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1. Introduction

Let A denote the class of functions f which are analytic on the open unit
disk D := {z ∈ C : |z | < 1} and normalized by

(1.1) f(z) = z +
∞∑
n=2

anz
n.

Let P be the class of functions φ(z) = 1 +
∑∞

n=1 φnz
n that are analytic on

D and satisfy the condition Re(φ(z)) > 0 on D. By the Caratheodory Lemma
(e.g. see [8, p. 41]) we have |φn| ≤ 2.

It is well known that every univalent function f ∈ A has an inverse f−1

satisfying
f−1(f(z)) = z, (z ∈ D),

and
f(f−1(w)) = w, (|w| < 1/4),

according to Kobe One Quater Theorem, [8, p. 31].
A function f ∈ A is said to be bi-univalent on D if f and its inverse g = f−1

are both univalent on D.
1
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For 0 ≤ α < 1 and p ∈ N = {1, 2, 3, . . .} we let R(p;α) be the class of
functions f ∈ A so that f and its inverse map g = f−1 satisfy the following

(1.2) Re(f ′(z))p > α; z ∈ D,

and

(1.3) Re(g′(w))p > α; w ∈ D.

The functions f ∈ A whose derivative f ′ ∈ P are known to be univalent and
close-to-convex on D, [8, p. 47].

Finding bounds for the coefficients of classes of bi-univalent functions dates
back to 1967 (see Lewin [13]). But the interest on the bounds for the coefficients
of classes of bi-univalent functions picked up by the publications Brannan - Taha
[6], Srivastava - Mishra - Gochhayat [15], Ali - Lee - Ravichandaran - Suprama-
niam [5], and Hamidi - Halim - Jahangiri [11]. Srivastava - Mishra - Gochhayat
[15] investigated the bounds for the coefficients |a2| and |a3| of the bi-univalent
function f ∈ A if their derivatives are subordinate to some function in P. Ali -
Lee - Ravichandaran - Supramaniam [5] remarked that for the bi-univalent func-
tions, finding the bounds for |an| when n ≥ 4 is an open problem. Here in this
paper we use Faber polynomial coefficient techniques to provide bounds for the
general coefficients |an| under certain conditions and also obtain estimates for the
first two coefficients |a2| and |a3| of the bi-univalent functions f ∈ R(p;α). The
bounds provided in this article prove to be better than those estimates determined
by Srivastava - Mishra - Gochhayat [15].

2. MAIN RESULTS

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1),
the coefficients of its inverse map g = f−1 may be expressed as, [3, Theorem 6.1,
p. 209],

(2.1) g(w) = f−1(w) = w +
∞∑
n=2

1
n
K−nn−1(a2, a3, . . . , an)wn,

where
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K−nn−1 =
(−n)!

(−2n+ 1)!(n− 1)!
an−1

2 +
(−n)!

(2(−n+ 1))!(n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4

2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5

2

[
a5 + (−n+ 2)a2

3

]
+

(−n)!
(−2n+ 5)!(n− 6)!

an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables
a2, a3, . . . , an, [4]. In particular, the first three terms of K−nn−1 are

1
2
K−2

1 = −a2,

1
3
K−3

2 = 2a2
2 − a3,

1
4
K−4

3 = −(5a3
2 − 5a2a3 + a4).

In general, an expansion of Kp
n is as, [3, p. 183],

(2.2) Kp
n = pan +

p(p− 1)
2

D2
n +

p!
(p− 3)!3!

D3
n + . . .+

p!
(p− n))!n!

Dn
n,

where Dp
n = Dp

n(a2, a3, . . .) and by [16] or [2],

Dm
n (a1, a2, . . . , an) =

∞∑
m=1

m!(a1)µ1 . . . (an)µn

µ1! . . . µn!
,

where a1 = 1 and the sum is taken over all nonnegative integers µ1, . . . , µn satis-
fying {

µ1 + µ2 + . . .+ µn = m,
µ1 + 2µ2 + . . .+ nµn = n.

Evidently: Dn
n(a1, a2, . . . , an) = an1 , [1].

Gong [9] and Schiffer [14] demonstrated the significance of the Faber poly-
nomials [7] in mathematical sciences, especially in geometric function theory. The
recent publications of [1-4, 15] dealing with the Taylor expansions of inverse func-
tion g = f−1, beautifully fits our case for the bi-univalent functions. As a result,
we are able to state and prove the following
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Theorem 2.1. For 0 ≤ α < 1 and p ∈ N let f ∈ R(p;α) be given by (1.1). If
ak = 0 for 2 ≤ k ≤ n− 1, then

|an| ≤
2(1− α)
np

; n ≥ 3.

