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1. Introduction

The various relations are used in the study of the structure and properties of
semigroups. Green’s relations and the natural partial orders are important relations
which are most notable and useful tool in semigroup theory. We know that Green’s
relations are the equivalence relations. In 2012, Xiang-zhi and Kar-ping [21] studied a
Green generalized relation on a semigroup S which is a combination of the well known
Green-* relation and R Green relation on S. The well-known natural partial order
for a regular semigroup play an important role in the structure of regular semigroup.
Many authors studied partial orders on semigroups and special class of semigroups.
In 1952, Vegner [20] introduced a natural partial order on an inverse semigroup S as
follows:

a < b if and only if a = eb for some e € E(S), (1)

where E(S) denotes the set of idempotents of S. Later, Mitsch [6] defined the natural

order on an inverse semigroup S by
a < b if and only if ab’ = ad’ (2)

where a’, b denote the unique inverse of a and b respectively and showed that the
partial order (1) and (2) are equivalent. Moreover, an inverse semigroup S is totally
ordered with respect to its natural ordering if and only if ab = ba = a or ab =ba = b
for all a,b € S. Furthermore, Nambooripad [8] defined a partial order < on a regular

semigroup S by

a < bif and ounly if R, < R, and a = fb for some f € E(R,) (3)



where R, < Ry if and only if S'a C S'b and E(R,) denotes the set of idempotents
in R,, that coincides with the relation defined above on inverse semigroups. Such a
relation < is called the natural partial order on S. We see that the relation (3) is
generalization of the relation (1). And Nambooripad proved that the natural partial
order on a regular subsemigroup 7" of a regular semigroup S is the restriction of the
natural partial order on S to T. Mitsch [5] used properties of the natural partial
order on a regular semigroup to define the natural partial order on a semigroup. The

relation < on a semigroup S is defined by
a <bif and only if a =xb=by and za = a for some x,y € S*. (4)

Then the relation < is a partial order on a semigroup. We know that the relation (4)
generalized the relations (1) and (3). In 1994, Mitsch [7] studied certain properties of
the natural partial order with respect to the structure of a semigroup. For example,
if S? is regular on a semigroup S then the natural partial order on S is compatible on
the right with multiplication if and only if S satisfies £-majorization. If the natural

partial order on a semigroup S is compatible with multiplication then
w:={(a,b) € S xS|c<aandc<bfor some ce S}

is a congruence on S. Petrich [11] used a definition of the partial order on a regular

semigroup S as follows:
a<bif and only if a =eb="0bf for some e, f € E(S) (5)

and showed that the natural partial order is compatible if and only if S is locally
inverse if and only if S satisfies £- and R-majorization. Next, Srinivas [19] proved
that E(S) is a normal band if and only if the natural partial order (5) and p coincide

on a subsemigroup Reg(S) where
p={(a,b) € S xS |sa=sb=a=at=D0btfor some s,t € S'}.

The concept of I'-semigroups has been introduced by Sen [13] in 1981. Sen
and Saha [12] changed the definition, which is more general definition and gave the
definition of the I'-semigroup via a mapping as follows: A nonempty set S is called a
I-semigroup if there exists a mapping from S x I' x S to S written as (a, a, b) — aab
satisfying the identity (aab)Bc = aa(bfc) for all a,b,c € S and «o,8 € T'. For
example, if S is the set of all m x n matrices and I is the set of all n x m matrices
over a field then for A,B € S the product AB can not be defined i.e., S is not
a semigroup under the usual matrix multiplication. But for all A, B,C € S and
a,B € T' we have AaB € S and since the matrix multiplication is associative, we
have (AaB)BC = Aa(BBC). Hence S is a I'-semigroup. Let X,Y be nonempty
sets. If S is the set of all functions from X to Y and I is the set of all functions

from Y to X then for f,g € S the composition f o g can not defined. Thus S is not



a semigroup under the usual composite function but S is a I'-semigroup i.e. for all
fyg,h € S,a,8 €T we have foaoge Sand (foaog)ofoh= foao(gofoh).
The notions of regular I'-semigroups have been studied and developed in [14]. Many
authors tried to transfer results of semigroups to I'-semigroup and some of them used
the definition of a I'-semigroup introduced by Sen in 1981 and 1986 (see [14], [16],
[17], [15], [18]). Thus we will be interested to study the natural partial orders in

I"-semigroups and special class of I'-semigroups.

