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Abstract

A semigroup is called almost idempotent-free if it has exactly one nonzero J -
class containing idempotents. It is mainly investigated when almost idempotent-free
semigroup algebras are Azumaya algebras. Necessary and sufficient conditions for
semigroup algebras of an almost idempotent-free semigroup with certain properties
to be Azumaya are obtained.
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1 Introduction

Recall that an algebra A with unity over a commutative ring R is called separable if A
is a projective left A ⊗R Ao-module under the action given by (

∑
i xi ⊗ yi)a =

∑
i xiayi

for all a, xi ∈ A, yi ∈ Ao, where Ao is the opposite algebra of A; A is called an Azumaya
algebra if it is separable over its center Z(A). If R is a commutative ring with unity
1R and G a finite group of order n, then the group ring R[G] is separable if and only if
n1R is invertible in R. This is a well-known generalization of Maschke’s theorem. It is
worthy to point out that if n1R is invertible in R, then R[G] is an Azumaya algebra. So,
R[G] is separable if and only if R[G] is Azumaya. On the other hand, Azumaya algebras
form a class of very well behaved PI-algebras that allow development of the Brauer group
classification of commutative rings (see [6, 17]). They also prove to be very useful as an
efficient tool in the study of general algebras satisfying polynomial identities. We refer to
[2] for an important application of this type.

Z-separability of the integral semigroup ring Z[S] of an arbitrary finite semigroup
S was first studied by Shapiro in [19]. Then Cheng [3] obtained a description of R-
separable ring R[S] for an arbitrary commutative coefficient ring R. DeMeyer and Hardy
independently considered this problem in [7]. An extension of these results to the class
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of so-called excellent extensions was given by Okniński in [12]. In [13], Okniński and Van
Oystaeyen gave some necessary and sufficient conditions for a cancellative monoid algebra
to be an Azumaya algebra. In a sequence of papers, Van Oystaeyen studied group-graded
Azumaya algebras (see, [14, 15]).

A semigroup S is called idempotent-free if S has no idempotents except possibly iden-
tity and zero elements; S is called almost idempotent-free if it has exactly one nonzero
J -class containing idempotents. Okniński pointed out that for a finitely generated semi-
group S and a field K, K[S] is an Azumaya algebra if and only if K[S] ∼= ⊕n

i=1K0[Si] and
each K0[Si] is an Azumaya algebra, where Si are almost idempotent-free semigroups (see
[11, Corollary 17, p.325]). So, it is important to probe when semigroup algebras of almost
idempotent-free semigroups are Azumaya algebras. Because of this view, Okniński raised
the problem ([11, Problem 28, p.332]):

Problem 1.1 Characterize Azumaya algebrasK[S] of almost idempotent-free semigroups.

He conjectured that the equivalences of [11, Proposition 8, p.318] can be extended to
idempotent-free semigroups; that is,

Conjecture 1.2 Let S be an idempotent-free monoid with the group of units U . Then
the following statements are equivalent:

(1) K[S] is an Azumaya algebra;
(2) K[S] = Z(K[S])K[U ] and K[U ] is an Azumaya algebra;
(3) CK[S](U) (the centralizer of U) = Z(K[S]) and K[U ] is an Azumaya algebra.

Furthermore, in his monograph, he raised [11, Problem 29, p.332]:

Problem 1.3 Assume that S is a finite semigroup. Is an Azumaya algebra K[S] al-
ways isomorphic to a finite direct product of matrix algebras over semigroup algebras of
idempotent-free monoids?

Our main aim is to give some partial answer to these problems.
We proceed as follows: after citing known results, we prove that for an almost idempotent-

free semigroup S satisfying the regularity condition, if K[S] is Azumaya, then K[S] ∼=
Mn(K[G]) where G is an idempotent-free monoid (Theorem 3.3). Based on this fact, we
give a positive answer of Problem 1.3 when S satisfies the regularity condition (Corol-
lary 3.6). In Section 4, we consider semigroup algebras of almost idempotent-free semi-
groups. We obtain a necessary and sufficient condition for the semigroup K[S] of an
almost idempotent-free semigroup S satisfying the regularity condition and minJ to be
Azumaya (Theorems 4.4 and 4.6). It is proved that Conjecture 1.2 is true for the case
when the idempotent-free semigroup satisfying minJ (Theorem 4.10).

