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Abstract

A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, · · · , k to
the edges of G such that no two adjacent edges receive the same color. A neighbor
sum distinguishing edge-k-coloring of G is a proper edge-k-coloring of G such that
for each edge uv ∈ E(G), the sum of colors taken on the edges incident with u is
different from the sum of colors taken on the edges incident with v. By ndi∑(G), we
denote the smallest value k in such a coloring of G. The maximum average degree
of G is mad(G) = max{2|E(H)|/|V (H)|}, where the maximum is taken over all the
non-empty subgraphs H of G. In this paper, we obtain that if G is a graph without
isolated edges and mad(G) < 8/3, then ndi∑(G) ≤ k where k = max{∆(G) + 1, 6}. It
partially confirms the conjecture proposed by Flandrin et al.
Keywords: proper edge coloring; neighbor sum distinguishing edge coloring; maximum
average degree

1 Introduction

In this paper, all graphs considered are finite, simple and undirected. The terminology and
notation used but undefined in this paper can be found in [1]. Let G = (V,E) be a graph.
We use V (G), E(G),∆(G) and δ(G) to denote the vertex set, edge set, maximum degree
and minimum degree of G, respectively. Let dG(v) or simply d(v), denote the degree of a
vertex v in G. A vertex v is called a k-vertex (resp. k−-vertex, or k+-vertex) if d(v) = k

(resp. d(v) ≤ k, or d(v) ≥ k). A vertex is called a leaf of G if d(v) = 1. A 2-vertex is called
bad if it is adjacent to a 2-vertex, otherwise we call it good. A 5-vertex is called bad if it
is adjacent to four bad 2-vertices, otherwise we call it good. The girth of a graph G is the
length of a smallest cycle in G, and we denote it by g(G). The maximum average degree of
G is mad(G) = max{2|E(H)|/|V (H)|}, where the maximum is taken over all the non-empty
subgraphs H of G.

A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, · · · , k to the edges
of G such that no two adjacent edges receive the same color. Let c be a proper edge-k-coloring

∗This work is supported by NSFC (11271006, 11101243).
†Corresponding author. E-mail address: ghwang@sdu.edu.cn.

1



of G. By w(v) (resp. S(v)), we denote the sum (resp. set) of colors taken on the edges
incident with v, i.e. w(v) =

∑
uv∈E(G) c(uv) (resp. S(v) = {c(uv) | uv ∈ E(G)}). We call

the coloring c such that w(u) ̸= w(v) (resp. S(u) ̸= S(v)) for each edge uv ∈ E(G) a neighbor
sum distinguishing (resp. neighbor distinguishing) edge-k-coloring of G. For simplicity, we
use nsd-k-coloring (resp. nd-k-coloring) to denote the neighbor sum distinguishing (resp.
neighbor distinguishing) edge-k-coloring of G. By ndi∑(G) (resp. ndi(G)), we denote the
smallest value k such that G has an nsd-k-coloring (resp. nd-k-coloring) of G.

Obviously, a graph G has a neighbor sum distinguishing (neighbor distinguishing) coloring
if and only if G has no isolated edges (we call it normal). Apparently, for any normal graph
G, ndi(G) ≤ ndi∑(G). In 2002, Zhang et al. [2] proposed the following conjecture.

Conjecture 1.1. [2] If G is a normal graph with at least 6 vertices, then ndi(G) ≤ ∆(G)+2.

Balister et al. [3] proved Conjecture 1.1 for bipartite graphs and for graphs G with
∆(G) = 3. If G is bipartite planar with maximum degree ∆(G) ≥ 12, Conjecture 1.1
was confirmed by Edwards et al. [4]. Hatami [5] showed that if G is a normal graph and
∆(G) > 1020, then ndi(G) ≤ ∆(G) + 300. Akbari et al. [6] proved that ndi(G) ≤ 3∆(G)

for any normal graph. Wang et al. [7], [8] confirmed Conjecture 1.1 for sparse graphs and
K4-minor free graphs. More precisely, in [7] they showed that if G is a normal graph and
mad(G) < 5/2, then ndi(G) ≤ ∆(G) + 1. Furthermore, ndi(G) = ∆(G) + 1 if and only if
G has two adjacent maximum degree vertices. Recently, Hocquard et al. [9] proved that for
every normal graph with ∆(G) ≥ 5 and mad(G) < 13/5, we have ndi(G) ≤ ∆(G)+1. Later,
in [10] they proved that if G is a normal graph with ∆(G) ≥ 5 and mad(G) < 3− 2/∆(G),
then ndi(G) ≤ ∆(G) + 1.

