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1. Introduction

The various relations are used in the study of the structure and properties of
semigroups. Green’s relations and the natural partial orders are important relations
which are most notable and useful tool in semigroup theory. We know that Green’s
relations are the equivalence relations. In 2012, Xiang-zhi and Kar-ping [21] studied a
Green generalized relation on a semigroup S which is a combination of the well known
Green-* relation and R̃ Green relation on S. The well-known natural partial order
for a regular semigroup play an important role in the structure of regular semigroup.
Many authors studied partial orders on semigroups and special class of semigroups.
In 1952, Vegner [20] introduced a natural partial order on an inverse semigroup S as
follows:

a 6 b if and only if a = eb for some e ∈ E(S), (1)

where E(S) denotes the set of idempotents of S. Later, Mitsch [6] defined the natural
order on an inverse semigroup S by

a 6 b if and only if ab′ = aa′ (2)

where a′, b′ denote the unique inverse of a and b respectively and showed that the
partial order (1) and (2) are equivalent. Moreover, an inverse semigroup S is totally
ordered with respect to its natural ordering if and only if ab = ba = a or ab = ba = b

for all a, b ∈ S. Furthermore, Nambooripad [8] defined a partial order 6 on a regular
semigroup S by

a 6 b if and only if Ra 6 Rb and a = fb for some f ∈ E(Ra) (3)
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where Ra 6 Rb if and only if S1a ⊆ S1b and E(Ra) denotes the set of idempotents
in Ra, that coincides with the relation defined above on inverse semigroups. Such a
relation 6 is called the natural partial order on S. We see that the relation (3) is
generalization of the relation (1). And Nambooripad proved that the natural partial
order on a regular subsemigroup T of a regular semigroup S is the restriction of the
natural partial order on S to T . Mitsch [5] used properties of the natural partial
order on a regular semigroup to define the natural partial order on a semigroup. The
relation 6 on a semigroup S is defined by

a 6 b if and only if a = xb = by and xa = a for some x, y ∈ S1. (4)

Then the relation 6 is a partial order on a semigroup. We know that the relation (4)
generalized the relations (1) and (3). In 1994, Mitsch [7] studied certain properties of
the natural partial order with respect to the structure of a semigroup. For example,
if S2 is regular on a semigroup S then the natural partial order on S is compatible on
the right with multiplication if and only if S satisfies L-majorization. If the natural
partial order on a semigroup S is compatible with multiplication then

ω := {(a, b) ∈ S × S | c 6 a and c 6 b for some c ∈ S}

is a congruence on S. Petrich [11] used a definition of the partial order on a regular
semigroup S as follows:

a 6 b if and only if a = eb = bf for some e, f ∈ E(S) (5)

and showed that the natural partial order is compatible if and only if S is locally
inverse if and only if S satisfies L- and R-majorization. Next, Srinivas [19] proved
that E(S) is a normal band if and only if the natural partial order (5) and µ coincide
on a subsemigroup Reg(S) where

µ := {(a, b) ∈ S × S | sa = sb = a = at = bt for some s, t ∈ S1}.

The concept of Γ-semigroups has been introduced by Sen [13] in 1981. Sen
and Saha [12] changed the definition, which is more general definition and gave the
definition of the Γ-semigroup via a mapping as follows: A nonempty set S is called a
Γ-semigroup if there exists a mapping from S ×Γ×S to S written as (a, α, b) 7→ aαb

satisfying the identity (aαb)βc = aα(bβc) for all a, b, c ∈ S and α, β ∈ Γ. For
example, if S is the set of all m × n matrices and Γ is the set of all n ×m matrices
over a field then for A,B ∈ S the product AB can not be defined i.e., S is not
a semigroup under the usual matrix multiplication. But for all A,B,C ∈ S and
α, β ∈ Γ we have AαB ∈ S and since the matrix multiplication is associative, we
have (AαB)βC = Aα(BβC). Hence S is a Γ-semigroup. Let X,Y be nonempty
sets. If S is the set of all functions from X to Y and Γ is the set of all functions
from Y to X then for f, g ∈ S the composition f ◦ g can not defined. Thus S is not
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a semigroup under the usual composite function but S is a Γ-semigroup i.e. for all
f, g, h ∈ S, α, β ∈ Γ we have f ◦ α ◦ g ∈ S and (f ◦ α ◦ g) ◦ β ◦ h = f ◦ α ◦ (g ◦ β ◦ h).
The notions of regular Γ-semigroups have been studied and developed in [14]. Many
authors tried to transfer results of semigroups to Γ-semigroup and some of them used
the definition of a Γ-semigroup introduced by Sen in 1981 and 1986 (see [14], [16],
[17], [15], [18]). Thus we will be interested to study the natural partial orders in
Γ-semigroups and special class of Γ-semigroups.