2 Preliminaries

Throughout this note we use notations and terminologies from the monograph of Okniński
[11] and the text book of Clifford and Preston [4]. Other undefined terms can be found
in the textbook [9].
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2.1 Semigroups

Let S be a semigroup. Assume that I is an ideal of S. Form the set S/I = (S\I) ∪ {0}
and define a multiplication ◦ on S/I by the rule that

a ◦ b =
{
ab if a, b, ab ∈ S\I;
0 otherwise,

where ab is the product of a and b in the semigroup S. It is not difficult to check that
(S/I, ◦) is a semigroup. In what follows, we denote the above semigroup by S/I. In fact,
S/I is the Rees factor semigroup of S modulo I (for detail, [4, p.17]).

Also, S is called 0-simple if S2 ̸= 0 and S has at most two ideals: 0 and S. In what
follows, we always use J to stand for the usual Green’s relation: (a, b) ∈ J if and only
if there exist x, y, u, v ∈ S1 such that a = xby and b = uav. For a ∈ S, we use J(a)
to denote the smallest ideal S1aS1 of S containing a, and Ja to denote the J -class of S
containing a. We shall call the J -class containing regular elements the regular J -class of
S. Define

Ja ≤ Jb if J(a) ⊆ J(b).

It is evident that ≤ is a partial order on the set S/J . When Ja ≤ Jb and Ja ̸= Jb, we shall
denote Ja < Jb. As in Howie [9], we say that S satisfies the condition minJ if the partially
ordered set S/J satisfies the minimal condition. Note that I(a) = {x ∈ J(a) : Jx < Ja}
is an ideal of S. The Rees factor semigroup J(a)/I(a) = Ja ∪ {0} of J(a) modulo I(a)
is either a 0-simple semigroup or a null semigroup. For convenience, we denote the zero
element by 0. J(a)/I(a) is called the principal factor of S determined by a. So, any
principal factor is either a 0-simple semigroup or a null semigroup.

Let n be an integer. We say that S has the property Pn if for any x1, x2, ..., xn ∈ S,
there exists a nontrivial permutation σ in the symmetric group Sn such that x1x2...xn =
xσ(1)xσ(2)...xσ(n). It is easy to see that any subsemigroup and any homomorphic image of
a semigroup having the property Pn have the property Pn. For simplicity, we say that
S has the permutational property if some Pn, n ≥ 2, is satisfied in S. In [8], Domanov
proved the following result (also see [11, Theorem 17, p.229]):

Lemma 2.1 If T is a 0-simple semigroup satisfying the permutational property, then T
is a completely 0-simple semigroup.

2.2 Semigroup algebras

We always assume K is a field and S a semigroup. We denote by K[S] the semigroup
algebra of S over K. In general, if I is a subset of S, then K[I] denotes the set of K-linear
combinations of elements in I, that is, K[I] is a vector space with I as a basis. So each
element of K[I] is a finite summation of the form

∑
x∈I rxx, rx ∈ K, x ∈ I. In particular,

if I1 and I2 are subsets of S, then K[I1 ∩ I2] = K[I1] ∩K[I2]. If S is a semigroup with
zero θ, then K[θ] is an ideal of K[S], and we define K0[S] = K[S]/K[θ]. This K-algebra
K0[S] is called the contracted semigroup algebra of S over K. If S has no zero, then
we have K0[S] = K[S]. Clearly, an element a of K0[S] is a finite linear combination
a =

∑
rss of elements s ∈ S\{θ}. The support of a ∈ K0[S], denoted by supp(a), is the

set {s ∈ S\{θ} | rs ̸= 0}.
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Lemma 2.2 [11, Proposition 1, p.221] Assume K[S] satisfies a polynomial identity of
degree n. Then S has the property Pn.

