,2,3,5\}$, so we can choose $\alpha_{i} \in S_{i}, i=1,2,3$ such that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are pairwise distinct and u can be distinguished from u_{1}, u_{2}, u_{3}. We obtain an $n s d-$ 6 -coloring of G, which is a contradiction. Therefore, $d_{G}\left(u_{3}\right) \geq 4$. If $c\left(u u_{3}\right) \in\{1,2,3\}$, color $u u_{1}, u u_{2}$ properly with $\{1,2,3\} \backslash\left\{c\left(u u_{3}\right)\right\}$. Otherwise, properly color $u u_{1}, u u_{2}$ with colors in $\{1,2,3\}$. In both cases, we obtain an $n s d$ - 6 -coloring of G, a contradiction.
(iii) Suppose to the contrary that $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=2, u_{i} v_{i} \in E(H), d_{H}\left(v_{i}\right)=2, i=1,2$, x_{i} is the other neighbor of $v_{i}, i=1,2$. By Claim 2.3 (iii), $d_{G}(u)=d_{H}(u)=4$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}\right\}$, then G^{\prime} has an $n s d-k$-coloring c. Let $S_{i}=[k] \backslash\left(\left\{c\left(u u_{3}\right), c\left(u u_{4}\right)\right\}\right.$ $\left.\bigcup\left\{c\left(v_{i} x_{i}\right)\right\}\right), i=1,2$, then $\left|S_{i}\right| \geq 3$. By Lemma 2.1 (i), we can choose $\alpha_{i} \in S_{i}, i=1,2$ such that $\alpha_{1} \neq \alpha_{2}$ and u can be distinguished from u_{3}, u_{4}. Recolor $u_{i} v_{i}$ with a color distinct from $\alpha_{i}, c\left(v_{i} x_{i}\right), w\left(x_{i}\right)-c\left(v_{i} x_{i}\right), \alpha_{1}+\alpha_{2}+c\left(u u_{3}\right)+c\left(u u_{4}\right)-\alpha_{i}, i=1,2$, then u can be distinguished from u_{1}, u_{2}. We obtain an $n s d$ - k-coloring of G, a contradiction.

Now assume that u is adjacent to a bad 2-vertex u_{1} with $u_{1} v_{1} \in E(H), d_{H}\left(v_{1}\right)=2, v_{1} x_{1} \in$ $E(H), x_{1} \neq v_{1}$. Suppose to the contrary that $d_{H}\left(u_{i}\right)=2, u_{i} v_{i} \in E(H), v_{i} \neq u, i=2,3,4$. By Claim 2.3 (iii), $d_{G}(u)=d_{H}(u)=4$. Consider $G^{\prime}=G \backslash\left\{u u_{1}\right\}$, then G^{\prime} has an $n s d$ - k-coloring c. Let $S=[k] \backslash\left(\left\{c\left(u u_{2}\right), c\left(u u_{3}\right), c\left(u u_{4}\right)\right\} \bigcup\left\{c\left(v_{1} x_{1}\right)\right\}\right)$. When $k \leq 7$, if $1 \in S$, then color $u u_{1}$ with $\alpha \in S \backslash\{1\}$, otherwise color $u u_{1}$ with $\alpha \in S \backslash\{2\}$. In both cases $w(u)+\alpha>w\left(u_{i}\right), i=2,3,4$. Then recolor $u_{1} v_{1}$ with a color distinct from $\alpha, c\left(v_{1} x_{1}\right), w(u), w\left(x_{1}\right)-c\left(v_{1} x_{1}\right)$. We obtain an $n s d$ - k-coloring of G, a contradiction. When $k \geq 8,|S| \geq 4$, we can choose $\alpha \in S$ such that $\alpha+w(u) \neq w\left(u_{i}\right), i=2,3,4$. Then recolor $u_{1} v_{1}$ with a color distinct from $\alpha, c\left(v_{1} x_{1}\right), w(u), w\left(x_{1}\right)-c\left(v_{1} x_{1}\right)$. We obtain an $n s d-k$-coloring of G, a contradiction.
(iv) Suppose to the contrary that $d_{H}\left(u_{i}\right)=2, i=1,2, \cdots, l, u_{i} v_{i} \in E(H), v_{i} \neq u, i=$ $1,2, \cdots, l$ and $d_{H}\left(v_{j}\right)=2, v_{j} x_{j} \in E(H), x_{j} \neq v_{j}, j=1,2, \cdots, l-1$. By Claim 2.3 (iii), $d_{G}(u)=d_{H}(u)=l$. Let $G^{\prime}=G \backslash\left\{u u_{1}\right\}$, then G^{\prime} has an $n s d$ - k-coloring c. If $l<\Delta=k-1$, color $u u_{1}$ with $\alpha \in[k] \backslash\left(\left\{c\left(u u_{2}\right), \cdots, c\left(u u_{l}\right)\right\} \bigcup\left\{c\left(v_{1} x_{1}\right)\right\} \bigcup\left\{\alpha+\sum_{i=2}^{l-1} c\left(u u_{i}\right)\right\}\right)$. Otherwise color $u u_{1}$ with $\alpha \in[k] \backslash\left(\left\{c\left(u u_{2}\right), \cdots, c\left(u u_{l}\right)\right\} \bigcup\left\{c\left(v_{1} x_{1}\right)\right\}\right)$. In both cases, u can be distinguished from u_{l}. Properly recolor $u_{i} v_{i}$ such that u can be distinguished from u_{i} and v_{i} can be distinguished from $x_{i}, i=1,2, \cdots, l-1$. We obtain an $n s d$ - k-coloring of G, a contradiction.