In this paper, we shall construct a natural partial order on a regular I'-semigroup
and construct a partial order on the set of all idempotents of a I'-semigroup. The first
aim of this paper is to extend the properties of semigroups to the properties of regular
I'-semigroups by using the partial order on I'-semigroups. We determine when the
partial orders are (left, right) compatible with respect to the semigroup multiplication.
Finally, we find the congruence w := {(a,b) € SxS|c<aandc < bfor somece S}
such that w is the least primitive congruence on a regular I'-semigroup.

2. Preliminaries

An element x in a I'-semigroup S is regular if there exist y € S, o, € T
such that x = xayBx. A I-semigroup S is said to be a regular I'-semigroup [14] if
every element in a S is regular. For any I'-semigroup S, a,z € S, and o, 5 € T', an
element z is called an («a, B)-inverse of a if a = aazxBa and © = zfaczx. The set of all

(v, B)-inverses of an element a in a I'-semigroup S is denoted by V.%(a). That is,
VB(a) :={z € S| a = aazfa and z = zfaaz}.

Seth [17] showed that if a is a regular element then V/?(a) # 0 for some a, 3 € T'. An
element e of a regular I'-semigroup S is called an a-idempotent [17], where o € T, if

eae = e. The set of all a-idempotents is denoted by E,,(S) and we denote U E,(S)

ael’
by E(S). Every element of E(S) is called an idempotent element of S. In a regular

I-semigroup S, we have that E(S) is a non-empty set.

Green’s equivalence relations [1] R, £ and H on a I'-semigroup S are defined by
the following rules :

(1) aRb if and only if aI'S U {a} = bI'S U {b}.

(2) aLb if and only if STaU {a} = STbU {b}.

(3)H=LNR.
The R-class (resp. L-class, H-class) containing the element a will be written R, (resp.
La, Ha).

Lemma 2.1. [1] Let S be a T'-semigroup. Then for all a,b € S, we have
(1) aRb if and only if a = b or there exist x,y € S and a, € T' such that
a =bax and b = afy.



(2) alb if and only if a = b or there exist x,y € S and o,B € T such that
a = zab and b = yfBa.
(3) aHb if and only if aLb and aRb.

Lemma 2.2. [1] Let S be a I'-semigroup, o € T and let e be an a-idempotent. Then
(1) eaa = a for all a € R,.
(2) ace = a for all a € L.
(3) ace = a = eaa for all a € H,.

Proposition 2.3. [16] Let S be a regular T'-semigroup. Then for all a € S, there
exist a, 3 € T and a' € V?(a) such that a’'Ba € E,(S) and aaa’ € Eg(S).

3. The Natural Partial Order

In this section, we construct a relation on a regular I'-semigroup S by extending the
partial order in [8]. Let a, b be elements of a regular I'-semigroup S. Define

R, < Ry if and only if aI'SU{a} CbI'S U {b},
and define a <, b if
R, < Ry, and a= ffbfor some f e Eg(R,),B€T.

It is easy to show that <,, is a partial order on a regular I'-semigroup S and we call the
natural partial order on a regular I'-semigroup. For convenience, we write a symbol

< for the natural partial order <,,.

We start with elementary properties of idempotent elements of Green’s relations.

Lemma 3.4. Let S be a reqular I'-semigroup and let a € S. Then the following
statements hold.

(1) For all a« € T'ye € En(Ra) if and only if there exist v € I',a’ € V*(a) such
that e = aya'.

(2) For all « € T'je € Eo(Ly) if and only if there exist v € T',a’ € VY (a) such
that e = a’vya.