We now recall some known results on Azumaya algebras (for example, see [11, Lemma
1, p.313]).

Lemma 2.3 Assume that A is an Azumaya algebra, and denote by Z(A) the center of
A. Then

(1) For every ideal J of A and I of Z(A), we have (J∩Z(A))A = J and IA∩Z(A) = I.
(2) For every ideal J of A, Z(A/J) = (Z(A) + J)/J and A/J is an Azumaya algebra.
(3) A is a finitely generated projective module over its center Z(A), and Z(A) is a

direct summand of this module.

In [1], Adjamagbo pointed out that

Lemma 2.4 [1, Recall 1.1 (8), p.92] For any commutative algebra A and commutative
A-algebra C, if B is separable over A, then B ⊗A C is separable over C. Conversely, if
B ⊗A C is separable over C and if, in addition, B is a finitely generated A-module or
A-algebra and C a faithfully flat A-module, then B is separable over A.

The following lemma follows immediately from [11, Proposition 13, p.323].

Lemma 2.5 Let K[S] be an Azumaya algebra and t ∈ S. If the principal factor of S
determined by t is 0-simple, then K[StS] is a ring direct summand of K[S].

By the proof of [11, Proposition 13, p.323], Lemma 2.5 is true for K0[S].
The following observation is trivial.

Lemma 2.6 Let S be a semigroup. Then K[S] is an Azumaya algebra if and only if
K0[S] is an Azumaya algebra.

We need the following well known result (see [18, Proposition 25B.8] or [6]).

Lemma 2.7 Let S be a monoid. Then Mn(K0[S]) is Azumaya if and only if K0[S] is
Azumaya.

3 The regularity condition

A semigroup is said to satisfy the regularity condition if all of its regular elements form
a subsemigroup. Obviously, cancellative monoids satisfy the regularity condition. In this
section we study when semigroup algebras of almost idempotent-free semigroups satisfying
the regularity are Azumaya algebras.

Lemma 3.1 Let S be an almost idempotent-free semigroup. If K[S] is an Azumaya
algebra, then the following statements are true:

(1) For any x ∈ S, x is not regular in S if and only if J(x)/I(x) is a null semigroup.
Moreover, every element of the J -class of S containing a nonzero regular element is
regular.

(2) The nonzero regular J -class is the greatest element in the set S/J with the above
order ≤. Moreover, V := (S\Reg(S)) ∪ {0} is an ideal of S.

(3) S/V is a completely 0-simple semigroup. Moreover, for any nonzero regular ele-
ments a, b of S, aDb.
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Proof. (1) Assume x is not regular in S. Then J(x)/I(x) is a null semigroup; if not,
then J(x)/I(x) is 0-simple, but since K[S] is Azumaya, now K[S] is a PI-algebra, so by
Lemmas 2.1 and 2.2, J(x)/I(x) is a completely 0-simple semigroup. So, the assertions
follow.

(2) By hypothesis, K[S] has an identity. Let e be the identity of K[S] and J a
maximum element of the set A := {Ja : a ∈ supp(e)}. If b ∈ J ∩ supp(e), then by be = b,
bu = b for some u ∈ supp(e). Since J = Jb = Jbu ≤ Ju and by the maximality of J , we
have J = Ju. That is, bu, u ∈ J . This shows that J(b)/I(b) = J ∪ {0} is 0-simple. Thus
by Lemmas 2.1 and 2.2, J(b)/I(b) is a completely 0-simple semigroup, so b is regular in
S, thereby J is a nonzero regular J -class of S. For any w ∈ S, since we = w, there exists
z ∈ supp(e) such that w = wz. It follows that Jw ≤ Jz ≤ J because J is the greatest
element of A. Note that S has only a nonzero regular J -class. Therefore the nonzero
regular J -class is the greatest element in the set S/J .