Claim 2.5. Let $u \in V(H), d_{H}(u)=5, u u_{i} \in E(H), i=1,2,3,4,5$.
(i) If $\Delta(G) \geq 6$, then u is adjacent to at most two bad 2-vertices. If $\Delta(G)=5$ and u is adjacent to three bad 2-vertices, then u is adjacent to at most one good 2-vertex.

Furthermore, if $\Delta(G)=5$ and u is a bad 5-vertex, then by Claim 2.3 (iii), $d_{G}(u)=$ $d_{H}(u)=5$. Let $d_{H}\left(u_{i}\right)=2, u_{i} v_{i} \in E(H), d_{H}\left(v_{i}\right)=2, x_{i}$ be the other neighbor of $v_{i}, i=$ $1,2,3,4$, we have
(ii) $d_{H}\left(u_{5}\right) \geq 4$.
(iii) If $d_{H}\left(u_{5}\right)=4$, then u_{5} is adjacent to no bad 2-vertex.
(iv) If $d_{H}\left(u_{5}\right)=5$, then u_{5} is adjacent to at most two bad 2-vertices.

Figure 2.3: Illustration of Claim 2.5

Proof. (i) Assume $\Delta(G) \geq 6$. Suppose to the contrary that $d_{H}\left(u_{1}\right)=d_{H}\left(u_{2}\right)=d_{H}\left(u_{3}\right)=2$, v_{i} is the other neighbor of u_{i} with $d_{H}\left(v_{i}\right)=2, x_{i}$ is the other neighbor of $v_{i}, i=1,2,3$. By Claim 2.3 (iii), $d_{G}(u)=d_{H}(u)=5$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u u_{3}\right\}$, then G^{\prime} has an $n s d$ - k-coloring c. Let $S_{i}=[k] \backslash\left(\left\{c\left(u u_{4}\right), c\left(u u_{5}\right)\right\} \bigcup\left\{c\left(v_{i} x_{i}\right)\right\}\right), i=1,2,3$, then $\left|S_{i}\right| \geq$ $4, i=1,2,3$. We can choose $\alpha_{i} \in S_{i}, i=1,2,3$ such that $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are pairwise distinct and u can be distinguished by u_{4}, u_{5}. Recolor $u_{i} v_{i}$ with a color distinct from $\alpha_{i}, c\left(v_{i} x_{i}\right), w\left(x_{i}\right)-$ $c\left(v_{i} x_{i}\right), \sum_{i=1}^{3} \alpha_{i}+w(u)-\alpha_{i}, i=1,2,3$, then u can be distinguished from u_{1}, u_{2}, u_{3}. We obtain an $n s d$ - k-coloring of G, a contradiction.