Recently, Flandrin et al. [11] studied the neighbor sum distinguishing colorings of cy-
cles, trees, complete graphs and complete bipartite graphs. Based on these examples, they
proposed the following conjecture.

Conjecture 1.2. [11] If G is a connected graph on at least 3 vertices and G ̸= C5, then
ndi∑(G) ≤ ∆(G) + 2.

Flandrin et al. [11] also proved that for each connected graph G with maximum degree
∆ ≥ 2, we have ndi∑(G) ≤ ⌈(7∆ − 4)/2⌉. Dong et al. [12] considered the neighbor sum
distinguishing colorings of planar graphs and showed that if G is a normal planar graph,
then ndi∑(G) ≤ max{2∆(G) + 1, 25}. In [13], Dong et al. proved that if G is a normal
graph and mad(G) ≤ 5/2, then ndi∑(G) ≤ k where k = max{∆(G) + 1, 6}. Other results
on graph coloring problems are referred to [15, 16, 17].

In this paper, we will prove the following results.
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Theorem 1.3. Let G be a normal graph. If mad(G) < 8
3
, then ndi∑(G) ≤ k where k =

max{∆(G) + 1, 6}.

Corollary 1.4. Let G be a normal graph. If mad(G) < 8
3
,∆(G) ≥ 5, then ndi∑(G) ≤

∆(G) + 1.

In [14], the authors obtained that mad(G) < 2g/(g− 2) if G is a planar graph with girth
g. The following corollary is obvious.

Corollary 1.5. Let G be a normal planar graph. If g(G) ≥ 8 and ∆(G) ≥ 5, then
ndi∑(G) ≤ ∆(G) + 1.

We note that if G contains two adjacent vertices of maximum degree, then ndi∑(G) ≥
∆(G) + 1. So the bound ∆(G) + 1 in Corollary 1.4 is sharp. Furthermore, Corollary 1.4
implies a result of Hocquard et al. [9] about the neighbor distinguishing coloring of sparse
graphs.

2 Proof of Theorem 1.3

Firstly, we give two lemmas obtained by Dong et al. in [13], all the elements in each set are
integers.

Lemma 2.1. [13] Let S1, S2 be two sets and S3 = {α+ β | α ∈ S1, β ∈ S2, α ̸= β}.
(i) If |S1| = 2 and |S2| = 3, then |S3| ≥ 3.
(ii) If |S1| = 2 and |S2| = 4, then |S3| ≥ 4.
(iii) If |S1| = |S2| = 2 and S1 ̸= S2, then |S3| ≥ 3.

Lemma 2.2. [13] Let S be a set of size k + 1. If S1 = {
k∑

i=1

xi | xi ∈ S, xi ̸= xj if 1 ≤ i <

j ≤ k}, then |S1| ≥ k + 1.

Let k = max{∆(G) + 1, 6} and [k] = {1, 2, · · · , k}. Suppose to the contrary that G is
a counterexample to Theorem 1.3, such that |E(G)| is minimum. By the choice of G, it is
clear that G is connected and any normal subgraph G′ has an nsd-k-coloring c. We use w(v)

and S(v) to denote the sum and the set of colors taken on the edges incident with v in the
coloring c of G′, i.e. w(v) =

∑
v∈e,e∈E(G′) c(e) and S(v) = {c(e) | v ∈ e, e ∈ E(G′)}. In the

following, we will extend c to the whole graph G.
Let H be the graph obtained by removing all the leaves of G. Obviously, H is a connected

graph and mad(H) < 8/3. In the following, we give some properties of H.

Claim 2.3. H has the following properties:
(i) [13] δ(H) ≥ 2, where δ(H) is the minimum degree of H.