In this paper, we shall construct a natural partial order on a regular Γ-semigroup
and construct a partial order on the set of all idempotents of a Γ-semigroup. The first
aim of this paper is to extend the properties of semigroups to the properties of regular
Γ-semigroups by using the partial order on Γ-semigroups. We determine when the
partial orders are (left, right) compatible with respect to the semigroup multiplication.
Finally, we find the congruence ω := {(a, b) ∈ S×S | c 6 a and c 6 b for some c ∈ S}
such that ω is the least primitive congruence on a regular Γ-semigroup.

2. Preliminaries

An element x in a Γ-semigroup S is regular if there exist y ∈ S, α, β ∈ Γ
such that x = xαyβx. A Γ-semigroup S is said to be a regular Γ -semigroup [14] if
every element in a S is regular. For any Γ-semigroup S, a, x ∈ S, and α, β ∈ Γ, an
element x is called an (α, β)-inverse of a if a = aαxβa and x = xβaαx. The set of all
(α, β)-inverses of an element a in a Γ-semigroup S is denoted by V βα (a). That is,

V βα (a) := {x ∈ S | a = aαxβa and x = xβaαx}.

Seth [17] showed that if a is a regular element then V βα (a) 6= ∅ for some α, β ∈ Γ. An
element e of a regular Γ-semigroup S is called an α-idempotent [17], where α ∈ Γ, if
eαe = e. The set of all α-idempotents is denoted by Eα(S) and we denote

⋃
α∈Γ

Eα(S)

by E(S). Every element of E(S) is called an idempotent element of S. In a regular
Γ-semigroup S, we have that E(S) is a non-empty set.

Green’s equivalence relations [1] R,L and H on a Γ-semigroup S are defined by
the following rules :

(1) aRb if and only if aΓS ∪ {a} = bΓS ∪ {b}.
(2) aLb if and only if SΓa ∪ {a} = SΓb ∪ {b}.
(3) H = L ∩R.

TheR-class (resp. L-class, H-class) containing the element a will be written Ra (resp.
La, Ha).

Lemma 2.1. [1] Let S be a Γ-semigroup. Then for all a, b ∈ S, we have
(1) aRb if and only if a = b or there exist x, y ∈ S and α, β ∈ Γ such that

a = bαx and b = aβy.
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(2) aLb if and only if a = b or there exist x, y ∈ S and α, β ∈ Γ such that
a = xαb and b = yβa.

(3) aHb if and only if aLb and aRb.

Lemma 2.2. [1] Let S be a Γ-semigroup, α ∈ Γ and let e be an α-idempotent. Then
(1) eαa = a for all a ∈ Re.
(2) aαe = a for all a ∈ Le.
(3) aαe = a = eαa for all a ∈ He.

Proposition 2.3. [16] Let S be a regular Γ-semigroup. Then for all a ∈ S, there
exist α, β ∈ Γ and a′ ∈ V βα (a) such that a′βa ∈ Eα(S) and aαa′ ∈ Eβ(S).

3. The Natural Partial Order

In this section, we construct a relation on a regular Γ-semigroup S by extending the
partial order in [8]. Let a, b be elements of a regular Γ-semigroup S. Define

Ra 6 Rb if and only if aΓS ∪ {a} ⊆ bΓS ∪ {b},

and define a 6n b if

Ra 6 Rb and a = fβb for some f ∈ Eβ(Ra), β ∈ Γ.

