Upper bounds on the signed (k, k)-domatic number of digraphs

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

Let D be a simple digraph with vertex set V(D), and let $f: V(D) \to \{-1, 1\}$ be a two-valued function. If $k \ge 1$ is an integer and $\sum_{x \in N^{-}[v]} f(x) \ge k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^d f_i(x) \le k$ for each $x \in V(D)$, is called a signed (k, k)-dominating family (of functions) on D. The maximum number of functions in a signed (k, k)-dominating family on D is the signed (k, k)-domatic number of D.

In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular digraphs.

2010 Mathematics Subject Classification: 05C20, 05C69

Keywords and phrases: Signed (k, k)-domatic number, Signed k-dominating function, Signed k-domination number, Regular digraphs

1. Terminology and introduction

We consider finite and simple digraphs D with vertex set V(D) and arc set A(D). The order n = n(D) of a digraph D is the number of its vertices. If v is a vertex of the digraph D, then $N^+(v) = N_D^+(v) = \{x | (v, x) \in A(D)\}$ and $N^-(v) = N_D^-(v) = \{x | (x, v) \in A(D)\}$ are the out-neigbourhood and in-neighbourhood of the vertex v. We call the vertices in $N^+(v)$ and $N^-(v)$ the out-neighbours and in-neighbours of v. Likewise, $N^+[v] = N_D^+[v] = N^+(v) \cup \{v\}$ and $N^-[v] = N_D^-[v] = N^-(v) \cup \{v\}$. The numbers $d_D^+(v) = d^+(v) = |N^+(v)|$ and $d_D^-(v) = d^-(v) = |N^-(v)|$ are the out-degree and in-degree of v, respectively. The minimum and maximum out-degree and minimum and maximum in-degree of a digraph D are denoted by $\delta^+(D)$, $\Delta^+(D)$, $\delta^-(D)$ and $\Delta^-(D)$, respectively. A digraph D is regular or r-regular if $\delta^+(D) = \Delta^+(D) = \delta^-(D) = \Delta^-(D) = r$. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by X. If X and Yare disjoint subsets of V(D), then (X, Y) is the set of arcs from X to Y. The complete digraph of order n is denoted by K_n^* . Consult [4, 5] for notation and terminology which are not defined here. Further information on domination and related topics are contained in [2, 6, 10, 11].

If $k \geq 1$ is an integer, then the signed k-dominating function is defined as a twovalued function $f: V(D) \to \{-1, 1\}$ such that $\sum_{x \in N^-[v]} f(x) \geq k$ for each $v \in V(D)$. The sum $\sum_{x \in V(D)} f(x) = f(V(D))$ is called the weight w(f) of f. The minimum of weights w(f), taken over all signed k-dominating functions f on D, is called the signed k-domination number of D, denoted by $\gamma_{kS}(D)$. The signed k-domination number of digraphs was introduced by Atapou, Hajypory, Sheikholeslami and Volkmann [3]. If k = 1, then the signed k-domination number $\gamma_{kS}(D)$ is the usual signed domination number $\gamma_S(D)$, which was introduced by Zelinka in [12] and has been studied by several authors (see for example [7, 9]).

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^d f_i(x) \leq k$ for each vertex $x \in V(D)$, is called in [8] a signed (k,k)-dominating family on D. The maximum number of functions in a signed (k,k)dominating family on D is the signed (k,k)-domatic number of D, denoted by $d_S^k(D)$. As the assumption $\delta^-(D) \geq k-1$ is necessary, we always assume that when we discuss $\gamma_{kS}(D)$ or $d_S^k(D)$, all digraphs involved satisfy $\delta^-(D) \geq k-1$. The special case k = 1was also discussed in [1, 9].

In this paper we continue the studies of the signed (k, k)-domatic number of digraphs. First we present upper bounds on $d_S^k(D)$ for regular digraphs in terms of order. Finally, we show that $d_S^k(D) \leq n-1$ with exception of the case that the digraph D of order n is isomorphic to the complete digraph K_n^* and n and k are of the same parity with $k \leq n-2$. For regular digraphs we can improve this result by the upper bound n-2.

The following basic results are useful for our investigations.

Proposition 1.1 (Sheikholeslami, Volkmann [8] 2012) If *D* is a digraph with $\delta^{-}(D) \geq k - 1$, then $d_{S}^{k}(D) \leq \delta^{-}(D) + 1$.