3



(ii) [13] Let v ∈ V (H) such that dH(v) = 2, then dG(v) = 2.
(iii) Let uvxy be a path in H such that dH(v) = dH(x) = 2, then dG(u) = dH(u) and

dG(y) = dH(y).

u v x y

u1

Figure 2.1: Illustration of Claim 2.3(iii)

Proof. (iii) Let uvxy be a path in H such that dH(v) = dH(x) = 2. By Claim 2.3(ii),
dG(v) = dG(x) = 2. By contradiction suppose dG(u) ̸= dH(u) (it follows from Claim 2.3(i)
and construction of H that dG(u) ≥ 3). Hence there exits at least one 1-vertex adjacent to u

in G, say u1. Consider G′ = G\{vx}. By the minimality of G, G′ admits an nsd-k-coloring c.
If c(uv) ̸= c(xy), then we color vx with a color distinct from c(uv), c(xy), w(u)−w(v), w(y)−
w(x), then we obtain an nsd-k-coloring of G. Otherwise, we permute the colors assigned
to uu1 and uv. The obtained coloring is still an nsd-k-coloring of G′. We then extend this
coloring to G as previously. This is a contradiction.

Claim 2.4. Let u ∈ V (H), dH(u) = l, uui ∈ E(H), i = 1, 2, · · · , l.
(i) [13] If l = 2, then u is adjacent to at most one 2-vertex.
(ii) (a) [13] If l = 3 and dH(u) < dG(u), then u is adjacent to at most one 2-vertex.
(b) If l = 3, then u is not adjacent to any bad 2-vertex. Furthermore, u is adjacent to at

most one good 2-vertex.
(iii) If l = 4, then u is adjacent to at most one bad 2-vertex. Furthermore, if u is adjacent

to one bad 2-vertex, then u is adjacent to at most two good 2-vertices.
(iv) If l ≥ 5 and u is adjacent to (l − 1) bad 2-vertices, then u is adjacent to at most

(l − 1) 2-vertices.

(ii.b)
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Figure 2.2: Illustration of Claim 2.4
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Proof. (ii) (b) Firstly, we prove that u is not adjacent to any bad 2-vertex. Suppose to
the contrary that u1 is a bad 2-vertex. Let x be the other neighbor of u1 with dH(x) = 2,
and xy ∈ E(H), y ̸= u1. By Claim 2.3 (iii), dG(u) = dH(u) = 3. Consider the graph
G′ = G\{uu1}, then G′ admits an nsd-k-coloring c. Color uu1 with a color α in S =

[k]\({c(xy)}
∪
{c(uu2), c(uu3)}

∪
{w(u2)−w(u)}

∪
{w(u3)−w(u)}). Recolor u1x with a color

distinct from α, c(xy), w(y) − c(xy), c(uu2) + c(uu3) and we obtain an nsd-k-coloring of G,
a contradiction.

In the following, we prove that u is adjacent to at most one good 2-vertex. Suppose to
the contrary that dH(u1) = dH(u2) = 2, viui ∈ E(H), vi ̸= u, i = 1, 2.

Case 1 dG(u) > dH(u) = 3.
By Claim 2.4 (ii) (a), this claim holds.
Case 2 dG(u) = dH(u) = 3.
Subcase 2.1 k ≥ 7. Consider the graph G′ = G\{uu1, uu2}, then G′ has an nsd-k-

coloring c. Let Si = [k]\({c(uivi)}
∪
{c(uu3)}

∪
{w(vi) − w(ui)}

∪
{w(u3−i) − c(uu3)}), i =

1, 2, then |Si| ≥ 3, i = 1, 2. By Lemma 2.1 (ii), we can choose αi ∈ Si, i = 1, 2 such
that α1 ̸= α2, α1 + α2 + c(uu3) ̸= w(u3). We obtain an nsd-k-coloring of G, which is a
contradiction.