For any a, b ∈ S, if ab ∈ Reg(S)\{0}, then Jab ≤ Ja, Jb and Jab = Ja = Jb since the
nonzero regular J -class is maximal, so a, b ∈ Reg(S)\{0}, whence V is an ideal of S.

(3) Because S is an almost idempotent-free semigroup and by (2), S/V = Ja ∪ {0}
where a is regular. Since a is regular, we know that J(a)/I(a) is 0-simple, that is, S/V
is a 0-simple semigroup. On the other hand, since K[S] is Azumaya, S/V satisfies the
permutational property. Now by Lemma 2.1, S/V is a completely 0-simple semigroup.
The rest is trivial. 2

Proposition 3.2 Let S be an almost idempotent-free semigroup. If K[S] is an Azumaya
algebra, then S has finitely many idempotents.

Proof. By Lemma 3.1 (2), K[V ] is an ideal of K[S], so that by Lemma 2.3 (2), K0[S/V ] ∼=
K[S]/K[V ] is Azumaya. It follows that K0[S/V ] has an identity. Now by [11, Propo-
sition 2.5, P.59], S/V has finitely many L-classes and R-classes. Therefore as S/V is a
completely 0-simple semigroup, S has finitely many idempotents. 2

Theorem 3.3 Let S be an almost idempotent-free semigroup. If S satisfies the regularity
condition, then K0[S] is an Azumaya algebra if and only if K0[S] ∼= Mn(K0[G]) where G
is an idempotent-free monoid and K0[G] is an Azumaya algebra.

Proof. Note that K0[S] = K0[S
0]. So, we may assume that S has zero element. By

Lemma 2.7, we need only to verify the necessity. Now, assume that K0[S] is an Azumaya
algebra. Then K0[S] has an identity, say E. Let E = F + D with supp(F ) ⊆ Reg(S)
and supp(D) ⊆ V where V = (S\Reg(S)) ∪ {0}. For any a ∈ Reg(S), we have a =
aE = aF + aD and a = Ea = Fa + Da. By Lemma 3.1(2), V is an ideal of S, and
supp(aD), supp(Da) ⊆ V . Thus a = Fa = aF , in other words, F is an identity of
K0[Reg(S)].

Compute
F = FE = F 2 + FD = EF = F 2 +DF.

But DF,FD ∈ K[V ] and F 2 ∈ K[Reg(S)], so F 2 = F and FD = 0 = DF . Since

F +D = E = E2 = (F +D)2 = F 2 + FD +DF +D2

= F 2 +D2
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and by D2 ∈ K[V ] and F 2 ∈ K[Reg(S)], we observe that D = D2. Let x ∈ supp(D)
such that Jx is the maximum element of the set {Ju : u ∈ supp(D)}. The fact that
D = D2 derives that x = yz for some y, z ∈ supp(D). It follows that Jx ≤ Jy, Jz.
Thus Jx = Jy = Jz by the maximality of Jx. Now, x = yz can show that J(x)/I(x) is
0-simple, and further by Lemma 3.1(1), x is a regular element, contradicting to the fact
that supp(D) ⊆ V . Consequently, D = 0 and whence E = F and is the identity of K0[S].

By Lemma 3.1 (3), S/V is isomorphic to some Rees matrix semigroup M0(H, I,Λ;P )
over a groupH. Again by Lemma 3.1 (2), S/V ∼= Reg(S), so thatK0[S/V ] = K0[Reg(S)].
For convenience, we identify Reg(S) with M0(H, I,Λ;P ). By [11, Lemma 1, p.48], the
mapping ψ linearly spanned by the the mapping defined by

K0[Reg(S)] → M(K[H], I,Λ;P ); (a, i,m) 7→ (ajn)

is an algebra isomorphism, where M(K[H], I,Λ;P ) is an algebra of matrix type and (ajn)
the I × Λ matrix with entry ajn = a if j = i, n = m and, otherwise, ajn = 0. Since,
by the forgoing proof, K0[Reg(S)] has an identity, and by [11, Proposition 25, p.59], this
shows that |I| = |Λ| = n < +∞ and P is an invertible matrix in Mn(K[H]). It is not
difficult to check that P−1 is the identity of M(K[H], I,Λ;P ) and the mapping defined
by φ : A 7→ AP is an isomorphism of M(K[H], I,Λ;P ) onto Mn(K[H]).

