Upper bounds on the signed (k, k)-domatic number of digraphs

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let D be a simple digraph with vertex set $V(D)$, and let $f: V(D) \rightarrow\{-1,1\}$ be a two-valued function. If $k \geq 1$ is an integer and $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(x) \leq k$ for each $x \in V(D)$, is called a signed (k, k)-dominating family (of functions) on D. The maximum number of functions in a signed (k, k)-dominating family on D is the signed (k, k)-domatic number of D.

In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular digraphs.

2010 Mathematics Subject Classification: 05C20, 05C69
Keywords and phrases: Signed (k, k)-domatic number, Signed k-dominating function, Signed k-domination number, Regular digraphs

1. Terminology and introduction

We consider finite and simple digraphs D with vertex set $V(D)$ and arc set $A(D)$. The order $n=n(D)$ of a digraph D is the number of its vertices. If v is a vertex of the digraph D, then $N^{+}(v)=N_{D}^{+}(v)=\{x \mid(v, x) \in A(D)\}$ and $N^{-}(v)=N_{D}^{-}(v)=$ $\{x \mid(x, v) \in A(D)\}$ are the out-neigbourhood and in-neighbourhood of the vertex v. We call the vertices in $N^{+}(v)$ and $N^{-}(v)$ the out-neighbours and in-neighbours of v. Likewise, $N^{+}[v]=N_{D}^{+}[v]=N^{+}(v) \cup\{v\}$ and $N^{-}[v]=N_{D}^{-}[v]=N^{-}(v) \cup\{v\}$. The numbers $d_{D}^{+}(v)=d^{+}(v)=\left|N^{+}(v)\right|$ and $d_{D}^{-}(v)=d^{-}(v)=\left|N^{-}(v)\right|$ are the out-degree and indegree of v, respectively. The minimum and maximum out-degree and minimum and
maximum in-degree of a digraph D are denoted by $\delta^{+}(D), \Delta^{+}(D), \delta^{-}(D)$ and $\Delta^{-}(D)$, respectively. A digraph D is regular or r-regular if $\delta^{+}(D)=\Delta^{+}(D)=\delta^{-}(D)=$ $\Delta^{-}(D)=r$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If X and Y are disjoint subsets of $V(D)$, then (X, Y) is the set of arcs from X to Y. The complete digraph of order n is denoted by K_{n}^{*}. Consult $[4,5]$ for notation and terminology which are not defined here. Further information on domination and related topics are contained in $[2,6,10,11]$.

If $k \geq 1$ is an integer, then the signed k-dominating function is defined as a twovalued function $f: V(D) \rightarrow\{-1,1\}$ such that $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$. The sum $\sum_{x \in V(D)} f(x)=f(V(D))$ is called the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed k-dominating functions f on D, is called the signed k-domination number of D, denoted by $\gamma_{k S}(D)$. The signed k-domination number of digraphs was introduced by Atapou, Hajypory, Sheikholeslami and Volkmann [3]. If $k=1$, then the signed k-domination number $\gamma_{k S}(D)$ is the usual signed domination number $\gamma_{S}(D)$, which was introduced by Zelinka in [12] and has been studied by several authors (see for example [7, 9]).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(x) \leq k$ for each vertex $x \in V(D)$, is called in [8] a signed (k, k)-dominating family on D. The maximum number of functions in a signed (k, k) dominating family on D is the signed (k, k)-domatic number of D, denoted by $d_{S}^{k}(D)$. As the assumption $\delta^{-}(D) \geq k-1$ is necessary, we always assume that when we discuss $\gamma_{k S}(D)$ or $d_{S}^{k}(D)$, all digraphs involved satisfy $\delta^{-}(D) \geq k-1$. The special case $k=1$ was also discussed in $[1,9]$.