Proof. The main crux of the proof relies on the observation that if φ(z) = 1 +∑∞
n=1 φnz

n is analytic in D and p ∈ N then

(φ(z))p = 1 +
∞∑
n=1

Kp
n(φ1, φ2, . . . , φn)zn

(see [1, equation (4), p. 449]). If f is of the form (1.1), then

f ′(z) = 1 +
∞∑
n=1

(n+ 1)an+1z
n.

Therefore, for (f ′(z))p, we have (see [1, equation (4)] )

(2.3) (f ′(z))p = 1 +
∞∑
n=1

Kp
n(2a2, 3a3, . . . , (n+ 1)an+1)zn.

Similarly, for g = f−1 given by (2.1) we have

(2.4) g′(w) = 1 +
∞∑
n=2

K−nn−1(a2, a3, . . . , an)wn−1 = 1 +
∞∑
n=1

bnw
n.

Consequently, for (g′(w))p we have

(2.5) (g′(w))p = 1 +
∞∑
n=1

Kp
n(b1, b2, . . . , bn)wn.

On the other hand, the inequalities (1.2) and (1.3) imply the existence of
two positive real part functions p(z) = 1 +

∑∞
n=1 cnz

n ∈ P and q(w) = 1 +∑∞
n=1 dnw

n ∈ P so that

(f ′(z))p = α+ (1− α)p(z)
= 1 + (1− α)c1z + (1− α)c2z2 + . . .(2.6)

and

(g′(w))p = α+ (1− α)q(w)
= 1 + (1− α)d1w + (1− α)d2w

2 + . . . .(2.7)

Now, comparing the corresponding coefficients of the equations (2.3) and (2.6)
yield

(2.8) Kp
n−1(2a2, 3a3, . . . , nan) = (1− α)cn−1.
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Similarly, from (2.5) and (2.7) we obtain

(2.9) Kp
n−1(b1, b2, . . . , bn−1) = (1− α)dn−1.

If ak = 0 for 2 ≤ k ≤ n−1, then the equations (2.8) and (2.9) in conjunction
with the relation (2.2) yield

npan = (1− α)cn−1,

and
pbn−1 = −npan = (1− α)dn−1.

Taking the absolute values of either of the above two equations and using the
Caratheodory Lemma we obtain

|an| ≤
(1− α)|cn−1|

np
=

(1− α)|dn−1|
np

≤ 2(1− α)
np

, n ≥ 3. �

Relaxing the coefficient restrictions imposed in Theorem 2.1, we see the
unpredictable behavior of the early coefficients of functions f in R(p;α) illustrated
in the following two theorems.

Theorem 2.2. For 0 ≤ α < 1 and p ≥ 2 let f ∈ R(p;α) be given by (1.1). Then

i). |a2| ≤ 1−α
p ,

ii). |a3 − a2
2| ≤

2(1−α)
3p .

Proof. Substituting n = 2 in equations (2.8) and (2.9), we obtain 2pa2 = (1−α)c1
and −2pa2 = (1− α)d1. From either one of the two equations, it follows that

|a2| =
(1− α)|c1|

2p
=

(1− α)|d1|
2p

≤ 1− α
p

.

Next, from equations (2.8), (2.9) and (2.2) for n = 3 we obtain

(2.10) 2p(p− 1)a2
2 + 3pa3 = (1− α)c2,

and

(2.11)
p(p− 1)

2
b21 + pb2 = 2p(p+ 2)a2

2 − 3pa3 = (1− α)d2.

Subtracting (2.11) from (2.10) we deduce

6p(a3 − a2
2) = (1− α)(c2 − d2).

By taking absolute values of both sides and applying the Caratheodory Lemma
we obtain

|a3 − a2
2| ≤

2(1− α)
3p

. �
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Theorem 2.3. For 0 ≤ α < 1 let f ∈ R(1;α) be given by (1.1). Then

i). |a2| ≤

{ √
2(1−α)

3 , 0 ≤ α < 1
3 ;

(1− α), 1
3 ≤ α < 1,

ii). |a3| ≤


4
3(1− α), 0 ≤ α < 1

3 ;
1
3(1− α)(5− 3α),
2
3(1− α− 3|a2|2),

1
3 ≤ α <

2
3 ,

2
3 ≤ α < 1.

iii). |a3−a2
2| ≤

2
3

(1−α)−|a2|2 if
1
3
≤ α < 1.

Proof. To verify the estimate for |a2|, it is sufficient to substitute n = 2 and n = 3
in equations (2.8) and (2.9) with p = 1, which respectively yield

(2.12)
{

2a2 = (1− α)c1,
−2a2 = (1− α)d1,

and

(2.13)
{

3a3 = (1− α)c2,
3(2a2

2 − a3) = (1− α)d2.

From either one of the relations in (2.12) we obtain

(2.14) |a2| =
(1− α)|c1|

2
=

(1− α)|d1|
2

≤ (1− α).

On the other hand, adding the two relations in (2.13) gives

6a2
2 = (1− α)(c2 + d2)

or

(2.15) |a2| =
√

(1− α)|c2 + d2|
6

≤
√

2(1− α)
3

.