It is easy to show that 6n is a partial order on a regular Γ-semigroup S and we call the
natural partial order on a regular Γ-semigroup. For convenience, we write a symbol
6 for the natural partial order 6n.

We start with elementary properties of idempotent elements of Green’s relations.

Lemma 3.4. Let S be a regular Γ-semigroup and let a ∈ S. Then the following
statements hold.

(1) For all α ∈ Γ, e ∈ Eα(Ra) if and only if there exist γ ∈ Γ, a′ ∈ V αγ (a) such
that e = aγa′.

(2) For all α ∈ Γ, e ∈ Eα(La) if and only if there exist γ ∈ Γ, a′ ∈ V γα (a) such
that e = a′γa.

(3) For all α, β ∈ Γ, e ∈ Eα(La), f ∈ Eβ(Ra) if and only if there exist a′ ∈ V βα (a)
such that e = a′βa and f = aαa′.

Proof. (1) Let α ∈ Γ and e ∈ Eα(Ra). By Lemma 2.1(1), we get e = a or e = aγx

for some x ∈ S, γ ∈ Γ. This is obvious when a = e. Assume that e = aγx. By
Lemma 2.2(1), we have

a = eαa = aγ(xαe)αa

and
xαe = xαaγxαe = (xαe)αaγ(xαe),
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which implies that xαe ∈ V αγ (a). Set a′ = xαe. We obtain that aγa′ = (aγx)αe =
eαe = e. The converse part is obvious.

(2) The proof is similar to the proof of (1).
(3) Let α, β ∈ Γ, e ∈ Eα(La), f ∈ Eβ(Ra) be such that eLa and fRa. By

Lemma 2.1, we have that e = a or there exist γ ∈ Γ, x ∈ S, e = xγa and f = a or
there exist θ ∈ Γ, y ∈ S, f = aθy.

Case 1: e = a = f . Then we set a′ = a.
Case 2: a = e and f = aθy. Then, we can set a′ = f . Thus e = a′βa and

f = eθy = aαf = aαa′.
Case 3: f = a and e = xγa. Then this proof is similar to the second case and

set a′ = e.
Case 4: e = xγa and f = aθy. Then we choose a′ = eθyβf . By Lemma 2.2, we

have that
a′βaαa′ = eθyβaθyβf = a′,

and
aαa′βa = aθyβa = a.

Thus a′ ∈ V βα (a) and we obtain that a′βa = eθyβa = xγfβa = e and aαa′ = aθyβf =
f . The converse part is obvious.

In the proof of Lemma 3.4, we see that any two elements in L-class [R-class,
H-class] may be alike and the proof of them is obvious.

Next, we show that the natural partial order has an alternative characterization:

Theorem 3.5. Let a, b be elements of a regular Γ-semigroup S. Then the following
statements are equivalent.

(1) a 6 b.
(2) a ∈ bΓS and there exist α, β ∈ Γ, a′ ∈ V βα (a) such that a = aαa′βb.
(3) There exist β, γ ∈ Γ, f ∈ Eβ(S), g ∈ Eγ(S) such that a = fβb = bγg.
(4) Ha 6 Hb and for all α, δ ∈ Γ, b′ ∈ V δα (b), a = aαb′δa.
(5) Ha 6 Hb and there exist α, δ ∈ Γ, b′ ∈ V δα (b), a = aαb′δa.

Proof. (1) ⇒ (2) Let a 6 b. Then Ra 6 Rb and a = fβb for some f ∈ Eβ(Ra), β ∈ Γ.
By Lemma 3.4(1), there exist α ∈ Γ, a′ ∈ V βα (a) such that aαa′ = f . Thus a = aαa′βb.
Since Ra 6 Rb, we have aΓS ∪ {a} ⊆ bΓS ∪ {b} which implies that a ∈ bΓS.

(2)⇒ (3) By assumption, a = bγu for some γ ∈ Γ, u ∈ S. Set f = aαa′ ∈ Eβ(S)
and g = uαa′βb, So we have a = fβb. Thus bγg = bγuαa′βb = aαa′βb = a with
g ∈ Eγ(S).