Assume that $\Delta(G)=5$. Suppose to the contrary that $d_{H}\left(u_{i}\right)=2, u_{i} v_{i} \in E(H), v_{i} \neq$ $u, i=1,2, \cdots, 5$ and $d_{H}\left(v_{j}\right)=2, v_{j} x_{j} \in E(H), j=1,2,3$. By Claim 2.3 (iii), $d_{G}(u)=$ $d_{H}(u)=5$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}\right\}$, then G^{\prime} has an $n s d-6$-coloring c. Color $u u_{1}$ with $\alpha \in[6] \backslash\left(\left\{c\left(u u_{2}\right), \cdots, c\left(u u_{5}\right)\right\} \bigcup\left\{c\left(v_{1} x_{1}\right)\right\}\right)$. Then recolor $u_{1} v_{1}$ with a color distinct from $\alpha, c\left(v_{1} x_{1}\right), w\left(x_{i}\right)-c\left(v_{1} x_{1}\right), \sum_{i=2}^{5} c\left(u u_{i}\right)$. It can be seen that $w(u)+\alpha>w\left(u_{i}\right), i=2, \cdots, 5$, so we obtain an $n s d$-6-coloring of G, a contradiction.
(ii) By Claim 2.4 (iv), $d_{H}\left(u_{5}\right) \geq 3$. Suppose to the contrary that $d_{H}\left(u_{5}\right)=3, v_{51}, v_{52}$ are the other two neighbors of u_{5}. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u u_{3}, u u_{4}, u u_{5}\right\}$, then G^{\prime} has an $n s d$-6-coloring c. Let $S_{i}=[6] \backslash\left\{c\left(v_{i} x_{i}\right)\right\}, i=1,2,3,4, S_{5}=[6] \backslash\left(\left\{c\left(u_{5} v_{51}\right), c\left(u_{5} v_{52}\right)\right\}\right.$ $\left.\bigcup\left\{w\left(v_{51}\right)-w\left(u_{5}\right)\right\} \bigcup\left\{w\left(v_{52}\right)-w\left(u_{5}\right)\right\}\right)$, then $\left|S_{i}\right| \geq 5, i=1,2,3,4,\left|S_{5}\right| \geq 2$. We can choose $\alpha_{i} \in S_{i}, i=1,2,3,4,5$ such that $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ are pairwise distinct and u can be distinguished by u_{5}. Obviously, u can be distinguished by $u_{1}, u_{2}, u_{3}, u_{4}$. Recolor $u_{i} v_{i}$ with a color distinct from $\alpha_{i}, c\left(v_{i} x_{i}\right), w\left(x_{i}\right)-c\left(v_{i} x_{i}\right), i=1,2,3,4$ and we obtain an $n s d$ - 6 -coloring of G, a contradiction.
(iii) Let v_{51}, v_{52}, v_{53} be the other three neighbors of u_{5}. Suppose to the contrary that $d_{H}\left(v_{51}\right)=d_{H}\left(x_{51}\right)=2, v_{51} x_{51} \in E(H), x_{51} y_{51} \in E(H), y_{51} \neq v_{51}$. By Claim 2.3 (iii), $d_{G}\left(u_{5}\right)=d_{H}\left(u_{5}\right)=4$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u u_{3}, u u_{4}\right\}$, then G^{\prime} has an nsd6 -coloring c. Assume that $c\left(u u_{5}\right)=\alpha_{5}, c\left(u_{5} v_{5 j}\right)=\beta_{j}, j=1,2,3, c\left(v_{i} x_{i}\right)=\gamma_{i}, i=1,2,3,4$, $c\left(x_{51} y_{51}\right)=\eta$. Let $S_{i}=[6] \backslash\left(\left\{\gamma_{i}\right\} \bigcup\left\{\alpha_{5}\right\}\right), i=1,2,3,4$, then $\left|S_{i}\right| \geq 4, i=1,2,3,4$.

If there exists some $\gamma_{i}=\alpha_{5}(i \in\{1,2,3,4\})$ or $\gamma_{i} \neq \gamma_{j}(i \neq j, i, j \in\{1,2,3,4\})$, then we can choose $\alpha_{i} \in S_{i}, i=1,2,3,4$ such that u can be distinguished by u_{5}. Recolor $u_{i} v_{i}$ with a color distinct from $\gamma_{i}, \alpha_{i}, w\left(x_{i}\right)-c\left(v_{i} x_{i}\right), i=1,2,3,4$, we can obtain an $n s d$ - 6 -coloring of G, a contradiction. Therefore, we assume that $\gamma_{1}=\gamma_{2}=\gamma_{3}=\gamma_{4}=\gamma, \alpha_{5} \neq \gamma$. Then $S_{1}=S_{2}=S_{3}=S_{4}=[6] \backslash\left\{\alpha_{5}, \gamma\right\}$. Assume that $S_{i}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}, i=1,2,3,4$. Color $u u_{i}$ with $\alpha_{i}, i=1,2,3,4$.