Subcase 2.2 k = 6. From the above discussion, dG(vi) ≥ 3, i = 1, 2. If dG(v1) = 5, then
u1 can be distinguished from v1 under an arbitrary proper edge coloring of G. Consider G′ =

G\{uu1, uu2}, then G′ has an nsd-6-coloring c. The colors in {c(u1v1)}
∪
{c(uu3)}

∪
{c(u2v2)−

c(uu3)} are forbidden for uu1. Let S1 = [6]\({c(u1v1)}
∪
{c(uu3)}

∪
{c(u2v2)−c(uu3)}), S2 =

[6]\({c(u2v2)}
∪
{c(uu3)}

∪
{w(v2)−w(u2)}

∪
{c(u1v1)−c(uu3)}), then |S1| ≥ 3, |S2| ≥ 2. By

Lemma 2.1 (ii), we can choose αi ∈ Si, i = 1, 2 such that α1 ̸= α2, α1+α2+ c(uu3) ̸= w(u3).
We obtain an nsd-6-coloring of G, which is a contradiction. Therefore, dG(v1) ̸= 5. Similarly,
dG(v2) ̸= 5.

If dG(v1) = 3 and x1, y1 are the other two neighbors of v1. Consider G′ = G\{uu1, uu2, u1v1},
then G′ has an nsd-6-coloring c. Let S1 = [6]\({c(v1x1) + c(v1y1)}

∪
{c(uu3)}), S2 =

[6]\({c(uu3)}
∪
{c(u2v2)}

∪
{w(v2)−w(u2)}), S3 = [6]\({c(v1x1), c(v1y1)}

∪
{w(x1)−w(v1)}

∪
{w(y1) − w(v1)}), then |S1| ≥ 4, |S2| ≥ 3, |S3| ≥ 2. We can choose αi ∈ Si, i = 1, 2, 3 such
that α1 ̸= α2, α1 ̸= α3, u can be distinguished from u1, u2, u3, and v1 can be distinguished
from x1, y1. We obtain an nsd-6-coloring of G, a contradiction. Therefore, dG(v1) ̸= 3.
Similarly, dG(v2) ̸= 3.

Now we assume that dG(v1) = dG(v2) = 4, xi, yi, zi are the other three neighbors of vi,
i = 1, 2. Consider G′ = G\{uu1, uu2}, then G′ has an nsd-6-coloring c. If c(v1x1)+c(v1y1)+

c(v1z1) > 6, then u1 and v1 can be distinguished. Let S1 = [6]\({c(uu3)}
∪
{c(u1v1)}

∪
{w(u2)−

c(uu3)}), S2 = [6]\({c(uu3)}
∪
{c(u2v2)}

∪
{w(v2)−w(u2)}

∪
{w(u1)− c(uu3)}), then |S1| ≥

3, |S2| ≥ 2. We can choose αi ∈ Si, i = 1, 2 such that α1 ̸= α2, α1 + α2 + c(uu3) ̸= w(u3).
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We obtain an nsd-6-coloring of G, which is a contradiction. Therefore, c(v1x1) + c(v1y1) +

c(v1z1) = 6. Similarly, c(v2x2) + c(v2y2) + c(v2z2) = 6. Without loss of generality we assume
that c(vixi) = 1, c(viyi) = 2, c(vizi) = 3, i = 1, 2. Suppose that c(u1v1) ̸= c(u2v2) or c(uu3) =

6, then we can obtain an nsd-6-coloring of G as previously. Hence, c(u1v1) = c(u2v2),
c(uu3) ̸= 6. From the above discussion, dG(u3) ≥ 3. If dG(u3) = 3, let x3, y3 be the neigh-
bors of u3 distinct from u. Consider the graph G′ = G\{uu1, uu2, uu3}, then G′ has an nsd-6-
coloring c. Let S1 = [5]\{c(u1v1)}, S2 = [5]\{c(u2v2)}, S3 = [6]\({c(v3x3), c(v3y3)}

∪
{w(x3)−

w(u3)}
∪
{w(y3)− w(u3)}), then |S1| ≥ 4, |S2| ≥ 4, |S3| ≥ 2. From the above discussion we

know that S1 = S2 = {1, 2, 3, 4} or {1, 2, 3, 5}, so we can choose αi ∈ Si, i = 1, 2, 3 such that
α1, α2, α3 are pairwise distinct and u can be distinguished from u1, u2, u3. We obtain an nsd-
6-coloring of G, which is a contradiction. Therefore, dG(u3) ≥ 4. If c(uu3) ∈ {1, 2, 3}, color
uu1, uu2 properly with {1, 2, 3}\{c(uu3)}. Otherwise, properly color uu1, uu2 with colors in
{1, 2, 3}. In both cases, we obtain an nsd-6-coloring of G, a contradiction.