Denote by εi the n×n matrix with unity of K[H] at the row i, column i position and
the zero 0 of K[H] in all other entries. So, F =

∑n
i=1 fi where fi = ψ−1φ−1 (εi). Put

Mim = {(a, i,m) : a ∈ H}.

It is not difficult to know that each fi is an idempotent, supp (fi) ⊆ Mii and fifm ̸= 0
only if i = m.

Lemma 3.4 Let S satisfy the conditions of Theorem 3.3. Then K0[S] =
⊕n

i=1 eiK0[S],
where ei = (p−1

mi,i
, i,mi) (mi ∈ Λ) and eiK0[S] ∼= ejK0[S] for any i, j.

Proof. By the properties of Rees matrix semigroups, eix = x = xei for all x ∈ Mii. It
follows that

fi ·K0[S] ⊆
∑

u∈supp (fi)

u ·K0[S] ⊆ ei ·K0[S].

Because supp (fjei) ⊆Mji, we have

supp

(
i−1∑
j=1

fjei +
n∑

j=i+1

fjei

) ∩
Mii = ∅

and supp (fiei) ⊆Mii. But

ei = fiei +
i−1∑
j=1

fjei +
n∑

j=i+1

fjei,

now ei = fiei. Therefore ei ·K0[S] ⊆ fi ·K0[S] and whence ei ·K0[S] = fi ·K0[S].
Note that F =

∑n
i=1 fi is the identity of K0[S] and fi’s are orthogonal. We observe

that K0[S] =
⊕n

i=1 fi ·K0[S] =
⊕n

i=1 ei ·K0[S]. In addition, ei’s are all nonzero, further
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by Lemma 3.1 (3), eis are related by D. Therefore by [10, Proposition (21.20), p.315],
eiK0[S] ∼= ejK0[S] for any i, j. 2

Now, we have

K0[S] =
⊕n

i=1 ei ·K0[S] ∼= EndK0[S](ne1 ·K0[S]) ∼= Mn(e1K0[S]e1)

∼= Mn(K0[e1Se1]).

On the other hand, since S is an almost idempotent-free semigroup, it is easy to see that
E(e1Se1) = E(e1Reg(S)e1). But S/V ∼= Reg(S) is a completely 0-simple semigroup, we
have E(e1Reg(S)e1) = {e1, 0}. However e1Se1 is an idempotent-free monoid.

We have now proved that K0[S] ∼= Mn(K0[e1Se1]), so that Mn(Z(K0[e1Se1])) is an
Azumaya algebra. By Lemma 2.7, K0[e1Se1] is an Azumaya algebra. The proof is finished.
2

Let us turn back to the proof of Theorem 3.3. If S\V is a subsemigroup of S, then P
has no zero entries. But P is invertible in Mn(K[H]), so the cardinality of the sets I and
Λ must be equal to 1. In other words, n = 1. Thus S is an idempotent-free monoid. Note
that S\V is a subsemigroup of S is equivalent to that the set of nonzero regular elements
of S forms a subsemigroup of S, we have the following corollary.

Corollary 3.5 Let S be an almost idempotent-free semigroup whose set of nonzero regular
elements forms a subsemigroup. If K[S] is Azumaya, then S is an idempotent-free monoid.