(3) ⇒ (4) By assumption, a ∈ bΓS and aΓS ⊆ bΓS which implies that aΓS ∪
{a} ⊆ bΓS ∪ {b}, so Ra 6 Rb. Similarly, we can show that SΓa ∪ {a} ⊆ SΓb ∪ {b},
so that La 6 Lb. Thus Ha 6 Hb. Let α, δ ∈ Γ, b′ ∈ V δα (b), we have immediately that
aαb′δa = a.
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(4) ⇒ (5) This part is obvious.
(5) ⇒ (1) By assumption, Ra 6 Rb and La 6 Lb. Let a′ ∈ V βγ (a) for some

β, γ ∈ Γ. Set f = aγa′βaαb′. Then a = aγa′βaαb′δa = fδa and f ∈ Eδ(S), which
prove that f ∈ Eδ(Ra). Since La 6 Lb, we get that a = uθb for some u ∈ S, θ ∈ Γ.
Thus fδb = aαb′δb = uθb = a. Therefore a 6 b.

Let S be a Γ-semigroup. We define relations on E(S) as follows : For e, f ∈ E(S),
define

(1) e 4l f ⇔ e = eαf if e ∈ Eα(S) for some α ∈ Γ,

(2) e 4r f ⇔ e = fβe if f ∈ Eβ(S) for someβ ∈ Γ,

(3) e 4 f ⇔ e 4l f and e 4r f,

⇔ e = eαf = fβe if e ∈ Eα(S), f ∈ Eβ(S) for some α, β ∈ Γ.

It is easy to show that 4 is a partial order on E(S).

The next result give a relationship between the natural partial order and the
partial order on E(S).

Proposition 3.6. Let S be a regular Γ-semigroup and a, b ∈ S. Then the following
statements are equivalent.

(1) a 6 b.
(2) For every f ∈ E(Rb), there exist α ∈ Γ, e ∈ Eα(Ra) such that e 4 f and

a = eαb.
(3) For every f ′ ∈ E(Lb), there exist α ∈ Γ, e′ ∈ Eα(La) such that e′ 4 f ′ and

a = bαe′.

Proof. (1) ⇒ (2) Let f ∈ E(Rb). Then there exits β ∈ Γ such that f ∈ Eβ(S). By
assumption, a = hγb for some h ∈ Eγ(Ra), γ ∈ Γ and Ra 6 Rb which implies that
Rh = Ra 6 Rb = Rf . By Lemma 2.2(1), we have h = fβh and hγf ∈ Eβ(S). Choose
e = hγf . Then h = eβh which implies eRh, and so eRa. Thus a = hγb = hγfβb =
eβb, and e = eβf, e = hγf = fβe. Therefore e 4 f .

(2) ⇒ (3) Let f ′ ∈ E(Lb). The f ′ ∈ E(S) ∩ Lb which implies that f ′ ∈ Eβ(S)
for some β ∈ Γ. By Lemma 3.4(1), there exist γ ∈ Γ, b′ ∈ V γβ (b) such that f ′ = b′γb.
Clearly, bβb′ ∈ Eγ(Rb). Set f = bβb′. By assumption, there exist α ∈ Γ, e ∈ Eα(Ra)
such that e 4 f and a = eαb. Set e′ = b′γeαb. Clearly, e′ ∈ Eβ(S), e′ = b′γa

and a = bβe′. Thus e′ ∈ Eβ(La). Consider, e′ = b′γbβb′γeαb = f ′βe′, and e′ =
b′γeαbβb′γb = e′βf ′. Therefore e′ 4 f ′.

(3) ⇒ (1) Let b′ ∈ V δγ (b) for some γ, δ ∈ Γ. By Lemma 3.4, b′δb ∈ Eγ(Lb). By
assumption, there exist α ∈ Γ, e′ ∈ Eα(La) such that e′ 4 b′δb and a = bαe′. Set
f = bαe′αb′. Clearly, f ∈ Eδ(S). Thus fδb = bαe′ = a. By Theorem 3.5, we have
a 6 b.
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The following remark follows immediately from the above propositions.