In this paper we continue the studies of the signed (k, k)-domatic number of digraphs. First we present upper bounds on $d_{S}^{k}(D)$ for regular digraphs in terms of order. Finally, we show that $d_{S}^{k}(D) \leq n-1$ with exception of the case that the digraph D of order n is isomorphic to the complete digraph K_{n}^{*} and n and k are of the same parity with $k \leq n-2$. For regular digraphs we can improve this result by the upper bound $n-2$.

The following basic results are useful for our investigations.
Proposition 1.1 (Sheikholeslami, Volkmann [8] 2012) If D is a digraph with $\delta^{-}(D) \geq k-1$, then $d_{S}^{k}(D) \leq \delta^{-}(D)+1$.

Proposition 1.2 (Sheikholeslami, Volkmann [8] 2012) If D is a digraph such that $\delta^{-}(D)$ and k are both odd or $\delta^{-}(D)$ and k are both even, then

$$
d_{S}^{k}(D) \leq \frac{k}{k+1}\left(\delta^{-}(D)+1\right)
$$

Proposition 1.3 (Sheikholeslami, Volkmann [8] 2012) Let $k \geq 2$ be an integer, and let D be a digraph with $\delta^{-}(D) \geq k-1$. Then $d_{S}^{k}(D)=1$ if and only if for every vertex $v \in V(D)$, the set $N^{+}[v]$ contains a vertex x such that $d^{-}(x) \leq k$.

Proposition 1.4 (Sheikholeslami, Volkmann [8] 2012) If D is a digraph of order n with $\delta^{-}(D) \geq k-1$, then $\gamma_{k S}(D) \cdot d_{S}^{k}(D) \leq k \cdot n$.

2. Regular digraphs

Throughout this section, if f is a signed k-dominating function on a digraph D, then we let P and M denote the sets of those vertices in D which are assigned under f the values 1 and -1 , respectively. Thus $|P|+|M|=n(D)$.

Theorem 2.1 If $k \geq 1$ is an odd integer, and D is a $2 r$-regular digraph of odd order $n=2 q+1 \geq 3$ with $r \leq q-1$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+2}\right\rfloor
$$

Proof. If f is an arbitrary signed k-dominating function on D, then we firstly show that

$$
\begin{equation*}
|P| \geq q+\frac{k+3}{2} \tag{1}
\end{equation*}
$$

Because of $\sum_{x \in N^{-}[y]} f(x) \geq k$ for each vertex $y \in V(D)$, we observe that each vertex $u \in P$ has at most $(2 r+1-k) / 2$ in-neighbors in M and thus

$$
\begin{equation*}
|(M, P)| \leq|P| \cdot \frac{2 r+1-k}{2} \tag{2}
\end{equation*}
$$

In addition, each vertex $v \in M$ has at most $(2 r-k-1) / 2$ in-neighbors in M and so

$$
|A(D[M])| \leq|M| \cdot \frac{2 r-k-1}{2} .
$$

Since $d_{D}^{+}(x)=2 r$ for each vertex $x \in V(D)$, we deduce from the last inequality that

$$
\begin{equation*}
|(M, P)| \geq 2 r \cdot|M|-|M| \cdot \frac{2 r-k-1}{2}=|M| \cdot \frac{2 r+k+1}{2} . \tag{3}
\end{equation*}
$$

Using (2) and (3), we obtain

$$
|P| \cdot \frac{2 r+1-k}{2} \geq(2 q+1-|P|) \frac{2 r+1+k}{2}
$$

and thus

$$
|P| \geq \frac{(2 r+k+1)(2 q+1)}{4 r+2}
$$

If we suppose that $|P| \leq q+\frac{k+1}{2}$, then the last inequality leads to

$$
q+\frac{k+1}{2} \geq|P| \geq \frac{(2 r+k+1)(2 q+1)}{4 r+2}
$$

It follows that $r \geq q$. This is a contradiction to the hypothesis $r \leq q-1$ and thus (1) is proved.