If $\left|\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \bigcap\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}\right|=3$, then u can be distinguished by u_{5}, recolor $u_{i} v_{i}, i=$ $1,2,3,4$ as previously and we obtain an $n s d-6$-coloring of G, a contradiction. Furthermore, $\left|\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \bigcap\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}\right| \geq 2$ because there are six colors in total. Therefore, $\left|\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \bigcap\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}\right|=2$. Without loss of generality we assume that $\left\{\alpha_{1}, \alpha_{2}\right\} \subseteq$ $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$.

If $\beta_{1}=\gamma$, then $\left\{\alpha_{1}, \alpha_{2}\right\}=\left\{\beta_{2}, \beta_{3}\right\}$. If $\alpha_{5} \neq \eta$, suppose u can not be distinguished by u_{5}, then $\gamma=\alpha_{3}+\alpha_{4}$. Recolor $u u_{5}$ with γ and recolor $u_{5} v_{51}$ with α_{5}, we obtain an nsd6 -coloring of G, a contradiction. Therefore, $\alpha_{5}=\eta$. Recolor $u_{5} v_{51}$ with one of α_{3}, α_{4}, or exchange the colors of $u u_{3}$ and $u u_{5}$, or exchange the colors of $u u_{4}$ and $u u_{5}$ such that u_{5} can be distinguished by u, v_{52}, v_{53}. It is easy to see that u can be distinguished by $u_{1}, u_{2}, u_{3}, u_{4}$. Recolor $u_{i} v_{i}, i=1,2,3,4$ and $v_{51} x_{51}$ as previously and we can obtain an $n s d-6$-coloring of G, a contradiction.

If $\beta_{1} \neq \gamma$. Without loss of generality we assume that $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}$. Recolor $u_{5} v_{51}$ with one of α_{3}, α_{4}, or exchange the colors of $u u_{3}$ and $u u_{5}$, or exchange the colors of $u u_{4}$ and $u u_{5}$ such that u_{5} can be distinguished by u, v_{52}, v_{53}. It is easy to see that u can be distinguished by $u_{1}, u_{2}, u_{3}, u_{4}$. Recolor $u_{i} v_{i}, i=1,2,3,4$ and $v_{51} x_{51}$ as previously and we can obtain an nsd-6-coloring of G, a contradiction.
(iv) Let $v_{51}, v_{52}, v_{53}, v_{54}$ be the other four neighbors of u_{5}. Suppose to the contrary that
$d_{H}\left(v_{5 i}\right)=d_{H}\left(x_{5 i}\right)=2, v_{5 i} x_{5 i} \in E(H), x_{5 i} y_{5 i} \in E(H), y_{5 i} \neq v_{5 i}, i=1,2,3$. By Claim 2.3 (iii), $d_{G}\left(u_{5}\right)=d_{H}\left(u_{5}\right)=5$. Consider the graph $G^{\prime}=G \backslash\left\{u u_{1}, u u_{2}, u u_{3}, u u_{4}\right\}$, then G^{\prime} has an nsd6 -coloring c. Assume that $c\left(u u_{5}\right)=\alpha_{5}, c\left(u_{5} v_{5 j}\right)=\beta_{j}, j=1,2,3,4, c\left(v_{i} x_{i}\right)=\gamma_{i}, i=1,2,3,4$. Let $S_{i}=[6] \backslash\left(\left\{\gamma_{i}\right\} \bigcup\left\{\alpha_{5}\right\}\right), i=1,2,3,4$, then $\left|S_{i}\right| \geq 4, i=1,2,3,4$.

If there exists some $\gamma_{i}=\alpha_{5}(i \in\{1,2,3,4\})$ or $\gamma_{i} \neq \gamma_{j}(i \neq j, i, j \in\{1,2,3,4\})$, then we can choose $\alpha_{i} \in S_{i}, i=1,2,3,4$ such that u can be distinguished by u_{5}. Recolor $u_{i} v_{i}$ with a color distinct from $\alpha_{i}, \gamma_{i}, w\left(x_{i}\right)-c\left(v_{i} x_{i}\right), i=1,2,3,4$. We obtain an $n s d$ - 6 -coloring of G, a contradiction. Therefore, we assume that $\gamma_{1}=\gamma_{2}=\gamma_{3}=\gamma_{4}=\gamma, \alpha_{5} \neq \gamma$. Then $S_{1}=S_{2}=S_{3}=S_{4}=[6] \backslash\left\{\alpha_{5}, \gamma\right\}$. Assume that $S_{i}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$. Color $u u_{i}$ with α_{i} and recolor $u_{i} v_{i}$ with a color distinct from $\left.\gamma, \alpha_{i}, w\left(x_{i}\right)-c_{(} v_{i} x_{i}\right), i=1,2,3,4$.