Remark. Let S be a regular Γ-semigroup and a, b ∈ S. Then the following statements
are equivalent.

(1) a 6 b.
(2) If f ∈ Eβ(Rb) for some β ∈ Γ, then there exist e ∈ Eβ(Ra) such that e 4 f

and a = eβb.
(3) If f ′ ∈ Eβ(Lb) for some β ∈ Γ, then there exist e′ ∈ Eβ(La) such that e′ 4 f ′

and a = bβe′.

Lemma 3.7. Let S be a regular Γ-semigroup. Then the following conditions hold :
(1) 4 ◦L = L◦ 4.
(2) 4 ◦R = R◦ 4.

Proof. (1) Let (e, f) ∈4 ◦L where e, f ∈ E(S). Then there exists h ∈ E(S) such that
e 4 h and hLf .

Case 1. e, f, h ∈ Eα(S) for some α ∈ Γ. Then e = eαh = hαe, h = hαf

and f = fαh. Consider e = eαf and f = fαe, so eLf . Clearly, f 4 f . Thus
(e, f) ∈ L◦ 4.

Case 2. e, h ∈ Eα(S), f ∈ Eβ(S) for some α, β ∈ Γ. By Lemma 2.2(2), h = hβf

and f = fαh. Then e = eβf and f = fαe, which implies that eLf . Therefore
(e, f) ∈ L◦ 4.

Case 3. e, f ∈ Eα(S), h ∈ Eβ(S) for some α, β ∈ Γ. Similar to proof of case 2.
Case 4. e ∈ Eα(S), f ∈ Eβ(S) and h ∈ Eγ(S) for some α, β, γ ∈ Γ. Then

e = eαh = hγe. By Lemma 2.2, we get that e = eβf and f = fαhγe = fγe,
which prove that eLf . By cases (1)-(4), we get (e, f) ∈ L◦ 4 which implies that
4 ◦L ⊆ L◦ 4.

Similarly, we can show that L◦ 4⊆4 ◦L.
(2) Similar to proof of (1).

Proposition 3.8. Let S be a regular Γ-semigroup and a, b ∈ S. Then Ha 6 Hb if
and only if a ∈ bΓSΓb.

Proof. Assume that Ha 6 Hb. Then La 6 Lb and Ra 6 Rb. Since a ∈ S, we have
a = aαcβa for some α, β ∈ Γ, c ∈ S. If a = b, it is obvious. If a = xγb and a = bδy for
some γ, δ ∈ Γ, x, y ∈ S, we get that a = aαcβa = bδyαcβxγb ∈ bΓSΓb. The converse
part is clear.

Proposition 3.9. Let S be a regular Γ-semigroup. Then the following statements
hold.

(1) If e ∈ E(S), a ∈ S and a 6 e then a ∈ E(S).
(2) For any a, b ∈ S, aRb and a 6 b implies a = b.
(3) If a 6 c, b 6 c and Ha 6 Hb then a 6 b.
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Proof. (1) Let e ∈ E(S). Then e ∈ Eα(S) for some α ∈ Γ. By assumption, there
exist β, γ ∈ Γ, f ∈ Eβ(S), g ∈ Eγ(S) such that a = eβf = gγe. Thus aαa = gγeβf =
aβf = eβf = a, so a ∈ E(S).

(2) Let aRb. Then there exist x ∈ S, θ ∈ Γ such that b = aθx. Since a 6 b, we
get that a = fβb for some β ∈ Γ, f ∈ Eβ(S). Thus a = fβaθx = fβbθx = b.

(3) Assume that a 6 c, b 6 c and Ha 6 Hb. Let c′ ∈ V βα (c) for some α, β ∈ Γ.
Then cαc′ ∈ Eβ(Rc). By Remark (2), there exist e ∈ Eβ(Ra), f ∈ Eβ(Rb) such that
e 4 cαc′, f 4 cαc′ and a = eβc, b = fβc. By assumption and Proposition 3.8, we have
a ∈ bΓSΓb. Then a = bδxθb for some δ, θ ∈ Γ, x ∈ S. Thus (c′βf)βbα(c′βf) = c′βf

and bα(c′βf)βb = fβc = b, from which get that c′βf ∈ V βα (b). Set b′ = c′βf . Since
e 4 cαc′ and by Theorem 3.5, we obtain that

e = eβcαc′ = aαc′ = bδxθbαc′ = fβcδxθbαc′ = fβbδxθbαc′ = fβaαc′ = fβeβcαc′ = fβe.