(3) For alla, B € T,e € Eo(La), f € Es(Ry) if and only if there exist a' € V.2 (a)

such that e = a’Ba and [ = acd’.

Proof. (1) Let « € T and e € Eo(R,). By Lemma 2.1(1), we get e = a or e = ayx
for some x € S, € I'. This is obvious when a = e. Assume that e = ayx. By
Lemma 2.2(1), we have

a = eaa = ay(zae)aa

and

zae = raayrae = (zae)aay(rae),



which implies that zae € V*(a). Set o’ = rae. We obtain that aya’ = (ayz)ae =
eae = e. The converse part is obvious.

(2) The proof is similar to the proof of (1).

(3) Let o,8 € T',e € Ey(La),f € Eg(Rq) be such that efa and fRa. By
Lemma 2.1, we have that e = a or there exist v € I';z € S, e = 2ya and f = a or
there exist 6 € ',y € S, f = aby.

Case 1: e =a = f. Then we set a’ = a.

Case 2: a = e and f = afly. Then, we can set a’ = f. Thus e = a/Ba and
f =eby =aaf =aad.

Case 3: f = a and e = xya. Then this proof is similar to the second case and
set a’ =e.

Case 4: e = xya and f = afly. Then we choose a’ = efylBf. By Lemma 2.2, we
have that

a' Baaa' = eByBabyBf =d’,

and

aaad' fa = abyPa = a.

Thus o’ € V/?(a) and we obtain that a’fa = efyBa = zvfBa = e and aaa’ = abfyBf =
f. The converse part is obvious. O

In the proof of Lemma 3.4, we see that any two elements in L-class [R-class,
‘H-class] may be alike and the proof of them is obvious.

Next, we show that the natural partial order has an alternative characterization:

Theorem 3.5. Let a,b be elements of a reqular I'-semigroup S. Then the following
statements are equivalent.

(1) a <0.

(2) a € bI'S and there exist a, 3 € T',a’ € V.P(a) such that a = aca’3b.

(8) There exist B,y €', f € Eg(S),g9 € E,(S) such that a = fBb = byg.

(4) Hy < Hy and for all o, 6 € T,V € VI(b),a = aab'da.

(5) H, < Hy, and there exist a, 6 € T, b € V2(b),a = aab/da.

Proof. (1) = (2) Let a < b. Then R, < R, and a = fb for some f € Eg(R,),3 € T.
By Lemma 3.4(1), there exist o € T', @’ € V#(a) such that aca’ = f. Thus a = aaa’b.
Since R, < Ry, we have al'S U {a} C bI'S U {b} which implies that a € bI'S.

(2) = (3) By assumption, a = byu for some v € I',u € S. Set f = aaa’ € Eg(5)
and g = uaa’fb, So we have a = fBb. Thus byg = byuaa’ b = aaad’fb = a with
g € E,(S).

(3) = (4) By assumption, a € bI'S and aI'S C bI'S which implies that aI'S U
{a} COI'SU{b}, so R, < Rp. Similarly, we can show that STa U {a} C STbU {b},
so that L, < Ly. Thus H, < Hy. Let o, 6 € T, 0’ € V2(b), we have immediately that
aab'da = a.



(4) = (5) This part is obvious.

(5) = (1) By assumption, R, < Ry and L, < Ly. Let o/ € V/(a) for some
B,y € T. Set f = aya’'Bacd’. Then a = aya’faab'da = féa and f € E5(S), which
prove that f € E5(R,). Since L, < L, we get that a = ufb for some u € S,0 € I.
Thus féb = aab'6b = ubb = a. Therefore a < b. O

Let S be a I'-semigroup. We define relations on F(S) as follows : Fore, f € E(S),
define

1) ex!' f & e=ecaf if e € E,(S) for some a €T,
(2) ex" f e e=fPe if f € Eg(S) for someg €T,
B) exf o ex'fandex"f,
& e=eaf = ffe ifec Ey9), f € Eg(S) for some a,3 €T.