If $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \neq\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$, then u can be distinguished by u_{5}, it is easy to see that u can be distinguished from $u_{1}, u_{2}, u_{3}, u_{4}$. We obtain an $n s d-6$-coloring of G, a contradiction. Therefore, $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. Without loss of generality we assume that $\alpha_{i}=\beta_{i}, i=1,2,3,4$. If $c\left(x_{51} y_{51}\right) \neq \gamma$, then recolor $u_{5} v_{51}$ with γ. We can see that u can be distinguished from u_{5}. If u_{5} can not be distinguished from v_{54}, then exchange the colors of $u u_{1}$ and $u u_{5}$. Recolor $v_{51} x_{51}$ with a color distinct from $\gamma_{1}, c\left(x_{51} y_{51}\right), w\left(y_{51}\right)-c\left(x_{51} y_{51}\right)$. We obtain an $n s d$-6-coloring of G, a contradiction. Similarly, $c\left(x_{52} y_{52}\right)=c\left(x_{53} y_{53}\right)=\gamma$. Recolor $u u_{5}$ with γ. Then recolor $u_{5} v_{51}$ or recolor $u_{5} u_{52}$ with α_{5} such that u_{5} can be distinguished by v_{54}. Recolor $v_{5 i} x_{5 i}$ with a color distinct from $\gamma, \alpha_{5}, \alpha_{i}, w\left(y_{5 i}\right)-c\left(x_{5 i} y_{5 i}\right), i=1,2$. We obtain an $n s d$-6-coloring of G, a contradiction.

In order to complete the proof, we use a discharging procedure. For every $v \in V(H)$, we define the original charge of v to be $c h(v)=d_{H}(v)=l$. We then redistribute the charges according to the rules R1, R2 and R3 (below). To complete the proof, our aim is to prove that, for every vertex v, the new charge $c h^{*}(v)$ is at least $8 / 3$.

The discharging rules are defined as follows:
(R1) Every 4^{+}-vertex gives $\frac{2}{3}$ to each adjacent bad 2-vertex.
(R2) Every 3^{+}-vertex gives $\frac{1}{3}$ to each adjacent good 2 -vertex.
(R3) If u is a bad 5 -vertex, $u_{i}, i=1,2,3,4,5$ are the neighbors of $u, u_{1}, u_{2}, u_{3}, u_{4}$ are bad 2-vertices, then u_{5} gives $\frac{1}{3}$ to u.

Case $l=2$. Observe that $c h(v)=2$. Suppose v is a good 2 -vertex. Hence, by (R2), $c h^{*}(v) \geq 2+2 \times \frac{1}{3}=\frac{8}{3}$. Suppose v is bad, By Claim 2.4 (i) and Claim 2.4 (ii), v is adjacent to at most one 2 -vertex and is adjacent to a 4^{+}-vertex. Hence, by (R1), $c h^{*}(v)=2+1 \times \frac{2}{3}=\frac{8}{3}$.

Case $l=3$. Observe that $\operatorname{ch}(v)=3$. By Claim 2.4 (ii), v is adjacent to no bad 2-vertex and is adjacent to at most one good 2-vertex. By Claim 2.5 (ii), v is adjacent to no bad 5 -vertex. By (R2) and (R3), $c h^{*}(v) \geq 3-1 \times \frac{1}{3}=\frac{8}{3}$.

Case $l=4$. Observe that $c h(v)=4$. Suppose v is not adjacent to a bad 2 -vertex. Then,
by (R2) and (R3), $c h^{*}(v) \geq 4-4 \times \frac{1}{3}=\frac{8}{3}$. Assume now, v is adjacent to a bad 2 -vertex. By Claim 2.4 (iii), v is adjacent to at most two good 2-vertices. By Claim 2.5 (iii), v is adjacent to no bad 5-vertex. Hence by (R1), (R2) and (R3), $c h^{*}(v) \geq 4-1 \times \frac{2}{3}-2 \times \frac{1}{3}=\frac{8}{3}$.