Therefore, aαb′βa = eβfβeβc = eβc = a. Again, by Theorem 3.5, we have that
a 6 b.

Note that by Proposition 3.9(1), if e ∈ Eα(S) and a 6 e then a ∈ Eα(S).

Proposition 3.10. Let e be an α-idempotent and f an β-idempotent of a regular
Γ-semigroup S. Then the following statements hold.

(1) If e 4 f , then e ∈ Eβ(S).
(2) V βα (fβe) 6= ∅.

Proof. (1) This follows directly from the definition of the relation 4.
(2) Since fβe is a regular element, we can choose x ∈ S, γ, δ ∈ Γ such that

fβe = (fβe)γxδ(fβe). It follows that

(eγxδfβeγxδf)β(fβe)α(eγxδfβeγxδf) = eγxδfβeγxδf,

and
(fβe)α(eγxδfβeγxδf)β(fβe) = fβe

which proves that eγxδfβeγxδf ∈ V βα (fβe). Therefore V βα (fβe) 6= ∅.

A regular Γ-semigroup S is called an L-unipotent[ R-unipotent] if every L-class
[R-class] of S contains only one idempotent.

Proposition 3.11. Let S be a regular Γ-semigroup. If S is L-unipotent then eαfβe =
fβe for all e ∈ Eα(S), f ∈ Eβ(S) for some α, β ∈ Γ.

Proof. Let e ∈ Eα(S), f ∈ Eβ(S) for some α, β ∈ Γ. By Proposition 3.10(2), we can
choose x ∈ V βα (fβe). Then

(xβfβe)α(xβfβe) = xβfβe and (eαxβfβe)α(eαxβfβe) = eαxβfβe,
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so xβfβe, eαxβfβe ∈ Eα(S), and immediately it follows that (xβfβe)L(eαxβfβe).
The hypothesis implies that

xβfβe = eαxβfβe. (6)

Now, x = eαxβfβeαx = eαx. It follows that x = xβfβx, that is xβf ∈ Eβ(S).
Thus (fβeαxβf)β(fβeαxβf) = fβeαxβf , we obtain that fβeαxβf ∈ Eβ(S) and
(xβf)L(fβeαxβf). Again, the hypothesis implies that xβf = fβeαxβf . Then

xβfβe = fβe. (7)

By (6) and (7), we get that fβe = eαxβfβe. Again by (7), fβe = fβeαfβe. Thus
eαfβe = eαxβfβe = fβe.

Proposition 3.12. Let S be a regular Γ-semigroup. If e, f are α-idempotent with
eαfαe = fαe then S is an L-unipotent.

Proof. Let α ∈ Γ and e, f ∈ Eα(S) be such that eLf . By Lemma 2.2(1), we get that
e = eαf and f = fαe. By the hypothesis we get that e = eαf = eαfαe = fαe =
f .

By Proposition 3.11 and 3.12, we get that S is an L-unipotent if and only
if eαfαe = fαe for some e, f ∈ Eα(S), α ∈ Γ.

Proposition 3.13. Let S be a regular Γ-semigroup and e ∈ E(S). If a ∈ eΓSΓe,
then the following statements hold.

(1) There exist γ, δ ∈ Γ, a′ ∈ V δγ (a) ∩ eΓSΓe such that a′δa 4 e.
(2) There exist γ, δ ∈ Γ, a′′ ∈ V δγ (a) ∩ eΓSΓe such that aγa′′ 4 e.
(3) If a′, a′′ ∈ V δγ (a) ∩ eΓSΓe then a′δaLa′′δa and aγa′Raγa′′.