It is easy to show that < is a partial order on E(S).

The next result give a relationship between the natural partial order and the

partial order on E(S5).

Proposition 3.6. Let S be a regular I'-semigroup and a,b € S. Then the following
statements are equivalent.

(1) a <b.

(2) For every f € E(Ry), there exist o € T'ye € Eo(R,) such that e < f and
a = eab.

(3) For every f' € E(Ly), there exist « € T';e’ € E,(L,) such that ¢’ 5 f' and

a = bae’.

Proof. (1) = (2) Let f € E(Ryp). Then there exits 8 € I' such that f € Eg(S). By
assumption, a = hyb for some h € E,(R,),v € I' and R, < R, which implies that
R, = R, < Ry = Ry. By Lemma 2.2(1), we have h = fBh and hyf € Eg(S). Choose
e = hyf. Then h = efBh which implies eRh, and so eRa. Thus a = hyb = hyf(b =
efb, and e = eff, e = hyf = fPe. Therefore e X f.

(2) = (3) Let f' € E(Ly). The f' € E(S)N L, which implies that f’ € Eg(5)
for some 8 € I'. By Lemma 3.4(1), there exist v € I',b" € V'(b) such that f’ = b'yb.
Clearly, bBb" € E(Ryp). Set f = bB'. By assumption, there exist o € ', e € Ey(Rq)
such that e < f and ¢ = eab. Set ¢ = b'yeab. Clearly, ¢/ € Eg(S),¢’ = b/va
and a = bfe/. Thus ¢’ € Eg(L,). Consider, ¢ = tvbBbveab = f'fe’, and € =
b'veabBb'vb = €' Bf'. Therefore ' 5 f'.

(3) = (1) Let b/ € V2(b) for some 7,0 € I'. By Lemma 3.4, b'6b € E,(L;). By
assumption, there exist « € T';e’ € E,(L,) such that ¢ < 'db and a = bae’. Set
f =bae’al/. Clearly, f € Es(S). Thus féb = bae’ = a. By Theorem 3.5, we have
a<b. O



The following remark follows immediately from the above propositions.

Remark. Let S be a regular I'-semigroup and a,b € S. Then the following statements
are equivalent.

(1) a <0.

(2) If f € Eg(Ry) for some B € T, then there exist e € Eg(R,) such that e X f
and a = ef3b.

(8) If f' € Eg(Ly) for some 3 € T, then there exist e’ € Eg(L,) such that e’ < f’
and a = bfe’.

Lemma 3.7. Let S be a reqular I'-semigroup. Then the following conditions hold :
(1) oL = Lo<.
(2) xR = Ro <.

Proof. (1) Let (e, f) €< oL where e, f € E(S). Then there exists h € E(S) such that
e < hand hLf.

Case 1. e, f,h € E,(S) for some « € I". Then e = eah = hae, h = haf
and f = fah. Consider e = eaf and f = fae, so eLf. Clearly, f < f. Thus
(e, f) € Lo <.

Case 2. e,h € E,(S), f € E5(S) for some «, 3 € I'. By Lemma 2.2(2), h = hf
and f = fah. Then e = eff and f = fae, which implies that eLf. Therefore
(e, f) € Lo <.

Case 3. e, f € E,(S),h € Eg(S) for some a, f € T'. Similar to proof of case 2.

Case 4. e € Eo(S),f € Eg(S) and h € E,(S) for some «o,3,7 € . Then
e = eah = hve. By Lemma 2.2, we get that e = eff and f = fahye = fre,
which prove that eLf. By cases (1)-(4), we get (e, f) € Lo < which implies that
<ol C LoX.

Similarly, we can show that Lo C< oL.

(2) Similar to proof of (1). O

Proposition 3.8. Let S be a regular I'-semigroup and a,b € S. Then H, < Hy if
and only if a € bI'STb.