(iii) Suppose to the contrary that dH(u1) = dH(u2) = 2, uivi ∈ E(H), dH(vi) = 2, i = 1, 2,
xi is the other neighbor of vi, i = 1, 2. By Claim 2.3 (iii), dG(u) = dH(u) = 4. Consider the
graph G′ = G\{uu1, uu2}, then G′ has an nsd-k-coloring c. Let Si = [k]\({c(uu3), c(uu4)}∪
{c(vixi)}), i = 1, 2, then |Si| ≥ 3. By Lemma 2.1 (i), we can choose αi ∈ Si, i = 1, 2 such

that α1 ̸= α2 and u can be distinguished from u3, u4. Recolor uivi with a color distinct from
αi, c(vixi), w(xi)−c(vixi), α1+α2+c(uu3)+c(uu4)−αi, i = 1, 2, then u can be distinguished
from u1, u2. We obtain an nsd-k-coloring of G, a contradiction.

Now assume that u is adjacent to a bad 2-vertex u1 with u1v1 ∈ E(H), dH(v1) = 2, v1x1 ∈
E(H), x1 ̸= v1. Suppose to the contrary that dH(ui) = 2, uivi ∈ E(H), vi ̸= u, i = 2, 3, 4. By
Claim 2.3 (iii), dG(u) = dH(u) = 4. Consider G′ = G\{uu1}, then G′ has an nsd-k-coloring c.
Let S = [k]\({c(uu2), c(uu3), c(uu4)}

∪
{c(v1x1)}). When k ≤ 7, if 1 ∈ S, then color uu1 with

α ∈ S \{1}, otherwise color uu1 with α ∈ S \{2}. In both cases w(u)+α > w(ui), i = 2, 3, 4.
Then recolor u1v1 with a color distinct from α, c(v1x1), w(u), w(x1) − c(v1x1). We obtain
an nsd-k-coloring of G, a contradiction. When k ≥ 8, |S| ≥ 4, we can choose α ∈ S

such that α + w(u) ̸= w(ui), i = 2, 3, 4. Then recolor u1v1 with a color distinct from
α, c(v1x1), w(u), w(x1)− c(v1x1). We obtain an nsd-k-coloring of G, a contradiction.

(iv) Suppose to the contrary that dH(ui) = 2, i = 1, 2, · · · , l, uivi ∈ E(H), vi ̸= u, i =

1, 2, · · · , l and dH(vj) = 2, vjxj ∈ E(H), xj ̸= vj, j = 1, 2, · · · , l − 1. By Claim 2.3 (iii),
dG(u) = dH(u) = l. Let G′ = G\{uu1}, then G′ has an nsd-k-coloring c. If l < ∆ = k − 1,

color uu1 with α ∈ [k]\({c(uu2), · · · , c(uul)}
∪
{c(v1x1)}

∪
{α+

l−1∑
i=2

c(uui)}). Otherwise color

uu1 with α ∈ [k] \ ({c(uu2), · · · , c(uul)}
∪
{c(v1x1)}). In both cases, u can be distinguished

from ul. Properly recolor uivi such that u can be distinguished from ui and vi can be
distinguished from xi, i = 1, 2, · · · , l− 1. We obtain an nsd-k-coloring of G, a contradiction.
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Claim 2.5. Let u ∈ V (H), dH(u) = 5, uui ∈ E(H), i = 1, 2, 3, 4, 5.
(i) If ∆(G) ≥ 6, then u is adjacent to at most two bad 2-vertices. If ∆(G) = 5 and u is

adjacent to three bad 2-vertices, then u is adjacent to at most one good 2-vertex.
Furthermore, if ∆(G) = 5 and u is a bad 5-vertex, then by Claim 2.3 (iii), dG(u) =

dH(u) = 5. Let dH(ui) = 2, uivi ∈ E(H), dH(vi) = 2, xi be the other neighbor of vi, i =