Proof. (1) Let e ∈ Eα(S) for some α ∈ Γ and let a ∈ eΓSΓe. Then there exist
β, γ ∈ Γ, x ∈ S such that a = eβxγe. Since a is a regular element of S, we get that
a = aδyθa for some y ∈ S, δ, θ ∈ Γ. Set a′ = eδyθaδyθe. Then

a′αaαa′ = eδyθaδyθeαeβxγeαeδyθaδyθe

= eδyθaδyθaδyθaδyθe

= eδyθaδyθe

= a′,

and
aαa′αa = eβxγeαeδyθaδyθeαeβxγe = aδyθaδyθa = a,

which then implies that a′ ∈ V αα (a)∩eΓSΓe. This immediately implies that a′αa 4 e.
(2) This part of proof is similar to (1).
(3) This is trivial.
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Proposition 3.14. The partial order on E(S) of a regular semigroup S is the re-
striction of the natural partial order on S to E(S).

Proof. Let e, f ∈ E(S) be such that e 6 f . Then there exists β ∈ Γ such that
f ∈ Eβ(S). By the proof of Proposition 3.9(1), we get that e ∈ Eβ(S). Since e 6 f ,
there exist g ∈ Eγ(S), h ∈ Eδ(S) for some γ, δ ∈ Γ such that e = fγg = hδf .
Thus e = fβfγg = fβe and e = hδfβf = eβf . Therefore e 4 f . The converse is
obvious.

A regular Γ-semigroup S satisfies L-majorization [R-majorization] if for any
a, b, c ∈ S, a 6 c, b 6 c and aLb [aRb] imply that a = b.

Theorem 3.15. Let S be a regular Γ-semigroup. Then the following statements are
equivalent.

(1) 6 is right compatible.
(2) S satisfies L-majorization for idempotents.
(3) S satisfies L-majorization.

Proof. (1) ⇒ (2) Let e, f, g ∈ E(S) be such that f 4 e, g 4 e and fLg. Then there
exist α ∈ Γ such that e ∈ Eα(S). By Proposition 3.10, we have that f, g ∈ Eα(S).
Thus f = fαg and g = gαf . By hypothesis, we get that

f = fαg 4 eαg = g and g = gαf 4 eαf = f.

Therefore f = g.
(2)⇒ (3) Let a, b, c ∈ S be such that a 6 c, b 6 c and aLb. Then a = eαc = cβf

for some e ∈ Eα(S), f ∈ Eβ(S), α, β ∈ Γ. Let c′ ∈ V δγ (c) for some γ, δ ∈ Γ. It follows
that

c′δa = (c′δc)γ(c′δa), c′δa = c′δeαcγc′δc = (c′δa)γ(c′δc)

and
c′δa = c′δeαcβf = (c′δa)γ(c′δa)

which proves that c′δa 6 c′δc. Thus a = cγc′δcβf = cγc′δa, we have that aLc′δa.
Similarly, since b 6 c we have a = e1α1c = cβ1f1 for some e1 ∈ Eα1(S), f1 ∈
Eβ1(S), α1, β1 ∈ Γ. Then c′δb = (c′δc)γ(c′δb), c′δb = c′δe1α1cγc

′δc = (c′δb)γ(c′δc)
and c′δb = c′δe1α1cβ1f = (c′δb)γ(c′δb) which proves that c′δb 6 c′δc, b = cγc′δb and
bLc′δb with c′δb ∈ Eγ(S) which implies that c′δaLc′δb. By the hypothesis, we obtain
c′δa = c′δb. Therefore a = b.

(3)⇒ (1) Let a 6 b. By Theorem 3.5(3), a = eαb = bβf for some e ∈ Eα(S), f ∈
Eβ(S), α, β ∈ Γ. Also, let c ∈ S, θ ∈ Γ and x ∈ V δγ (aθc) for some γ, δ ∈ Γ. Then

bθ(cγxδa) = (bθcγxδe)αb, (cγxδa)θ(cγxδa) = cγxδa,
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and
(bθcγxδe)α(bθcγxδe) = bθcγxδaθcγxδe = bθcγxδe

which proves that bθcγxδa 6 b. Again, we have that

aθcγxδa = bβ(fθcγxδe)αb = (aθcγxδe)αb,

(fθcγxδa)β(fθcγxδa) = fθcγxδa,

and
(aθcγxδe)α(aθcγxδe) = aθcγxδe

which give aθcγxδa 6 b. It is easy to show that (bθcγxδa)L(aθcγxδa). By the
hypothesis, we get that bθcγxδa = aθcγxδa. Since x ∈ V δγ (aθc), we get that

aθc = aθcγxδaθc = bθcγxδaθc and aθc = eαbθc

with xδaθc ∈ Eγ(S). We conclude that aθc 6 bθc.