Proof. Assume that H, < Hy,. Then L, < L, and R, < Rp. Since a € S, we have
a = aacfa for some a, 5 € I',c € S. If a = b, it is obvious. If a = zyb and a = bdy for
some 7,0 € [';z,y € 5, we get that a = aacfa = bdyacBfxyb € bI'STh. The converse

part is clear. O

Proposition 3.9. Let S be a regular I'-semigroup. Then the following statements
hold.

(1) Ife € E(S),a € S and a < e then a € E(S).

(2) For any a,b € S,aRb and a < b implies a = b.

(3) If a < ¢,b< cand H, < Hy, then a <b.



Proof. (1) Let e € E(S). Then e € E,(S) for some o € I'. By assumption, there
exist 8,y €T, f € E3(S),g € E,(S) such that a = eff = gye. Thus aca = gveff =
aBf =elBf =a, so a € E(S).

(2) Let aRb. Then there exist « € S,0 € I' such that b = afz. Since a < b, we
get that a = fBb for some g € I, f € Eg(S). Thus a = fBabx = fGb0z = b.

(3) Assume that a < ¢,b < c and H, < Hy,. Let ¢/ € V2(c) for some o, 3 € T
Then cac’ € Eg(R.). By Remark (2), there exist e € Eg(R,), f € Eg(Rp) such that
e g cac, f < cac and a = efc,b = ffBc. By assumption and Proposition 3.8, we have
a € bI'STb. Then a = bdx6b for some §,0 € T,z € S. Thus (¢/Bf)Bba(dBf) = Bf
and ba(c'Bf)Bb = fBc = b, from which get that ¢/Bf € V,2(b). Set b’ = ¢/3f. Since
e < cac’ and by Theorem 3.5, we obtain that

e = efcac = aac = béxbbac = fBcdzdbac = fBbézObac = fRaad = fBefcac = fSe.

Therefore, aab’Ba = eBfBeSc = eBc = a. Again, by Theorem 3.5, we have that
a<b. O

Note that by Proposition 3.9(1), if e € E,(S) and a < e then a € E,(S).

Proposition 3.10. Let e be an a-idempotent and f an B-idempotent of a regular
T'-semigroup S. Then the following statements hold.

(1) Ife X f, then e € Eg(S).

(2) Vi(fBe) # 0.

Proof. (1) This follows directly from the definition of the relation <.
(2) Since ffe is a regular element, we can choose x € S,v,d € T such that
fPe = (fBe)yxd(fBe). Tt follows that

(evad fBeyad f)B(f Be)alerad fBevasf) = evad fBeras],

and
(fBe)alevad fBeyxd f)B(fBe) = fBe
which proves that eyzdfBeyzdf € V2(fBe). Therefore VA(fBe) # 0. O
A regular I'-semigroup S is called an L-unipotent| R-unipotent] if every L-class
[R-class] of S contains only one idempotent.
Proposition 3.11. Let S be a regular I'-semigroup. If S is L-unipotent then ea f e =

fBe for all e € E,(S), f € Eg(S) for some a,3 € T.

Proof. Let e € E(S), f € Eg(S) for some «, 3 € I'. By Proposition 3.10(2), we can
choose x € V2(fBe). Then

(zBfBe)a(zffBe) = x3fPe and (eaw(fBe)aleaxfffe) = eaxfBe,



so xzfBfpfe,eaxfffe € E,(S), and immediately it follows that (xSfBe)L(eaxlfBe).
The hypothesis implies that

BfBe = eaxfiffe. (6)
Now, z = eaxfffeax = eax. It follows that x = xGffz, that is zBf € Eg(9).

Thus (fBeaxBf)B(fBeaxff) = fleaxff, we obtain that ffeaxBf € Eg(S) and
(xBf)L(fBeaxBf). Again, the hypothesis implies that x8f = fBeax(f. Then

zffBe = fBe. (7)
By (6) and (7), we get that fBe = eaxBffBe. Again by (7), fBe = fBeafBe. Thus
eaffe =eaxfBfPe = ffe. O

Proposition 3.12. Let S be a regular I'-semigroup. If e, f are a-idempotent with

eafae = fae then S is an L-unipotent.