We note that for 0 ≤ α < 1
3 , √

2(1− α)
3

< (1− α).

Next, subtracting the two relations in (2.13) yields

6a3 = (1− α)(c2 − d2) + 3(2a2
2)

or

(2.16) 6|a3| ≤ (1− α)(|c2|+ |d2|) + 6|a2|2.
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Using the Caratheodory Lemma and the estimate (2.15) for 0 ≤ α < 1
3 ,

from (2.16) we obtain

|a3| ≤
1
6

(1− α)(2 + 2) +

(√
2(1− α)

3

)2

=
4(1− α)

3
.

Using the Caratheodory Lemma and the estimate (2.14) for α ≥ 1
3 , from

(2.16) we obtain

|a3| ≤
1
6

(1− α)(2 + 2) + (1− α)2 =
1
3

(1− α)(5− 3α).

Now, the second equation in (2.13) can be rewritten as

3a3 = 6a2
2 − (1− α)d2,

which upon substitution of a2 = −1−α
2 d1 we obtain

3a3 =
3
2

(1− α)2d2
1 − (1− α)d2 = −(1− α)

[
d2 −

3
2

(1− α)d2
1

]
.

Taking the absolute values, we obtain

3|a3| ≤ (1− α)
∣∣∣∣d2 −

3
2

(1− α)d2
1

∣∣∣∣ .
Applying the fact that |d2 +µd2

1| ≤ 2+µ|d1|2 if µ ≥ −1
2 , which is due to the

first author [12], and upon noticing that −3
2(1− α) ≥ −1

2 for α ≥ 2
3 we obtain

3|a3| ≤ (1− α)
[
2− 3

2
(1− α)|d1|2

]
.

Now upon re-substitution of a2 = −1−α
2 d1 we obtain

3|a3| ≤ (1− α)
[
2− 6

|a2|2

1− α

]
= 2

(
1− α− 3|a2|2

)
or

|a3| ≤
2(1− α− 3|a2|2)

3
;

2
3
≤ α < 1.

Once again, the second equation in (2.13) can be rewritten as

3a3 − 3a2
2 = 3a2

2 − (1− α)d2,

which upon substitution of a2 = −1−α
2 d1 in its right hand side and taking the

absolute values, we obtain

3
∣∣a3 − a2

2

∣∣ ≤ (1− α)
∣∣∣∣d2 −

3
4

(1− α)d2
1

∣∣∣∣ .
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Since −3
4(1− α) ≥ −1

2 if α ≥ 1
3 , we get

3
∣∣a3 − a2

2

∣∣ ≤ (1− α)
(

2− 3
4

(1− α)|d1|2
)
.

Now, upon re-substitution of a2 = −1−α
2 d1 in the right hand side of the

above inequality, it turns to

3
∣∣a3 − a2

2

∣∣ ≤ (1− α)
(

2− 3
1− α

|a2|2
)

or
|a3 − a2

2| ≤
2
3

(1− α)− |a2|2 if
1
3
≤ α < 1. �

Remark 2.4. The bounds |a2| ≤ 1 − α for 1
3 ≤ α < 1 and |a3| ≤ 4

3(1 − α) for
0 ≤ α < 1

3 given in Theorem 2.3 above are much better than those corresponding
bounds given by Srivastava, Mishra, and Gochhayat in [15, p. 1191, Theorem 2].

Finally, we give an example of a function satisfying the conditions (1.2) and
(1.3).

Example 2.5. Let f(z) = z + 1−α
np z

n. Then f ′(z) = 1 + 1−α
p zn−1 and

(
f ′(z)

)p = 1 +
p∑

k=1

(
p

k

)
(1− α)k

pk
zk(n−1).

Set

(
f ′(z)

)p−α = (1−α)

(
1 +

p∑
k=1

(
p

k

)
(1− α)k−1

pk
zk(n−1)

)
= (1−α)

(
1 +

p∑
k=1

Akz
k(n−1)

)
.

We note that Ak is a convex null sequence because lim
k→∞

Ak = 0, 1−A1 ≥ 0 and

Ak −Ak+1 ≥ 0. Therefore Re [(f ′(z))p − α] > 0 or Re (f ′(z))p > α.

On the other hand, according to the equations (2.4) and (2.5), for the inverse
map g = f−1 we obtain g(w) = w − 1−α

np w
n and

(
g′(w)

)p − α = (1− α)

(
1 +

p∑
k=1

(−1)k
(
p

k

)
(1− α)k−1

pk
wk(n−1)

)
.

Similarly, Re [(g′(w))p − α] > 0 since (g′(w))p−α
1−α is dominated by 1+

∑p
k=1Akw

k(n−1)

and Ak is a convex null sequence (e.g. see Goodman [10, Chapter 7]).
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