Now let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D with $d=d_{S}^{k}(D)$. Since $\sum_{i=1}^{d} f_{i}(u) \leq k$ for every $u \in V(D)$, each of these sums contains at least $\lceil(d-k) / 2\rceil$ summands of value -1 . Using this and inequality (1), we see that the sum

$$
\begin{equation*}
\sum_{x \in V(D)} \sum_{i=1}^{d} f_{i}(x)=\sum_{i=1}^{d} \sum_{x \in V(D)} f_{i}(x) \tag{4}
\end{equation*}
$$

contains at least $(2 q+1)\lceil(d-k) / 2\rceil$ summands of value -1 and at least $d(q+(k+3) / 2)$ summands of value 1 . As the sum (4) consists of exactly $d(2 q+1)$ summands, it follows that

$$
(2 q+1) \frac{d-k}{2}+d\left(q+\frac{k+3}{2}\right) \leq(2 q+1)\left\lceil\frac{d-k}{2}\right\rceil+d\left(q+\frac{k+3}{2}\right) \leq d(2 q+1)
$$

We deduce that

$$
(2 q+1)(d-k)+d(2 q+k+3) \leq 2 d(2 q+1)
$$

and thus $d(k+2) \leq k(2 q+1)$. This yields to the desired bound immediately.
Example 2.2 Let D be the complete digraph K_{n}^{*} of odd order $n=2 q+1 \geq 3$, and let $\{1,2, \ldots, n\}$ be the vertex set of D. Since D is complete, we observe that $N^{-}[v]=V(D)$ for each vertex $v \in V(D)$. Let $k \geq 1$ be an odd integer with $k \leq 2 q-1$. Define the signed k-dominating functions $f_{1}, f_{2}, \ldots, f_{n}$ by

$$
f_{i}(i)=f_{i}(i+1)=\cdots=f_{i}\left(i-1+\frac{2 q+k+1}{2}\right)=1
$$

and $f_{i}(j)=-1$ for the remaining vertices $j \in V(D)$ for $i=1,2, \ldots, n$, where all numbers are taken modulo n. It is easy to see that

$$
\sum_{x \in V(D)} f_{i}(x)=\frac{2 q+k+1}{2}-\left(2 q+1-\frac{2 q+k+1}{2}\right)=k
$$

for $1 \leq i \leq n$ and $\sum_{i=1}^{n} f_{i}(x)=k$ for each $x \in V(D)$. Hence $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a signed (k, k)-dominating family on D, and we conclude that $d_{S}^{k}(D) \geq n$. In view of

Proposition 1.1, it holds $d_{S}^{k}(D) \leq \delta^{-}(D)+1=n$, and so $d_{S}^{k}\left(K_{n}^{*}\right)=n$ when n and k are odd and $k \leq n-2$.

Example 2.2 demonstrates that the condition $r \leq q-1$ in Theorem 2.1 is necessary, since that theorem is not valid for $r=q$. If k is even in Theorem 2.1, then we can improve the bound on the signed (k, k)-domatic number.

Theorem 2.3 If $k \geq 2$ is an even integer, and D is a $2 r$-regular digraph of odd order $n=2 q+1 \geq 3$ with $r \leq q-1$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+3}\right\rfloor
$$

Proof. If f is a signed k-dominating function on D, then we show that

$$
\begin{equation*}
|P| \geq q+\frac{k+4}{2} \tag{5}
\end{equation*}
$$

As D is a $2 r$-regular digraph and k is even, the condition $\sum_{x \in N^{-}[y]} f(x) \geq k$ leads to $\sum_{x \in N^{-}[y]} f(x) \geq k+1$ for each vertex $y \in V(D)$. This implies that each vertex $u \in P$ has at most $(2 r-k) / 2$ in-neighbors in M and thus

$$
\begin{equation*}
|(M, P)| \leq|P| \cdot \frac{2 r-k}{2} \tag{6}
\end{equation*}
$$