Dually, we get the following statement.

Corollary 3.16. Let S be a regular Γ-semigroup. Then the following statements are
equivalent.

(1) 6 is left compatible.
(2) S satisfies R-majorization for idempotents.
(3) S satisfies R-majorization.

Proof. The proof is similar to that of Theorem 3.15.

Corollary 3.17. Let S be a regular Γ-semigroup. Then the following statements are
equivalent.

(1) 6 is compatible.
(2) S satisfies L- and R-majorization for idempotents.
(3) S satisfies L- and R-majorization.

Proof. It follows from Theorem 3.15 and Corollary 3.16.

Finally, we find a relation on a regular Γ-semigroup S and show that this relation
is a congruence on S.

Theorem 3.18. Let S be a regular Γ-semigroup and the natural partial order on S

be compatible with multiplication. Then

ω := {(a, b) ∈ S × S | c 6 a and c 6 b for some c ∈ S}

is a congruence on S.
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Proof. Note that ω is a reflexive and symmetric. Next, we will show that ω is a
transitive. Let (a, b), (b, c) ∈ ω. Then there exist x, y ∈ S such that x 6 a, x 6 b

and y 6 b, y 6 c. It implies that x = fβb and y = bαe for some f ∈ Eβ(S), e ∈
Eα(S), β, α ∈ Γ. Indeed,

xαe = fβbαe = fβy.

Set z = xαe = fβy. By hypothesis and x 6 b we get that z = xαe 6 bαe = y and
y 6 b implies that z = fβy 6 fβb = x, so z 6 x 6 a and z 6 y 6 c. It implies that
(a, c) ∈ ω. By hypothesis, ω is compatible. Therefore ω is a congruence on S.

A non-zero element of a regular Γ-semigroup S is primitive if it is minimal among
the non-zero elements of S. A regular Γ-semigroup S is said to be primitive if each
of its non-zero idempotents is primitive. A congruence ρ on a regular Γ-semigroup
S is called primitive if S/ρ is primitive. Clearly, if S is trivially ordered then S is
primitive.

A mapping φ : X → Y of a quasi-ordered set (X,6X) into a quasi-ordered set
(Y,6Y ) reflecting [8] if for all y, y′ ∈ Xφ such that y′ 6Y y and x ∈ X with xφ = y

there is some x′ ∈ X such that x′ 6X x and x′φ = y′.

Theorem 3.19. Let S be a regular Γ-semigroup such that ω is a congruence and the
natural homomorphism for ω is reflecting the natural partial order. Then ω is the
least primitive congruence on S.

Proof. Define the natural homomorphism ϕ : S → S/ω by sϕ = sω for all s ∈ S. We
will show that S/ω is trivially ordered. Let y, z ∈ S/ω be such that y ≤ z. Since
ϕ is reflecting the natural partial order, there exist s, t ∈ S such that s 6 t and
sϕ = y, tϕ = z. Since s 6 t, we now get that sωt. Thus

y = sϕ = sω = tω = tϕ = z.

Therefore S/ω is trivially ordered.
Let ρ be any congruence on S/ω such that (S/ρ,≤) is trivially ordered and let ψ

denotes the natural homomorphism corresponding ρ. Suppose that sωt. There exists
w ∈ S such that w 6 s and w 6 t, giving wψ ≤ sψ and wψ ≤ tψ in S/ρ. Since S/ρ
is trivially ordered, we obtain that sψ = wψ = tψ, so sρ = tρ. Thus sρt immediately
implies that ω ⊆ ρ. Therefore ω is the least primitive congruence on S.
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