Proof. Let « € T and e, f € E,(S) be such that eLf. By Lemma 2.2(1), we get that
e = eaf and f = fae. By the hypothesis we get that e = eaf = eafae = fae =
f. O

By Proposition 3.11 and 3.12, we get that S is an L-unipotent if and only
if eafae = fae for some e, f € E,(S),a €T.

Proposition 3.13. Let S be a regular T'-semigroup and e € E(S). If a € eI'STe,
then the following statements hold.

(1) There exist v,6 € T,a’ € Vj(a) Nel'STe such that a’da <X e.

(2) There exist v,6 € T',a” € V,f(a) Nel'STe such that aya” < e.

(3) If a/,a” € V2 (a) N el'STe then a’'daLla”ba and aya'Raya”.

Proof. (1) Let e € E,(S) for some a € T' and let a € e['STe. Then there exist
8,7 € I',x € S such that a = efBxye. Since a is a regular element of S, we get that
a = adyba for some y € S,6,0 € I'. Set a’ = edybadybe. Then

daaaa = edybadybeaefryeaecdybadyde
= edybadybadybadybe
= edybadybe
= a/’
and
acd’ aa = efBryeaedybfadybeaefrye = adybadyba = a,
which then implies that o’ € V¢ (a)Nel'STe. This immediately implies that a’aa < e.
(2) This part of proof is similar to (1).
(3) This is trivial. O
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Proposition 3.14. The partial order on E(S) of a regular semigroup S is the re-
striction of the natural partial order on S to E(S).

Proof. Let e, f € E(S) be such that e < f. Then there exists § € I' such that
f € Eg(S). By the proof of Proposition 3.9(1), we get that e € Eg(S). Since e < f,
there exist g € E,(S),h € Es(S) for some 7,5 € T such that e = fyg = hdf.
Thus e = fBfvg = fBe and e = héfBf = eBf. Therefore e < f. The converse is
obvious. O

A regular I'-semigroup S satisfies L-majorization [R-majorization] if for any
a,b,c € S;a < ¢,b< cand alb [aRb] imply that a = b.

Theorem 3.15. Let S be a reqular I'-semigroup. Then the following statements are
equivalent.

(1) < is right compatible.

(2) S satisfies L-majorization for idempotents.

(3) S satisfies L-majorization.

Proof. (1) = (2) Let e, f,g € E(S) be such that f < e,g < e and fLg. Then there
exist a € T such that e € E,(S). By Proposition 3.10, we have that f,g € E,(S).
Thus f = fag and g = gaf. By hypothesis, we get that

f=fag<eag=gand g=gaf eaf=f.

Therefore f = g.

(2) = (3) Let a,b,c € S be such that a < ¢, b < c and aLb. Then a = eac = cSf
for some e € Eo(S), f € E5(S),a,8 €. Let ¢’ € Vj(c) for some ~,§ € T. Tt follows
that

dda = (ddc)y(c'da), 'da = c'Seacyd' dc = (c'da)y(cbe)

and
dda = ddeacBf = (' 6a)y( ba)

which proves that ¢’da < ¢/dc. Thus a = ¢yc'6cBf = cyc'da, we have that aLc da.
Similarly, since b < ¢ we have a = ejaic = ¢f1f1 for some e; € E,, (5),f1 €
Ep,(S),a1,81 € . Then ¢'0b = ('de)y(c'db), 'db = derancydde = (db)vy(cdc)
and ¢'0b = d'derarefBy f = (¢'0b)vy(¢'6b) which proves that ¢'6b < ¢/de, b = ¢y’ §b and
bLc db with ¢'db € E.(S) which implies that ¢’dalc’éb. By the hypothesis, we obtain
c'da = ¢/6b. Therefore a = b.