1, 2, 3, 4, we have
(ii) dH(u5) ≥ 4.
(iii) If dH(u5) = 4, then u5 is adjacent to no bad 2-vertex.
(iv) If dH(u5) = 5, then u5 is adjacent to at most two bad 2-vertices.
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v2
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v52
v53

(iii)

x51

Figure 2.3: Illustration of Claim 2.5

Proof. (i) Assume ∆(G) ≥ 6. Suppose to the contrary that dH(u1) = dH(u2) = dH(u3) = 2,
vi is the other neighbor of ui with dH(vi) = 2, xi is the other neighbor of vi, i = 1, 2, 3. By
Claim 2.3 (iii), dG(u) = dH(u) = 5. Consider the graph G′ = G\{uu1, uu2, uu3}, then G′

has an nsd-k-coloring c. Let Si = [k]\({c(uu4), c(uu5)}
∪
{c(vixi)}), i = 1, 2, 3, then |Si| ≥

4, i = 1, 2, 3. We can choose αi ∈ Si, i = 1, 2, 3 such that α1, α2, α3 are pairwise distinct and
u can be distinguished by u4, u5. Recolor uivi with a color distinct from αi, c(vixi), w(xi)−

c(vixi),
3∑

i=1

αi + w(u)− αi, i = 1, 2, 3, then u can be distinguished from u1, u2, u3. We obtain

an nsd-k-coloring of G, a contradiction.
Assume that ∆(G) = 5. Suppose to the contrary that dH(ui) = 2, uivi ∈ E(H), vi ̸=

u, i = 1, 2, · · · , 5 and dH(vj) = 2, vjxj ∈ E(H), j = 1, 2, 3. By Claim 2.3 (iii), dG(u) =

dH(u) = 5. Consider the graph G′ = G\{uu1}, then G′ has an nsd-6-coloring c. Color uu1

with α ∈ [6]\({c(uu2), · · · , c(uu5)}
∪
{c(v1x1)}). Then recolor u1v1 with a color distinct from

α, c(v1x1), w(xi)− c(v1x1),
5∑

i=2

c(uui). It can be seen that w(u) + α > w(ui), i = 2, · · · , 5, so

we obtain an nsd-6-coloring of G, a contradiction.
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(ii) By Claim 2.4 (iv), dH(u5) ≥ 3. Suppose to the contrary that dH(u5) = 3, v51, v52 are
the other two neighbors of u5. Consider the graph G′ = G\{uu1, uu2, uu3, uu4, uu5}, then G′

has an nsd-6-coloring c. Let Si = [6]\{c(vixi)}, i = 1, 2, 3, 4, S5 = [6]\({c(u5v51), c(u5v52)}∪
{w(v51) − w(u5)}

∪
{w(v52) − w(u5)}), then |Si| ≥ 5, i = 1, 2, 3, 4, |S5| ≥ 2. We can

choose αi ∈ Si, i = 1, 2, 3, 4, 5 such that α1, α2, α3, α4, α5 are pairwise distinct and u can be
distinguished by u5. Obviously, u can be distinguished by u1, u2, u3, u4. Recolor uivi with a
color distinct from αi, c(vixi), w(xi) − c(vixi), i = 1, 2, 3, 4 and we obtain an nsd-6-coloring
of G, a contradiction.

(iii) Let v51, v52, v53 be the other three neighbors of u5. Suppose to the contrary that
dH(v51) = dH(x51) = 2, v51x51 ∈ E(H), x51y51 ∈ E(H), y51 ̸= v51. By Claim 2.3 (iii),
dG(u5) = dH(u5) = 4. Consider the graph G′ = G\{uu1, uu2, uu3, uu4}, then G′ has an nsd-
6-coloring c. Assume that c(uu5) = α5, c(u5v5j) = βj, j = 1, 2, 3, c(vixi) = γi, i = 1, 2, 3, 4,
c(x51y51) = η. Let Si = [6]\({γi}

∪
{α5}), i = 1, 2, 3, 4, then |Si| ≥ 4, i = 1, 2, 3, 4.

