Characterization of finite groups by the number of non-cyclic non-TI-subgroups *

Jiangtao Shi ${ }^{a, * *}$, Cui Zhang ${ }^{b}$
${ }^{a}$ School of Mathematics and Information Science, Yantai University, Yantai 264005, China
${ }^{b}$ Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

Let G be a finite group and M a subgroup of G. Then M is said to be a TIsubgroup of G if $M^{g} \cap M=1$ or M for any $g \in G$. In this paper, we characterize the solvability of finite groups only by the number of their non-cyclic non-TI-subgroups, we prove that any finite group G having at most 26 non-cyclic non-TI-subgroups is always solvable except for $G \cong A_{5}$ or $\operatorname{SL}(2,5)$.

Keywords: non-cyclic subgroup; non-TI-subgroup; solvable group
MSC(2010): 20D05; 20D10

1 Introduction

In this paper, all groups are considered to be finite. In many cases, the structure of a group can be studied by its local properties. In [1], H. Bao and L. Miao studied groups with some \mathcal{M}-permutable primary subgroups. In [16], L. Zhang, W. Shi, D. Yu et al determined all simple groups by their first prime graph components. And in [17], L. Zhang, W. Nie and D. Yu characterized the simple group $D_{n}(3)$ by its prime graph.

Let G be a group and M a subgroup of G. Then M is said to be a TI-subgroup of G if $M^{g} \cap M=1$ or M for any $g \in G$.

For TI-subgroups, one of the most important problems is to study the structure of groups in which some particular subgroups are TI-subgroups. In [14], G. Walls classified groups in which every subgroup is a TI-subgroup. In [4], X. Guo, S. Li and P. Flavell described groups in which every abelian subgroup is a TI-subgroup. Moreover, M.R. Salarian [8] classified groups G in which every cyclic subgroup, elementary abelian 2subgroup and abelian subgroup of order at most $4 p$ are TI-subgroups, where p is a prime divisor of $|G|$. Recently, H. Mousavi, T. Rastgoo and V. Zenkov [5] determined nonnilpotent groups in which every cyclic subgroup is a TI-subgroup.

[^0]In $[11,12]$, we gave some equivalent characterizations of groups in which every nonabelian subgroup is a TI-subgroup and groups in which every non-nilpotent subgroup is a TI-subgroup respectively.

Let G be a group having exactly n non-cyclic subgroups. Let $\delta(G)$ be the number of non-cyclic non-TI-subgroups of G and $\tau(G)$ the number of non-cyclic TI-subgroups of G. Then $n=\delta(G)+\tau(G)$. By [10, Theorem 3.1], any group G with $\delta(G)=0$ is solvable. Motivated by this, the main goal of this paper is to study the influence of $\delta(G)$ on the solvability of G.

We have the following result, the proof of which is given in Section 3.
Theorem 1.1 Any group G having at most 26 non-cyclic non-TI-subgroups is always solvable except for $G \cong A_{5}$ or $\operatorname{SL}(2,5)$.

Observe that A_{5} has 27 non-cyclic subgroups in all, including 21 non-cyclic non-TIsubgroups and 6 non-cyclic TI-subgroups. And $\operatorname{SL}(2,5)$ has 27 non-cyclic subgroups in all, including 26 non-cyclic non-TI-subgroups and 1 non-cyclic TI-subgroup.

In [13], we determined groups in which every non-cyclic proper subgroup is non-normal.
Theorem 1.2 [13, Theorem 1.1] Suppose that G is a solvable group in which every noncyclic proper subgroup is non-normal, then one of the following statements holds:
(1) G is cyclic or $G \cong Q_{8}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, where p is a prime;
(2) $G \cong\left\langle a, b \mid a^{m}=b^{q^{n}}=1, b^{-1} a b=a^{r}\right\rangle$, where m, n are positive integers and q is the smallest prime divisor of $|G|$ such that $((r-1) q, m)=1$ and $r^{q} \equiv 1(\bmod m)$.

As a direct consequence of Theorem 1.2, we can easily obtain the following result.
Theorem 1.3 Let G be a solvable group having at least one non-cyclic proper subgroup. Suppose that every non-cyclic proper subgroup of G is not a TI-subgroup, then $G \cong\langle a, b|$ $\left.a^{m}=b^{q^{n}}=1, b^{-1} a b=a^{r}\right\rangle$, where m, n are positive integers and q is the smallest prime divisor of $|G|$ such that $((r-1) q, m)=1$ and $r^{q} \equiv 1(\bmod m)$.