Case $l=5$. Observe that $c h(v)=5$. Suppose v is adjacent to at most two bad 2-vertices, then by (R1), (R2) and (R3), $c h^{*}(v) \geq 5-2 \times \frac{2}{3}-3 \times \frac{1}{3}=\frac{8}{3}$. If v is adjacent to three bad 2 -vertices, then by Claim 2.5 (i) and (iv), v is adjacent to at most one good 2-vertex and v is adjacent to no bad 5-vertex. Hence by (R1), (R2) and (R3), $c h^{*}(v) \geq 5-3 \times \frac{2}{3}-1 \times \frac{1}{3}=\frac{8}{3}$. Assume now, v is a bad 5-vertex. By (R1), (R2) and (R3), ch ${ }^{*}(v) \geq 5-4 \times \frac{2}{3}+1 \times \frac{1}{3}=\frac{8}{3}$.

Case $l \geq 6$. Observe that $c h(v)=l$. By Claim 2.5 (i), any 5 -vertex in H is good. By Claim 2.4 (iv), v is adjacent to at most $(l-1)$ bad 2 -vertices. Moreover if v is adjacent to $(l-1)$ bad 2-vertices, then its last neighbor has degree at least 3. It follows by (R1), $c h^{*}(v) \geq l-(l-1) \times \frac{2}{3} \geq \frac{8}{3}$.

This completes the proof of Theorem 1.3.

References

[1] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. North-Holland, New York, 1976.
[2] Z. F. Zhang, L. Z. Liu, J. F. Wang. Adjacent strong edge coloring of graphs. J. Appl. Math. Lett., (2002) 15: 623-626.
[3] P. N. Balister, E. Gyôri, J. Lehel, R. H. Schelp. Adjacent vertex distinguishing edgecolorings. SIAM J. Discrete Math., (2007) 21: 237-250.
[4] K. Edwards, M. Horňák, M. Woźniak. On the neighbour-distinguishing index of a graph. Graphs and Comb., (2006) 22: 341-350.
[5] H. Hatami. $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number. J. Comb. Theory Ser. B, (2005) 95: 246-256.
[6] S. Akbari, H. Bidkhori, N. Nosrati. r-Strong edge colorings of graphs. Discrete Math., (2006) 306: 3005-3010.
[7] W. F. Wang, Y. Q. Wang. Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Comb. Optim., (2010) 19: 471-485.
[8] W. F. Wang, Y. Q. Wang. Adjacent vertex-distinguishing edge colorings of K_{4}-minor free graphs. Appl. Math. Lett. (2011) 24 (12): 2034-2037.
[9] H. Hocquard, M. Montassier. Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five. Electronic Notes in Discrete Math., (2011) 38: 457462.
[10] H. Hocquard, M. Montassier. Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ. J. Comb. Optim., (2012) DOI 10. 1007/s10878-011-9444-9.
[11] E. Flandrin, A. Marczyk, J. Przybyło, J. F. Saclé, M. Woźniak. Neighbor sum distinguishing index. Graph and Comb., (2012) DOI 10.1007/s00373-012-1191-x.
[12] A. J. Dong, G. H. Wang. Neighbor sum distinguishing colorings of some graphs. Discrete Math., Algori. and Appl., (2012) DOI 10.1142/S1793830912500474.
[13] A. J. Dong, G. H. Wang, J. H. Zhang. Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree. Discrete Appl. Math., (2013) http://dx.doi.org/10.1016/j.dam.2013.10.009.
[14] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena. On the maximum average degree and the oriented chromatic number of a graph. Discrete Math. (1999) 206: 77-89.
[15] H. Y. Chen, X. Tan, J. L. Wu. The Linear arboricity of planar graphs without 5-cycles with chords. Bull. Malays. Math. Sci. Soc. (2), accepted.
[16] B. Wang, J. L. Wu, S. F. Tian. Total colorings of planar graphs with small maximum degree. Bull. Malays. Math. Sci. Soc. (2), accepted.
[17] R. Y. Xu, J. L. Wu, H. J. Wang. Total coloring of planar graphs without some chordal 6-cycles. Bull. Malays. Math. Sci. Soc. (2), accepted.

[^0]: *This work is supported by NSFC $(11271006,11101243)$.
 ${ }^{\dagger}$ Corresponding author. E-mail address: ghwang@sdu.edu.cn.