Proposition 1.2 (Sheikholeslami, Volkmann [8] 2012) If D is a digraph such that $\delta^{-}(D)$ and k are both odd or $\delta^{-}(D)$ and k are both even, then

$$d_{S}^{k}(D) \le \frac{k}{k+1}(\delta^{-}(D)+1).$$

Proposition 1.3 (Sheikholeslami, Volkmann [8] 2012) Let $k \ge 2$ be an integer, and let D be a digraph with $\delta^{-}(D) \ge k - 1$. Then $d_{S}^{k}(D) = 1$ if and only if for every vertex $v \in V(D)$, the set $N^{+}[v]$ contains a vertex x such that $d^{-}(x) \le k$.

Proposition 1.4 (Sheikholeslami, Volkmann [8] 2012) If D is a digraph of order n with $\delta^{-}(D) \geq k - 1$, then $\gamma_{kS}(D) \cdot d_{S}^{k}(D) \leq k \cdot n$.

2. Regular digraphs

Throughout this section, if f is a signed k-dominating function on a digraph D, then we let P and M denote the sets of those vertices in D which are assigned under f the values 1 and -1, respectively. Thus |P| + |M| = n(D).

Theorem 2.1 If $k \ge 1$ is an odd integer, and D is a 2*r*-regular digraph of odd order $n = 2q + 1 \ge 3$ with $r \le q - 1$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+2} \right\rfloor.$$

Proof. If f is an arbitrary signed k-dominating function on D, then we firstly show that

$$|P| \ge q + \frac{k+3}{2}.\tag{1}$$

Because of $\sum_{x \in N^{-}[y]} f(x) \ge k$ for each vertex $y \in V(D)$, we observe that each vertex $u \in P$ has at most (2r + 1 - k)/2 in-neighbors in M and thus

$$|(M,P)| \le |P| \cdot \frac{2r+1-k}{2}.$$
 (2)

In addition, each vertex $v \in M$ has at most (2r - k - 1)/2 in-neighbors in M and so

$$|A(D[M])| \le |M| \cdot \frac{2r - k - 1}{2}$$

Since $d_D^+(x) = 2r$ for each vertex $x \in V(D)$, we deduce from the last inequality that

$$|(M,P)| \ge 2r \cdot |M| - |M| \cdot \frac{2r - k - 1}{2} = |M| \cdot \frac{2r + k + 1}{2}.$$
(3)

Using (2) and (3), we obtain

$$|P| \cdot \frac{2r+1-k}{2} \ge (2q+1-|P|)\frac{2r+1+k}{2}$$

and thus

$$|P| \geq \frac{(2r+k+1)(2q+1)}{4r+2}$$

If we suppose that $|P| \leq q + \frac{k+1}{2}$, then the last inequality leads to

$$q + \frac{k+1}{2} \ge |P| \ge \frac{(2r+k+1)(2q+1)}{4r+2}$$

It follows that $r \ge q$. This is a contradiction to the hypothesis $r \le q - 1$ and thus (1) is proved.

Now let $\{f_1, f_2, \ldots, f_d\}$ be a signed (k, k)-dominating family on D with $d = d_S^k(D)$. Since $\sum_{i=1}^d f_i(u) \leq k$ for every $u \in V(D)$, each of these sums contains at least $\lceil (d-k)/2 \rceil$ summands of value -1. Using this and inequality (1), we see that the sum

$$\sum_{x \in V(D)} \sum_{i=1}^{d} f_i(x) = \sum_{i=1}^{d} \sum_{x \in V(D)} f_i(x)$$
(4)

contains at least $(2q+1)\lceil (d-k)/2\rceil$ summands of value -1 and at least d(q+(k+3)/2) summands of value 1. As the sum (4) consists of exactly d(2q+1) summands, it follows that

$$(2q+1)\frac{d-k}{2} + d\left(q + \frac{k+3}{2}\right) \le (2q+1)\left[\frac{d-k}{2}\right] + d\left(q + \frac{k+3}{2}\right) \le d(2q+1).$$

We deduce that

$$(2q+1)(d-k) + d(2q+k+3) \le 2d(2q+1),$$

and thus $d(k+2) \leq k(2q+1)$. This yields to the desired bound immediately. \Box