If there exists some γi = α5 (i ∈ {1, 2, 3, 4}) or γi ̸= γj (i ̸= j, i, j ∈ {1, 2, 3, 4}), then
we can choose αi ∈ Si, i = 1, 2, 3, 4 such that u can be distinguished by u5. Recolor uivi

with a color distinct from γi, αi, w(xi)−c(vixi), i = 1, 2, 3, 4, we can obtain an nsd-6-coloring
of G, a contradiction. Therefore, we assume that γ1 = γ2 = γ3 = γ4 = γ, α5 ̸= γ. Then
S1 = S2 = S3 = S4 = [6]\{α5, γ}. Assume that Si = {α1, α2, α3, α4}, i = 1, 2, 3, 4. Color uui

with αi, i = 1, 2, 3, 4.
If |{α1, α2, α3, α4}

∩
{β1, β2, β3}| = 3, then u can be distinguished by u5, recolor uivi, i =

1, 2, 3, 4 as previously and we obtain an nsd-6-coloring of G, a contradiction. Further-
more, |{α1, α2, α3, α4}

∩
{β1, β2, β3}| ≥ 2 because there are six colors in total. Therefore,

|{α1, α2, α3, α4}
∩
{β1, β2, β3}| = 2. Without loss of generality we assume that {α1, α2} ⊆

{β1, β2, β3}.
If β1 = γ, then {α1, α2} = {β2, β3}. If α5 ̸= η, suppose u can not be distinguished by

u5, then γ = α3 + α4. Recolor uu5 with γ and recolor u5v51 with α5, we obtain an nsd-
6-coloring of G, a contradiction. Therefore, α5 = η. Recolor u5v51 with one of α3, α4, or
exchange the colors of uu3 and uu5, or exchange the colors of uu4 and uu5 such that u5 can
be distinguished by u, v52, v53. It is easy to see that u can be distinguished by u1, u2, u3, u4.
Recolor uivi, i = 1, 2, 3, 4 and v51x51 as previously and we can obtain an nsd-6-coloring of G,
a contradiction.

If β1 ̸= γ. Without loss of generality we assume that β1 = α1, β2 = α2. Recolor u5v51

with one of α3, α4, or exchange the colors of uu3 and uu5, or exchange the colors of uu4

and uu5 such that u5 can be distinguished by u, v52, v53. It is easy to see that u can be
distinguished by u1, u2, u3, u4. Recolor uivi, i = 1, 2, 3, 4 and v51x51 as previously and we can
obtain an nsd-6-coloring of G, a contradiction.

(iv) Let v51, v52, v53, v54 be the other four neighbors of u5. Suppose to the contrary that
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dH(v5i) = dH(x5i) = 2, v5ix5i ∈ E(H), x5iy5i ∈ E(H), y5i ̸= v5i, i = 1, 2, 3. By Claim 2.3 (iii),
dG(u5) = dH(u5) = 5. Consider the graph G′ = G\{uu1, uu2, uu3, uu4}, then G′ has an nsd-
6-coloring c. Assume that c(uu5) = α5, c(u5v5j) = βj, j = 1, 2, 3, 4, c(vixi) = γi, i = 1, 2, 3, 4.
Let Si = [6]\({γi}

∪
{α5}), i = 1, 2, 3, 4, then |Si| ≥ 4, i = 1, 2, 3, 4.

If there exists some γi = α5 (i ∈ {1, 2, 3, 4}) or γi ̸= γj (i ̸= j, i, j ∈ {1, 2, 3, 4}), then
we can choose αi ∈ Si, i = 1, 2, 3, 4 such that u can be distinguished by u5. Recolor uivi

with a color distinct from αi, γi, w(xi) − c(vixi), i = 1, 2, 3, 4. We obtain an nsd-6-coloring
of G, a contradiction. Therefore, we assume that γ1 = γ2 = γ3 = γ4 = γ, α5 ̸= γ. Then
S1 = S2 = S3 = S4 = [6]\{α5, γ}. Assume that Si = {α1, α2, α3, α4}. Color uui with αi and
recolor uivi with a color distinct from γ, αi, w(xi)− c(vixi), i = 1, 2, 3, 4.