By applying the result [11, Corollary 17, p.325], we have that for any finite semigroup
S, K0[S] is an Azumaya algebra if and only if K0[S] ∼= ⊕m

i=1K0[Si] where each Si is
an almost idempotent-free semigroup and K0[Si] an Azumaya algebra. Furthermore, by
Theorem 3.2, the following corollary is immediate. This corollary confirms Problem 1.3
when the semigroup satisfies the regularity condition.

Corollary 3.6 Let S be a finite semigroup. If S satisfies the regularity condition, then
K0[S] is an Azumaya algebra if and only if K0[S] ∼=

⊕m
i=1Mni

(K0[Gi]) where each Gi is
an idempotent-free monoid and K0[Gi] an Azumaya algebra.

4 The condition minJ

The aim of this section is to determine when semigroup algebras of almost idempotent-free
semigroups satisfying the condition minJ are Azumaya algebras.

Lemma 4.1 Let S be an almost idempotent-free semigroup satisfying the condition minJ .
Assume that K[S] is an Azumaya algebra. If I and J are J -classes of S that are not
regular, then for any a ∈ I, b ∈ J , we have Jab < I, J and Jba < I, J .

Proof. For any a ∈ I, b ∈ J , we have Jab ≤ Jb = J . If Jab = J , then there exist x, y ∈ S1

such that b = xaby. Thus b = (xa)nbyn for all positive integer n. Obviously, (xa)n ̸= 0.
Note that

· · · ≤ J(xa)3 ≤ J(xa)2 ≤ Jxa.

But S satisfies the condition minJ , so there exists positive integer m such that

J(xa)m = J(xa)m+1 = · · · .
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It follows that (xa)m(xa)m ∈ J(xa)m , in other words, J(xa)m is 0-simple. Thus by Lemma
3.1(1), (xa)m is regular, whence by Lemma 3.1(2), I is the unique nonzero regular J -class
of S since J(xa)m ≤ Ja = I, giving J(xa)m = I. This is a contradiction. Consequently,
Jab < J ; similarly Jab < I. The rest can be similarly proved. 2

Lemma 4.2 Let S be an almost idempotent-free semigroup satisfying the condition minJ .
If K[S] is an Azumaya algebra, then for any a ∈ S, either a is regular or an = 0 for some
positive integer n if S has zero element 0.

Proof. Without loss of generality, we assume that S has zero element 0. Now let a be not
a regular element of S. Obviously,

Ja ≥ Ja2 ≥ · · · ≥ Jan ≥ · · · .

But S satisfies the condition minJ , so there exists positive integer m such that

Jam = Jam+1 = · · · .

It follows that Jam = Ja2m , whence a
m ◦ am ∈ Jam . Thus am = 0 or J(am)/I(am) is 0-

simple. If the second case holds, then by Lemma 3.1(1), am is regular. Note that Jam ≤ Ja.
By Lemma 3.1(2), Jam = Ja and whence a is regular, contrary to the hypothesis. Therefore
am = 0 and the result follows. 2

Recall that a semigroup S is called an ideal extension of nil semigroups by a completely
0-simple semigroup if S has a nil ideal I such that S/I is a completely 0-simple semigroup.
The following corollary is immediate from Lemmas 3.1 and 4.2.

Corollary 4.3 Let S be an almost idempotent-free semigroup satisfying minJ . If K0[S]
is Azumaya, then S is an ideal extension of nil semigroups by a completely 0-simple
semigroup.

Based on Lemma 4.2, we have the following theorem.

Theorem 4.4 Let S be an almost idempotent-free semigroup satisfying the condition
minJ , and assume that S has no zero elements. If K[S] is an Azumaya algebra, then
S is a group.

Proof. Assume K[S] is an Azumaya algebra. By Lemma 4.2, all elements of S are regular,
in other words, S is a regular semigroup. By Corollary 3.5, S is an idempotent-free
monoid. Thus S is a group. 2

We shall simply denote

Z(K[S])K[Reg(S)] =

{
m∑
i=1

ziyi : zi ∈ Z(K[S]), yi ∈ K[Reg(S)],m ∈ N

}
,

where N is the set of positive integers.