Example 2.2 Let D be the complete digraph K_n^* of odd order $n = 2q + 1 \ge 3$, and let $\{1, 2, \ldots, n\}$ be the vertex set of D. Since D is complete, we observe that $N^-[v] = V(D)$ for each vertex $v \in V(D)$. Let $k \ge 1$ be an odd integer with $k \le 2q - 1$. Define the signed k-dominating functions f_1, f_2, \ldots, f_n by

$$f_i(i) = f_i(i+1) = \dots = f_i\left(i-1+\frac{2q+k+1}{2}\right) = 1$$

and $f_i(j) = -1$ for the remaining vertices $j \in V(D)$ for i = 1, 2, ..., n, where all numbers are taken modulo n. It is easy to see that

$$\sum_{x \in V(D)} f_i(x) = \frac{2q+k+1}{2} - \left(2q+1 - \frac{2q+k+1}{2}\right) = k$$

for $1 \leq i \leq n$ and $\sum_{i=1}^{n} f_i(x) = k$ for each $x \in V(D)$. Hence $\{f_1, f_2, \ldots, f_n\}$ is a signed (k, k)-dominating family on D, and we conclude that $d_S^k(D) \geq n$. In view of

Proposition 1.1, it holds $d_S^k(D) \leq \delta^-(D) + 1 = n$, and so $d_S^k(K_n^*) = n$ when n and k are odd and $k \leq n-2$.

Example 2.2 demonstrates that the condition $r \leq q-1$ in Theorem 2.1 is necessary, since that theorem is not valid for r = q. If k is even in Theorem 2.1, then we can improve the bound on the signed (k, k)-domatic number.

Theorem 2.3 If $k \ge 2$ is an even integer, and D is a 2r-regular digraph of odd order $n = 2q + 1 \ge 3$ with $r \le q - 1$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+3} \right\rfloor.$$

Proof. If f is a signed k-dominating function on D, then we show that

$$|P| \ge q + \frac{k+4}{2}.\tag{5}$$

As D is a 2r-regular digraph and k is even, the condition $\sum_{x \in N^{-}[y]} f(x) \ge k$ leads to $\sum_{x \in N^{-}[y]} f(x) \ge k + 1$ for each vertex $y \in V(D)$. This implies that each vertex $u \in P$ has at most (2r - k)/2 in-neighbors in M and thus

$$|(M,P)| \le |P| \cdot \frac{2r-k}{2}.$$
(6)

In addition, each vertex $v \in M$ has at most (2r - k - 2)/2 in-neighbors in M and so

$$|A(D[M])| \le |M| \cdot \frac{2r - k - 2}{2}.$$

Since $d_D^+(x) = 2r$ for each vertex $x \in V(D)$, we deduce from the last inequality that

$$|(M,P)| \ge 2r \cdot |M| - |M| \cdot \frac{2r - k - 2}{2} = |M| \cdot \frac{2r + k + 2}{2}.$$
(7)

Applying (6) and (7), we obtain

$$|P| \cdot \frac{2r-k}{2} \ge (2q+1-|P|)\frac{2r+2+k}{2}$$

and thus

$$|P| \ge \frac{(2r+k+2)(2q+1)}{4r+2}.$$

If we suppose that $|P| \le q + \frac{k+2}{2}$, then the last inequality leads to

$$q + \frac{k+2}{2} \ge |P| \ge \frac{(2r+k+2)(2q+1)}{4r+2}$$

It follows that $r \ge q$. This is a contradiction to the hypothesis $r \le q - 1$ and thus (5) is proved.

Now let $\{f_1, f_2, \ldots, f_d\}$ be a signed (k, k)-dominating family on D with $d = d_S^k(D)$. Since $\sum_{i=1}^d f_i(u) \leq k$ for every $u \in V(D)$, each of these sums contains at least $\lceil (d-k)/2 \rceil$ summands of value -1. Using this and inequality (5), we see that the sum

$$\sum_{x \in V(D)} \sum_{i=1}^{d} f_i(x) = \sum_{i=1}^{d} \sum_{x \in V(D)} f_i(x)$$
(8)

contains at least $(2q+1)\lceil (d-k)/2\rceil$ summands of value -1 and at least d(q+(k+4)/2) summands of value 1. As the sum (8) consists of exactly d(2q+1) summands, it follows that

$$(2q+1)\frac{d-k}{2} + d\left(q + \frac{k+4}{2}\right) \le (2q+1)\left\lceil\frac{d-k}{2}\right\rceil + d\left(q + \frac{k+4}{2}\right) \le d(2q+1).$$

We deduce that

$$(2q+1)(d-k) + d(2q+k+4) \le 2d(2q+1)$$

and thus $d(k+3) \leq k(2q+1)$. This yields to the desired bound immediately. \Box

The proofs of the next upper bounds on regular digraphs are analogously to that of Theorem 2.1.