In addition, each vertex $v \in M$ has at most $(2 r-k-2) / 2$ in-neighbors in M and so

$$
|A(D[M])| \leq|M| \cdot \frac{2 r-k-2}{2} .
$$

Since $d_{D}^{+}(x)=2 r$ for each vertex $x \in V(D)$, we deduce from the last inequality that

$$
\begin{equation*}
|(M, P)| \geq 2 r \cdot|M|-|M| \cdot \frac{2 r-k-2}{2}=|M| \cdot \frac{2 r+k+2}{2} \tag{7}
\end{equation*}
$$

Applying (6) and (7), we obtain

$$
|P| \cdot \frac{2 r-k}{2} \geq(2 q+1-|P|) \frac{2 r+2+k}{2}
$$

and thus

$$
|P| \geq \frac{(2 r+k+2)(2 q+1)}{4 r+2}
$$

If we suppose that $|P| \leq q+\frac{k+2}{2}$, then the last inequality leads to

$$
q+\frac{k+2}{2} \geq|P| \geq \frac{(2 r+k+2)(2 q+1)}{4 r+2}
$$

It follows that $r \geq q$. This is a contradiction to the hypothesis $r \leq q-1$ and thus (5) is proved.

Now let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D with $d=d_{S}^{k}(D)$. Since $\sum_{i=1}^{d} f_{i}(u) \leq k$ for every $u \in V(D)$, each of these sums contains at least $\lceil(d-k) / 2\rceil$ summands of value -1 . Using this and inequality (5), we see that the sum

$$
\begin{equation*}
\sum_{x \in V(D)} \sum_{i=1}^{d} f_{i}(x)=\sum_{i=1}^{d} \sum_{x \in V(D)} f_{i}(x) \tag{8}
\end{equation*}
$$

contains at least $(2 q+1)\lceil(d-k) / 2\rceil$ summands of value -1 and at least $d(q+(k+4) / 2)$ summands of value 1 . As the sum (8) consists of exactly $d(2 q+1)$ summands, it follows that

$$
(2 q+1) \frac{d-k}{2}+d\left(q+\frac{k+4}{2}\right) \leq(2 q+1)\left\lceil\frac{d-k}{2}\right\rceil+d\left(q+\frac{k+4}{2}\right) \leq d(2 q+1)
$$

We deduce that

$$
(2 q+1)(d-k)+d(2 q+k+4) \leq 2 d(2 q+1)
$$

and thus $d(k+3) \leq k(2 q+1)$. This yields to the desired bound immediately.
The proofs of the next upper bounds on regular digraphs are analogously to that of Theorem 2.1.

Theorem 2.4 If $k \geq 1$ is an odd integer, and D is a $2 r$-regular digraph of even order $n=2 q \geq 4$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+1}\right\rfloor .
$$

Theorem 2.5 If $k \geq 2$ is an even integer, and D is a ($2 r+1$)-regular digraph of odd order $n=2 q+1 \geq 3$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+1}\right\rfloor
$$

Theorem 2.6 If $k \geq 2$ is an even integer, and D is a $(2 r+1)$-regular digraph of even order $n=2 q \geq 4$ with $r \leq q-2$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+2}\right\rfloor
$$

If k is even in Theorem 2.4 or k odd in Theorems 2.5 and 2.6, then we can improve the upper bounds on the signed (k, k)-domatic number analogously to the proof of Theorem 2.3.

Theorem 2.7 If $k \geq 2$ is an even integer, and D is a $2 r$-regular digraph of even order $n=2 q \geq 4$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+2}\right\rfloor
$$

Theorem 2.8 If $k \geq 1$ is an odd integer, and D is a ($2 r+1$)-regular digraph of odd order $n=2 q+1 \geq 3$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+2}\right\rfloor
$$