Lemma 4.5 Let S be an almost idempotent-free semigroup satisfying the condition minJ .
If K[S] is an Azumaya algebra, then K[S] = Z(K[S])K[Reg(S)].
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Proof. Assume that K[S] is an Azumaya algebra. By Theorem 4.4, the theorem is clearly
true for the case if S has no zero elements. So, we now let S have a zero element.
Assume, on the contrary, that there exists α /∈ Z(K[S])K[Reg(S)]. It follows that a1 /∈
Z(K[S])K[Reg(S)] for some a1 ∈ supp(α). Obviously, a1 ∈ S\Reg(S). By Lemma 2.3(1),
we have

(K[J(a1)] ∩ Z(K[S]))K[S] = K[J(a1)] (1)

and a1 = α1(β1+β
′
1) = α1β1+α1β

′
1 for some α1 ∈ K[J(a1)]∩Z(K[S]), β1 ∈ K[Reg(S)] and

β′
1 ∈ K[V ]. But a1 /∈ Z(K[S])K[Reg(S)], so α1β

′
1 /∈ Z(K[S])K[Reg(S)] and α1β

′
1 ̸= 0.

Since J(a1) = Ja1 ∪ I(a1), we know that Ja1 is the greatest element of the set {Jx : x ∈
J(a1)}, and whence Ja1 is bigger than the greatest element of the set

B := {Jx : x ∈ supp(u), u ∈ K[J(a1)] ∩ Z(K[S])}.

In particular, Ja1 ≥ Jx for any x ∈ supp(α1). Now, by Lemma 4.1, Ja1 > Jy for any
y ∈ supp(α1β

′
1). Because α1β

′
1 /∈ Z(K[S])K[Reg(S)], we have a2 ∈ supp(α1β

′
1) such that

a2 /∈ Z(K[S])K[Reg(S)]. By the forgoing proof, Ja1 > Ja2 .
By applying the same arguments to a2, we have a3 such that a3 /∈ Z(K[S])K[Reg(S)]

and Ja2 > Ja3 . Continuing this process, we may obtain the J -classes:

Ja1 > Ja2 > · · · > Jan > · · · ,

contrary to the hypothesis that S satisfies the condition minJ . Consequently, K[S] =
Z(K[S])K[Reg(S)]. 2

We now arrive at the main result of this section.

Theorem 4.6 Let S be an almost idempotent-free semigroup satisfying minJ . If, in
addition, S satisfies the regularity condition, then K[S] is an Azumaya algebra if and
only if K[S] = Z(K[S])K[Reg(S)] and K[Reg(S)] is an Azumaya algebra.

Proof. Assume that K[S] is an Azumaya algebra. By Lemma 4.5, we need only to verify
that K[Reg(S)] is an Azumaya algebra. In fact, by Lemma 3.1 (2), V is an ideal of S,
so by Lemma 3.1 (2), K0[Reg(S)] ∼= K0[S/V ] ∼= K[S]/K[V ] and further is an Azumaya
algebra by Lemma 2.3. However by Lemma 2.6, K[Reg(S)] is an Azumaya algebra.

Conversely, suppose that K[S] = Z(K[S])K[Reg(S)] and K[Reg(S)] is an Azumaya
algebra. Since K[S] = Z(K[S])K[Reg(S)], we know that the center Z(K[S]) of K[S] is
equal to

{x ∈ K[S] : xu = ux for all u ∈ K[Reg(S)]}.