Theorem 2.4 If $k \ge 1$ is an odd integer, and D is a 2*r*-regular digraph of even order $n = 2q \ge 4$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+1} \right\rfloor.$$

Theorem 2.5 If $k \ge 2$ is an even integer, and D is a (2r + 1)-regular digraph of odd order $n = 2q + 1 \ge 3$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+1} \right\rfloor$$

Theorem 2.6 If $k \ge 2$ is an even integer, and D is a (2r+1)-regular digraph of even order $n = 2q \ge 4$ with $r \le q - 2$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+2} \right\rfloor.$$

If k is even in Theorem 2.4 or k odd in Theorems 2.5 and 2.6, then we can improve the upper bounds on the signed (k, k)-domatic number analogously to the proof of Theorem 2.3. **Theorem 2.7** If $k \ge 2$ is an even integer, and D is a 2r-regular digraph of even order $n = 2q \ge 4$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+2} \right\rfloor.$$

Theorem 2.8 If $k \ge 1$ is an odd integer, and D is a (2r + 1)-regular digraph of odd order $n = 2q + 1 \ge 3$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+2} \right\rfloor$$

Theorem 2.9 If $k \ge 1$ is an odd integer, and D is a (2r+1)-regular digraph of even order $n = 2q \ge 4$ with $r \le q - 2$, then

$$d_S^k(D) \le \left\lfloor \frac{kn}{k+3} \right\rfloor.$$

Example 2.10 Let D be the complete digraph K_n^* of even order $n = 2q \ge 4$, and let $\{1, 2, \ldots, n\}$ be the vertex set of D. Let $k \ge 2$ be an even integer with $k \le 2q - 2$. Define the signed k-dominating functions f_1, f_2, \ldots, f_n by

$$f_i(i) = f_i(i+1) = \dots = f_i\left(i-1+\frac{2q+k}{2}\right) = 1$$

and $f_i(j) = -1$ for the remaining vertices $j \in V(D)$ for i = 1, 2, ..., n, where all numbers are taken modulo n. It is easy to see that

$$\sum_{x \in V(D)} f_i(x) = \frac{2q+k}{2} - \left(2q - \frac{2q+k}{2}\right) = k$$

for $1 \leq i \leq n$ and $\sum_{i=1}^{n} f_i(x) = k$ for each $x \in V(D)$. Hence $\{f_1, f_2, \ldots, f_n\}$ is a signed (k, k)-dominating family on D, and we conclude that $d_S^k(D) \geq n$. In view of Proposition 1.2, it holds $d_S^k(D) \leq \delta(G) + 1 = n$ and so $d_S^k(K_n^*) = n$ when n and k are even and $k \leq n-2$.

Example 2.10 shows that Theorem 2.6 is not valid for r = q - 1.

3. Further upper bounds

Theorem 3.1 Let $k \ge 1$ be an integer, and let K_n^* be the complete digraph of order $n \ge 3$.

- (a) If $n 1 \le k \le n$, then $d_S^k(K_n^*) = 1$.
- (b) If $k \leq n-2$ and k and n are odd or k and n are even, then $d_S^k(K_n^*) = n$.
- (c) If $k \leq n-2$ and k and n are of different parity, then $d_S^k(K_n^*) \leq n-2$.

Proof. (a) Proposition 1.3 and the condition $n \ge 3$ lead to $d_S^k(K_n^*) = 1$ when $n-1 \le k \le n$.

(b) Examples 2.2 and 2.10 show that (b) is valid.

(c) If n is odd and k is even, then $\delta^{-}(K_{n}^{*}) = n-1$ is even. According to Proposition 1.2, we have

$$d_S^k(K_n^*) \le \frac{k}{k+1} (\delta^-(K_n^*) + 1) = \frac{kn}{k+1} < n-1$$

when k < n-1 and so $d_S^k(K_n^*) \le n-2$ when $k \le n-2$. If n is even and k is odd, then $\delta^-(K_n^*) = n-1$ is odd. Again Proposition 1.2 yields to the desired bound. \Box

Corollary 3.2 If $k \ge 1$ is an integer and D a digraph of order $n \ge 3$, then $d_S^k(D) \le n-1$ with exception of the case that D is isomorphic to the complete digraph K_n^* and k and n are odd or k and n are even with $k \le n-2$.