Theorem 2.9 If $k \geq 1$ is an odd integer, and D is a $(2 r+1)$-regular digraph of even order $n=2 q \geq 4$ with $r \leq q-2$, then

$$
d_{S}^{k}(D) \leq\left\lfloor\frac{k n}{k+3}\right\rfloor
$$

Example 2.10 Let D be the complete digraph K_{n}^{*} of even order $n=2 q \geq 4$, and let $\{1,2, \ldots, n\}$ be the vertex set of D. Let $k \geq 2$ be an even integer with $k \leq 2 q-2$. Define the signed k-dominating functions $f_{1}, f_{2}, \ldots, f_{n}$ by

$$
f_{i}(i)=f_{i}(i+1)=\cdots=f_{i}\left(i-1+\frac{2 q+k}{2}\right)=1
$$

and $f_{i}(j)=-1$ for the remaining vertices $j \in V(D)$ for $i=1,2, \ldots, n$, where all numbers are taken modulo n. It is easy to see that

$$
\sum_{x \in V(D)} f_{i}(x)=\frac{2 q+k}{2}-\left(2 q-\frac{2 q+k}{2}\right)=k
$$

for $1 \leq i \leq n$ and $\sum_{i=1}^{n} f_{i}(x)=k$ for each $x \in V(D)$. Hence $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a signed (k, k)-dominating family on D, and we conclude that $d_{S}^{k}(D) \geq n$. In view of Proposition 1.2, it holds $d_{S}^{k}(D) \leq \delta(G)+1=n$ and so $d_{S}^{k}\left(K_{n}^{*}\right)=n$ when n and k are even and $k \leq n-2$.

Example 2.10 shows that Theorem 2.6 is not valid for $r=q-1$.

3. Further upper bounds

Theorem 3.1 Let $k \geq 1$ be an integer, and let K_{n}^{*} be the complete digraph of order $n \geq 3$.
(a) If $n-1 \leq k \leq n$, then $d_{S}^{k}\left(K_{n}^{*}\right)=1$.
(b) If $k \leq n-2$ and k and n are odd or k and n are even, then $d_{S}^{k}\left(K_{n}^{*}\right)=n$.
(c) If $k \leq n-2$ and k and n are of different parity, then $d_{S}^{k}\left(K_{n}^{*}\right) \leq n-2$.

Proof. (a) Proposition 1.3 and the condition $n \geq 3$ lead to $d_{S}^{k}\left(K_{n}^{*}\right)=1$ when $n-1 \leq$ $k \leq n$.
(b) Examples 2.2 and 2.10 show that (b) is valid.
(c) If n is odd and k is even, then $\delta^{-}\left(K_{n}^{*}\right)=n-1$ is even. According to Proposition 1.2 , we have

$$
d_{S}^{k}\left(K_{n}^{*}\right) \leq \frac{k}{k+1}\left(\delta^{-}\left(K_{n}^{*}\right)+1\right)=\frac{k n}{k+1}<n-1
$$

when $k<n-1$ and so $d_{S}^{k}\left(K_{n}^{*}\right) \leq n-2$ when $k \leq n-2$. If n is even and k is odd, then $\delta^{-}\left(K_{n}^{*}\right)=n-1$ is odd. Again Proposition 1.2 yields to the desired bound.

Corollary 3.2 If $k \geq 1$ is an integer and D a digraph of order $n \geq 3$, then $d_{S}^{k}(D) \leq n-1$ with exception of the case that D is isomorphic to the complete digraph K_{n}^{*} and k and n are odd or k and n are even with $k \leq n-2$.

Proof. If $\delta^{-}(D) \leq n-2$, then Proposition 1.1 implies that $d_{S}^{k}(D) \leq \delta^{-}(D)+1 \leq n-1$. If $\delta^{-}(D)=n-1$, then Theorem 3.1 leads to the desired result.

For regular digraphs we can improve the bound in Corollary 3.2.
Theorem 3.3 If $k \geq 1$ is an integer and D a δ-regular digraph of order $n \geq 3$, then $d_{S}^{k}(D) \leq n-2$ with exception of the case that D is isomorphic to the complete digraph K_{n}^{*} and k and n are odd or k and n are even with $k \leq n-2$.