This means that the center Z(K[Reg(S)]) of K[Reg(S)] is contained in Z(K[S]). By
Lemma 2.4, we observe that Z(K[S])⊗Z(K[Reg(S)]) K[Reg(S)] is an Azumaya algebra. It
is easy to see that K[S] is a homomorphic image of Z(K[S])⊗Z(K[Reg(S)])K[Reg(S)] since
K[S] = Z(K[S])K[Reg(S)]. Now by Lemma 2.3 (2), K[S] is an Azumaya algebra. 2

It is well known that finite semigroups satisfy the condition minJ . Obviously, any
infinite group satisfies the condition minJ . So, not all semigroups satisfying the condition
minJ are finite. The next example illustrates that there exist Azumaya semigroup algebras
of almost idempotent-free semigroups satisfying the condition minJ but not finite.
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Example 4.7 Let U be a null semigroup with zero 0, and G a group with identity 1 and
such that K[G] is an Azumaya algebra. Assume that S is the disjoint union of U and G.
Define a multiplication ∗ by:

x ∗ y =


x if y ∈ G but x ∈ U
y if x ∈ G but y ∈ U
xy otherwise,

where xy is the product of x and y in the semigroup U or the group G. By computation,
(S, ∗) is a monoid with identity 1. It is easy to check that the Green’s relation J on
S is equal to (G × G) ∪ ∆U where ∆U is the identity relation on U . This shows that
in the semigroup S, maximal chains of J -classes of S have the form: J0 < Jx < Jg,
where x ∈ U\{0}, g ∈ G. So, S satisfies minJ . On the other hand, it is easy to see that
Z(K[S]) = K[U ] + Z(K[G]) and whence K[S] = Z(K[S])K[G] since 1 ∈ Z(K[S]). By
Theorem 4.6, K[S] is an Azumaya algebra. When U is infinite, S is clear infinite.

The following example illustrates the condition minJ is not necessary for a semigroup
algebra K[S] to be an Azumaya algebra.

Example 4.8 Let G be a group such that K[G] is Azumaya. Let U be the ω-chain
{e0, e1, e2, · · · } with

e0 > e1 > e2 > · · ·
(for detail, see [9, Example 4.6, p.144]). The semigroup S constructed as in Example 4.7
has the J -class chain:

J1 > Je0 > Je1 > Je2 > · · · .
This shows that S does not satisfy the condition minJ . Note that U is in the center of S.
Thus Z(K[S]) = Z(K[G]) +K[U ], so that K[S] = Z(K[S])K[G]. It follows that K[S] is
a homomorphic image of K[G]⊗Z(K[G]) Z(K[S]). But K[G]⊗Z(K[G]) Z(K[S]) is Azumaya
(by Lemma 2.4). Therefore K[S] is an Azumaya algebra.

The remainder of this section is devoted to semigroup algebras of idempotent-free
semigroups.

Lemma 4.9 Let S be an idempotent-free semigroup. If K[S] is an Azumaya algebra,
then S is a monoid satisfying the regularity condition and Reg(S)\{0} is a subgroup of
S. Moreover, if S has no zero elements, then S is a group.

Proof. Because S is an idempotent-free semigroup and by Lemma 3.1 (3), S/V is a
completely 0-simple semigroup without idempotents except possibly identity and zero
element. It follows that S/V is a 0-group (that is, a group adjoining a zero). This shows
that Reg(S)\{0} is a subgroup of S, and whence S satisfies the regularity condition. Now,
by the proof of Theorem 3.3, the identity of K[S] coincides with the one of K[Reg(S)],
so that S is a monoid. The rest is trivial. 2

By Lemma 4.9 and Theorem 4.6, the following theorem is immediate. This theorem
answers particularly Conjecture 1.2.

Theorem 4.10 Let S be an idempotent-free monoid with the group of units U . If S
satisfies the condition minJ , then K[S] is an Azumaya algebra if and only if K[S] =
Z(K[S])K[U ] and K[U ] is an Azumaya algebra.
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It is clear to see that cancellative monoids are idempotent-free semigroups. By Theo-
rem 4.4, we have the following corollary.

Corollary 4.11 Let S be a cancellative monoid satisfying the condition minJ . If K[S]
is an Azumaya algebra, then S is a group.

Proof. By Theorem 4.4, S is isomorphic to some Rees matrix semigroup over a group,
and further a regular semigroup. But any regular cancellative monoid is a group, now S
is a group. 2
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