Proof. If $\delta^{-}(D) \leq n-2$, then Proposition 1.1 implies that $d_{S}^{k}(D) \leq \delta^{-}(D)+1 \leq n-1$. If $\delta^{-}(D) = n-1$, then Theorem 3.1 leads to the desired result. \Box

For regular digraphs we can improve the bound in Corollary 3.2.

Theorem 3.3 If $k \ge 1$ is an integer and D a δ -regular digraph of order $n \ge 3$, then $d_S^k(D) \le n-2$ with exception of the case that D is isomorphic to the complete digraph K_n^* and k and n are odd or k and n are even with $k \le n-2$.

Proof. If $\delta = n - 1$, then Theorem 3.1 leads to the desired result. If $\delta \leq n - 3$, then we deduce from Proposition 1.1 that $d_S^k(D) \leq \delta + 1 \leq n - 2$.

Now assume that $\delta = n-2$. If δ and k are odd or δ and k are even, then Proposition 1.2 implies that

$$d_{S}^{k}(D) \le \frac{k}{k+1}(\delta+1) = \frac{k}{k+1}(n-1) < n-1$$

and so $d_S^k(D) \leq n-2$.

If δ is even and k is odd, then $n = \delta + 2$ is even. Applying Theorem 2.4, we obtain

$$d_S^k(D) \le \frac{kn}{k+1} < n-1$$

when k < n-1 and so $d_S^k(D) \le n-2$ when k < n-1. In the remaining case that $n-1 \le k \le n$, we deduce from Proposition 1.3 that $d_S^k(D) = 1 \le n-2$.

Finally, assume that δ is odd and k is even. Then $n = \delta + 2$ is odd, and Theorem 2.5 leads to

$$d_S^k(D) \le \frac{kn}{k+1} < n-1$$

when k < n-1 and so $d_S^k(D) \le n-2$ when k < n-1. In the remaining case that $n-1 \le k \le n$, we deduce from Proposition 1.3 that $d_S^k(D) = 1 \le n-2$. Since we have

discussed all possible cases, the proof is complete. \Box

If D is a digraph of order n with $\delta^{-}(D) \ge k+1$, then we have proved in [8] that

$$\gamma_{kS}(D) + d_S^k(D) \le n + k. \tag{9}$$

Next we will show that this inequality remains valid for all digraphs with $\delta^{-}(D) \geq k-1$.

Theorem 3.4 Let $k \ge 1$ be an integer, and let D be a digraph of order n. If $\delta^{-}(D) \ge k - 1$, then

$$\gamma_{kS}(D) + d_S^k(D) \le n + k.$$

Proof. Assume first that $k - 1 \leq \delta^{-}(D) \leq k$. If $\gamma_{kS}(D) = n$, then $d_{S}^{k}(D) = 1$ and therefore $\gamma_{kS}(D) + d_{S}^{k}(D) = n + 1 \leq n + k$, as desired. If $\gamma_{kS}(D) \leq n - 1$, then Proposition 1.1 and the condition $\delta^{-}(D) \leq k$ imply

$$\gamma_{kS}(D) + d_S^k(D) \le n - 1 + \delta^-(D) + 1 \le n - 1 + k + 1 = n + k.$$

In the case $\delta^{-}(D) \geq k+1$, the desired bound follows from inequality (9), and we are done. \Box

For $k \ge 2$ we will improve Theorem 3.4.

Theorem 3.5 Let $k \geq 2$ be an integer, and let D be a digraph of order $n \geq 3$ such that $\delta^{-}(D) \geq k - 1$. Then

$$\gamma_{kS}(D) + d_S^k(D) \le n + k - 1$$

with exception of the case that D is isomorphic to the complete digraph K_n^* and k and n are odd or k and n are even with $k \leq n-2$.