Proof. If $\delta=n-1$, then Theorem 3.1 leads to the desired result. If $\delta \leq n-3$, then we deduce from Proposition 1.1 that $d_{S}^{k}(D) \leq \delta+1 \leq n-2$.

Now assume that $\delta=n-2$. If δ and k are odd or δ and k are even, then Proposition 1.2 implies that

$$
d_{S}^{k}(D) \leq \frac{k}{k+1}(\delta+1)=\frac{k}{k+1}(n-1)<n-1
$$

and so $d_{S}^{k}(D) \leq n-2$.
If δ is even and k is odd, then $n=\delta+2$ is even. Applying Theorem 2.4, we obtain

$$
d_{S}^{k}(D) \leq \frac{k n}{k+1}<n-1
$$

when $k<n-1$ and so $d_{S}^{k}(D) \leq n-2$ when $k<n-1$. In the remaining case that $n-1 \leq k \leq n$, we deduce from Proposition 1.3 that $d_{S}^{k}(D)=1 \leq n-2$.

Finally, assume that δ is odd and k is even. Then $n=\delta+2$ is odd, and Theorem 2.5 leads to

$$
d_{S}^{k}(D) \leq \frac{k n}{k+1}<n-1
$$

when $k<n-1$ and so $d_{S}^{k}(D) \leq n-2$ when $k<n-1$. In the remaining case that $n-1 \leq k \leq n$, we deduce from Proposition 1.3 that $d_{S}^{k}(D)=1 \leq n-2$. Since we have
discussed all possible cases, the proof is complete.
If D is a digraph of order n with $\delta^{-}(D) \geq k+1$, then we have proved in [8] that

$$
\begin{equation*}
\gamma_{k S}(D)+d_{S}^{k}(D) \leq n+k \tag{9}
\end{equation*}
$$

Next we will show that this inequality remains valid for all digraphs with $\delta^{-}(D) \geq$ $k-1$.

Theorem 3.4 Let $k \geq 1$ be an integer, and let D be a digraph of order n. If $\delta^{-}(D) \geq k-1$, then

$$
\gamma_{k S}(D)+d_{S}^{k}(D) \leq n+k
$$

Proof. Assume first that $k-1 \leq \delta^{-}(D) \leq k$. If $\gamma_{k S}(D)=n$, then $d_{S}^{k}(D)=1$ and therefore $\gamma_{k S}(D)+d_{S}^{k}(D)=n+1 \leq n+k$, as desired. If $\gamma_{k S}(D) \leq n-1$, then Proposition 1.1 and the condition $\delta^{-}(D) \leq k$ imply

$$
\gamma_{k S}(D)+d_{S}^{k}(D) \leq n-1+\delta^{-}(D)+1 \leq n-1+k+1=n+k .
$$

In the case $\delta^{-}(D) \geq k+1$, the desired bound follows from inequality (9), and we are done.

For $k \geq 2$ we will improve Theorem 3.4.
Theorem 3.5 Let $k \geq 2$ be an integer, and let D be a digraph of order $n \geq 3$ such that $\delta^{-}(D) \geq k-1$. Then

$$
\gamma_{k S}(D)+d_{S}^{k}(D) \leq n+k-1
$$

with exception of the case that D is isomorphic to the complete digraph K_{n}^{*} and k and n are odd or k and n are even with $k \leq n-2$.

Proof. Assume first that $k-1 \leq \delta^{-}(D) \leq k$. If $\gamma_{k S}(D)=n$, then $d_{S}^{k}(D)=1$ and therefore $\gamma_{k S}(D)+d_{S}^{k}(D)=n+1 \leq n+k-1$ since $k \geq 2$. If $\gamma_{k S}(D) \leq n-1$, then $\gamma_{k S}(D) \leq n-2$ (see also [3]). Therefore we deduce from Proposition 1.1 and the condition $\delta^{-}(D) \leq k$ that

$$
\gamma_{k S}(D)+d_{S}^{k}(D) \leq n-2+\delta^{-}(D)+1 \leq n-2+k+1=n+k-1 .
$$

Assume next that $\delta^{-}(D) \geq k+1$. If $\gamma_{k S}(D) \leq k$, then Corollary 3.2 implies that $\gamma_{k S}(D)+d_{S}^{k}(D) \leq k+n-1$ with exception of the case that D is isomorphic to the complete digraph K_{n}^{*} and k and n are odd or k and n are even with $k \leq n-2$.