(3) = (1) Let @ < b. By Theorem 3.5(3), a = eab = b f for some e € E,(S), f €
Eg(S),a,8€T. Also,let c€ S,0 €T and x € Vj(a@c) for some ~,9 € I'. Then

bO(cyzda) = (bcyzde)ab, (cyxda)d(cyzda) = cyxda,
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and
(bcyzde)a(bbeyade) = bcyrdabeyrde = bbeyxde

which proves that bfcyxda < b. Again, we have that
afcyxda = bB(fOcyrde)ab = (abcyrde)ab,

(fOcyzda)B(fOcyxda) = fOeyxda,

and

(abcyxde)a(abeyrde) = abeyxzde

which give afcyrda < b. It is easy to show that (blcyzda)L(abcyrda). By the
hypothesis, we get that blcyxda = abcyrda. Since x € Vj (abc), we get that

abc = abfcyxdabe = bcyrdabe and abc = eabfc

with zdafc € E,(S). We conclude that afc < bfc. O

Dually, we get the following statement.

Corollary 3.16. Let S be a regular I'-semigroup. Then the following statements are
equivalent.

(1) < is left compatible.

(2) S satisfies R-majorization for idempotents.

(8) S satisfies R-majorization.

Proof. The proof is similar to that of Theorem 3.15. O

Corollary 3.17. Let S be a regular I'-semigroup. Then the following statements are
equivalent.

(1) < is compatible.

(2) S satisfies L- and R-majorization for idempotents.

(3) S satisfies L- and R-magjorization.

Proof. 1t follows from Theorem 3.15 and Corollary 3.16. O

Finally, we find a relation on a regular I'-semigroup .S and show that this relation

is a congruence on S.

Theorem 3.18. Let S be a reqular I'-semigroup and the natural partial order on S

be compatible with multiplication. Then
w:={(a,b) e SxS|c<aandc<b for somece S}

is a congruence on S.
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Proof. Note that w is a reflexive and symmetric. Next, we will show that w is a
transitive. Let (a,b), (b,c¢) € w. Then there exist x,y € S such that © < a,z < b
and y < b,y < c¢. It implies that = fBb and y = bae for some f € Eg(S),e €
E.(S),8,a €T. Indeed,

rae = fBbae = fBy.

Set z = zae = fBy. By hypothesis and z < b we get that z = zae < bae = y and
y < b implies that z = fBy < fBb=x,s0 2 <z < a and z < y < ¢. It implies that

(a,c¢) € w. By hypothesis, w is compatible. Therefore w is a congruence on S. O

A non-zero element of a regular I'-semigroup S is primitive if it is minimal among
the non-zero elements of S. A regular I'-semigroup S is said to be primitive if each
of its non-zero idempotents is primitive. A congruence p on a regular I'-semigroup
S is called primitive if S/p is primitive. Clearly, if S is trivially ordered then S is

primitive.

A mapping ¢ : X — Y of a quasi-ordered set (X, <x) into a quasi-ordered set
(Y, <y) reflecting[8] if for all y,y’ € X¢ such that ¥’ <y y and x € X with z¢ =y
there is some =’ € X such that 2’ <x z and z'¢ = v/'.

Theorem 3.19. Let S be a regular I'-semigroup such that w is a congruence and the
natural homomorphism for w is reflecting the natural partial order. Then w is the

least primitive congruence on S.

Proof. Define the natural homomorphism ¢ : S — S/w by s = sw for all s € S. We
will show that S/w is trivially ordered. Let y,z € S/w be such that y < z. Since
@ is reflecting the natural partial order, there exist s,t € S such that s < t and
sp =1y,tp = z. Since s < t, we now get that swt. Thus

Y=5p=5w=1Itw=1tp==z.

Therefore S/w is trivially ordered.

Let p be any congruence on S/w such that (S/p, <) is trivially ordered and let
denotes the natural homomorphism corresponding p. Suppose that swt. There exists
w € S such that w < s and w < t, giving wyp < sy and wip < tp in S/p. Since S/p
is trivially ordered, we obtain that si) = wiy = t¥, so sp = tp. Thus spt immediately

implies that w C p. Therefore w is the least primitive congruence on S. O
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