Proof. Assume first that $k - 1 \leq \delta^{-}(D) \leq k$. If $\gamma_{kS}(D) = n$, then $d_{S}^{k}(D) = 1$ and therefore $\gamma_{kS}(D) + d_{S}^{k}(D) = n + 1 \leq n + k - 1$ since $k \geq 2$. If $\gamma_{kS}(D) \leq n - 1$, then $\gamma_{kS}(D) \leq n - 2$ (see also [3]). Therefore we deduce from Proposition 1.1 and the condition $\delta^{-}(D) \leq k$ that

$$\gamma_{kS}(D) + d_S^k(D) \le n - 2 + \delta^-(D) + 1 \le n - 2 + k + 1 = n + k - 1.$$

Assume next that $\delta^{-}(D) \geq k + 1$. If $\gamma_{kS}(D) \leq k$, then Corollary 3.2 implies that $\gamma_{kS}(D) + d_{S}^{k}(D) \leq k + n - 1$ with exception of the case that D is isomorphic to the complete digraph K_{n}^{*} and k and n are odd or k and n are even with $k \leq n - 2$.

Now assume that $\gamma_{kS}(D) \ge k+1$. If $\gamma_{kS}(D) = n$, then $d_S^k(D) = 1$ and so $\gamma_{kS}(D) + d_S^k(D) = n+1 \le n+k-1$, as desired. If $\gamma_{kS}(D) \le n-1$, then $k+1 \le \gamma_{kS}(D) \le n-2$.

Using Proposition 1.4 and the fact that the function g(x) = x + (kn)/x is decreasing for $k+1 \le x \le \sqrt{kn}$ and increasing for $\sqrt{kn} \le x \le n-2$, we obtain

$$\begin{aligned} \gamma_{kS}(D) + d_S^k(D) &\leq \gamma_{kS}(D) + \frac{kn}{\gamma_{kS}(D)} \\ &\leq \max\left\{k + 1 + \frac{kn}{k+1}, n - 2 + \frac{kn}{n-2}\right\} < n+k \end{aligned}$$

and thus $\gamma_{kS}(D) + d_S^k(D) \leq n + k - 1$ with exception of the case that $\delta^-(D) = k + 1 = n - 1$ and so D is isomorphic to the complete digraph K_n^* with k = n - 2. This completes the proof. \Box

It is easy to see that $\gamma_{kS}(K_n^*) = k$ when n+k is even (see also [3]). Using Examples 2.2 and 2.10, we see that $\gamma_{kS}(K_n^*) + d_S^k(K_n^*) = k + n$ when n + k is even and $k \leq n-2$. Therefore the given upper bound in Theorem 3.4 is sharp and the bound in Theorem 3.5 is not valid in these cases. If C_n is an oriented cycle of length n, then $\gamma_{1S}(D) + d_S^1(D) = n + 1$. This example shows that Theorem 3.5 is not valid for k = 1 in general.

References

- H. Aram, M. Atapour, S.M. Sheikholeslami and L. Volkmann, Signed k-domatic numbers of digraphs, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 143-150.
- [2] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total {k}-domination and total {k}-domatic number of graphs, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 39-47.
- [3] M. Atapour, R. Hajypory, S.M. Sheikholeslami and L. Volkmann, The signed kdomination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048-1057.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, editors, *Domination in Graphs*, *Advanced Topics*, Marcel Dekker, Inc., New York (1998).
- [6] H. Karami, R. Khoeilar, S.M. Sheikholeslami and A. Khodkar, Global signed domination in graphs, *Bull. Malays. Math. Sci.* Soc. (2) 36 (2013), no. 2, 363-372.
- [7] H. Karami, S.M. Sheikholeslami and A. Khodkar, Lower bounds on the signed domination numbers of directed graphs, *Discrete Math.* **309** (2009), 2567-2570.

- [8] S.M. Sheikholeslami and L. Volkmann, The signed (k, k)-domatic number of digraphs, Math. Commun. 17 (2012), 537-546.
- [9] L. Volkmann, Signed domination and signed domatic numbers of digraphs, *Discuss. Math. Graph Theory* **31** (2011), 415-427.
- [10] Haoli Wang, Xirong Xu, Yuansheng Yang, Guoqing Wang and Kai Lü, On the distance paired-domination of circulant graphs, *Bull. Malays. Math. Sci.* Soc. (2) 34 (2011), no. 1, 1-19.
- [11] Yunjian Wu and Qinglin Yu, A characterization of graphs with equal domination number and vertex cover number, *Bull. Malays. Math. Sci.* Soc. (2) **35** (2012), no. 3, 803-806.
- B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55 (2005), 479-482.