Now assume that $\gamma_{k S}(D) \geq k+1$. If $\gamma_{k S}(D)=n$, then $d_{S}^{k}(D)=1$ and so $\gamma_{k S}(D)+$ $d_{S}^{k}(D)=n+1 \leq n+k-1$, as desired. If $\gamma_{k S}(D) \leq n-1$, then $k+1 \leq \gamma_{k S}(D) \leq n-2$.

Using Proposition 1.4 and the fact that the function $g(x)=x+(k n) / x$ is decreasing for $k+1 \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n-2$, we obtain

$$
\begin{aligned}
\gamma_{k S}(D)+d_{S}^{k}(D) & \leq \gamma_{k S}(D)+\frac{k n}{\gamma_{k S}(D)} \\
& \leq \max \left\{k+1+\frac{k n}{k+1}, n-2+\frac{k n}{n-2}\right\}<n+k
\end{aligned}
$$

and thus $\gamma_{k S}(D)+d_{S}^{k}(D) \leq n+k-1$ with exception of the case that $\delta^{-}(D)=k+1=$ $n-1$ and so D is isomorphic to the complete digraph K_{n}^{*} with $k=n-2$. This completes the proof.

It is easy to see that $\gamma_{k S}\left(K_{n}^{*}\right)=k$ when $n+k$ is even (see also [3]). Using Examples 2.2 and 2.10, we see that $\gamma_{k S}\left(K_{n}^{*}\right)+d_{S}^{k}\left(K_{n}^{*}\right)=k+n$ when $n+k$ is even and $k \leq$ $n-2$. Therefore the given upper bound in Theorem 3.4 is sharp and the bound in Theorem 3.5 is not valid in these cases. If C_{n} is an oriented cycle of length n, then $\gamma_{1 S}(D)+d_{S}^{1}(D)=n+1$. This example shows that Theorem 3.5 is not valid for $k=1$ in general.

References

[1] H. Aram, M. Atapour, S.M. Sheikholeslami and L. Volkmann, Signed k-domatic numbers of digraphs, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 1, 143-150.
[2] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total $\{k\}$-domination and total $\{k\}$-domatic number of graphs, Bull. Malays. Math. Sci. Soc. (2) $\mathbf{3 6}$ (2013), no. 1, 39-47.
[3] M. Atapour, R. Hajypory, S.M. Sheikholeslami and L. Volkmann, The signed k domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), 1048-1057.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, editors, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York (1998).
[6] H. Karami, R. Khoeilar, S.M. Sheikholeslami and A. Khodkar, Global signed domination in graphs, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 2, 363372.
[7] H. Karami, S.M. Sheikholeslami and A. Khodkar, Lower bounds on the signed domination numbers of directed graphs, Discrete Math. 309 (2009), 2567-2570.
[8] S.M. Sheikholeslami and L. Volkmann, The signed (k, k)-domatic number of digraphs, Math. Commun. 17 (2012), 537-546.
[9] L. Volkmann, Signed domination and signed domatic numbers of digraphs, Discuss. Math. Graph Theory 31 (2011), 415-427.
[10] Haoli Wang, Xirong Xu, Yuansheng Yang, Guoqing Wang and Kai Lü, On the distance paired-domination of circulant graphs, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 1-19.
[11] Yunjian Wu and Qinglin Yu, A characterization of graphs with equal domination number and vertex cover number, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. $3,803-806$.
[12] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55 (2005), 479-482.