If {α1, α2, α3, α4} ̸= {β1, β2, β3, β4}, then u can be distinguished by u5, it is easy to see
that u can be distinguished from u1, u2, u3, u4. We obtain an nsd-6-coloring of G, a contra-
diction. Therefore, {α1, α2, α3, α4} = {β1, β2, β3, β4}. Without loss of generality we assume
that αi = βi, i = 1, 2, 3, 4. If c(x51y51) ̸= γ, then recolor u5v51 with γ. We can see that u can
be distinguished from u5. If u5 can not be distinguished from v54, then exchange the colors
of uu1 and uu5. Recolor v51x51 with a color distinct from γ1, c(x51y51), w(y51)−c(x51y51). We
obtain an nsd-6-coloring of G, a contradiction. Similarly, c(x52y52) = c(x53y53) = γ. Recolor
uu5 with γ. Then recolor u5v51 or recolor u5u52 with α5 such that u5 can be distinguished by
v54. Recolor v5ix5i with a color distinct from γ, α5, αi, w(y5i)− c(x5iy5i), i = 1, 2. We obtain
an nsd-6-coloring of G, a contradiction.

In order to complete the proof, we use a discharging procedure. For every v ∈ V (H), we
define the original charge of v to be ch(v) = dH(v) = l. We then redistribute the charges
according to the rules R1, R2 and R3 (below). To complete the proof, our aim is to prove
that, for every vertex v, the new charge ch∗(v) is at least 8/3.

The discharging rules are defined as follows:
(R1) Every 4+-vertex gives 2

3
to each adjacent bad 2-vertex.

(R2) Every 3+-vertex gives 1
3

to each adjacent good 2-vertex.
(R3) If u is a bad 5-vertex, ui, i = 1, 2, 3, 4, 5 are the neighbors of u, u1, u2, u3, u4 are bad

2-vertices, then u5 gives 1
3

to u.
Case l = 2. Observe that ch(v) = 2. Suppose v is a good 2-vertex. Hence, by (R2),

ch∗(v) ≥ 2+2× 1
3
= 8

3
. Suppose v is bad, By Claim 2.4 (i) and Claim 2.4 (ii), v is adjacent to

at most one 2-vertex and is adjacent to a 4+-vertex. Hence, by (R1), ch∗(v) = 2+1× 2
3
= 8

3
.

Case l = 3. Observe that ch(v) = 3. By Claim 2.4 (ii), v is adjacent to no bad 2-vertex
and is adjacent to at most one good 2-vertex. By Claim 2.5 (ii), v is adjacent to no bad
5-vertex. By (R2) and (R3), ch∗(v) ≥ 3− 1× 1

3
= 8

3
.

Case l = 4. Observe that ch(v) = 4. Suppose v is not adjacent to a bad 2-vertex. Then,
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by (R2) and (R3), ch∗(v) ≥ 4− 4× 1
3
= 8

3
. Assume now, v is adjacent to a bad 2-vertex. By

Claim 2.4 (iii), v is adjacent to at most two good 2-vertices. By Claim 2.5 (iii), v is adjacent
to no bad 5-vertex. Hence by (R1), (R2) and (R3), ch∗(v) ≥ 4− 1× 2

3
− 2× 1

3
= 8

3
.

Case l = 5. Observe that ch(v) = 5. Suppose v is adjacent to at most two bad 2-vertices,
then by (R1), (R2) and (R3), ch∗(v) ≥ 5− 2× 2

3
− 3× 1

3
= 8

3
. If v is adjacent to three bad

2-vertices, then by Claim 2.5 (i) and (iv), v is adjacent to at most one good 2-vertex and v is
adjacent to no bad 5-vertex. Hence by (R1), (R2) and (R3), ch∗(v) ≥ 5− 3× 2

3
− 1× 1

3
= 8

3
.

Assume now, v is a bad 5-vertex. By (R1), (R2) and (R3), ch∗(v) ≥ 5− 4× 2
3
+ 1× 1

3
= 8

3
.

Case l ≥ 6. Observe that ch(v) = l. By Claim 2.5 (i), any 5-vertex in H is good. By
Claim 2.4 (iv), v is adjacent to at most (l − 1) bad 2-vertices. Moreover if v is adjacent
to (l − 1) bad 2-vertices, then its last neighbor has degree at least 3. It follows by (R1),
ch∗(v) ≥ l − (l − 1)× 2

3
≥ 8

3
.

This completes the proof of Theorem 1.3.
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