The special linear group $\operatorname{SL}(2,5)$ shows that a group in which every non-cyclic proper subgroup is not a TI-subgroup might be non-solvable.

All notations in this paper are standard, please see [7].

2 Preliminaries

In this section, we collect some essential lemmas needed in the sequel.
Lemma 2.1 ([7, Theorem 10.5.6 (i) and Exercise 9.1.1]) Let G be a Frobenius group with kernel N and complement M. Then
(1) N is nilpotent;
(2) All Frobenius complements of G are conjugate in G.

Lemma 2.2 ([7, Exercise 10.5.7]) Suppose that G is a group having an abelian maximal subgroup, then G is solvable.

Lemma 2.3 ([15, Theorems 3.1 and 3.2] and [9, Lemma 2.7]) Let G be a group having exactly m maximal subgroups.
(1) Suppose that $m \leq 20$, then G is solvable.
(2) Suppose that G is a non-solvable group with $m=21$, then $G / \Phi(G) \cong A_{5}$.
(3) Suppose that G is a non-solvable group with $m=22$, then $G / \Phi(G) \cong \operatorname{PSL}(2,7)$ or $A_{5} \times \mathbb{Z}_{p}$ or S_{5}, where p is a prime.
(4) Suppose that G is a non-solvable group with $m=23$, then $G / \Phi(G) \cong \operatorname{PSL}(2,7) \times \mathbb{Z}_{p}$ or $A_{5} \times \mathbb{Z}_{p q}$ or $S_{5} \times \mathbb{Z}_{p}$, where p and q are distinct primes.

Lemma 2.4 Suppose that G is a group in which every maximal subgroup is a TIsubgroup, then G is solvable.

Proof. If every maximal subgroup of G is normal, then G is obviously solvable. Next assume that G has at least one non-normal maximal subgroup. Let M be a non-normal maximal subgroup of G. By the hypothesis, G is a Frobenius group with complement M. Let N be Frobenius kernel of G. One has $G=N \rtimes M$, the semidirect product of N and M, where $N \unlhd G$. Let M_{1} be any maximal subgroup of M. Then $N \rtimes M_{1}$ is a maximal subgroup of G. Since all Frobenius complements of G are conjugate by Lemma 2.1 (2) and $N \rtimes M_{1}$ is not a conjugate of M, one has $N \rtimes M_{1} \unlhd G$ by the hypothesis. Then $M_{1}=M_{1}(N \cap M)=\left(N \rtimes M_{1}\right) \cap M \unlhd M$. It follows that M is nilpotent. Therefore, G is solvable since N is also nilpotent by Lemma 2.1 (1).

Lemma 2.5 There does not exist a non-abelian simple group G such that G has exactly m maximal subgroups, where $24 \leq m \leq 26$.

Proof. Suppose not. Assume that G is a non-abelian simple group having exactly m maximal subgroups for $24 \leq m \leq 26$. Let M be a maximal subgroup of G with the smallest index in G. Assume that $|G: M|=n$. Then G is isomorphic to a subgroup of A_{n}. By [6], G has at least three conjugacy classes of maximal subgroups. It follows that $n \leq\left[\frac{26}{3}\right]=8$. By [3, page 22], A_{8} has the following subgroups being non-abelian simple groups: $A_{5}, A_{6}, \operatorname{PSL}(2,7), A_{7}$ and A_{8}. Obviously, all those non-abelian simple groups do not have exactly m maximal subgroups for $24 \leq m \leq 26$, a contradiction.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from the following five lemmas.

Lemma 3.1 Let G be a group having at most 20 non-cyclic non-TI-subgroups, then G is solvable.

Proof. Let G be a counterexample of minimal order. It follows that G is a minimal nonsolvable group, and then $G / \Phi(G)$ is a minimal non-abelian simple group. By Lemma 2.2, every maximal subgroup of G is non-cyclic. Since $G / \Phi(G)$ is a non-abelian simple group, every maximal subgroup of G is obviously not a TI-subgroup. It follows that G has at most 20 maximal subgroups by the hypothesis. Then G is solvable by Lemma 2.3 (1), a contradiction. So G is solvable.

Lemma 3.2 Let G be a non-solvable group having exactly 21 non-cyclic non-TI-subgroups, then $G \cong A_{5}$.

Proof. Obviously, every maximal subgroup of G is non-cyclic. We claim that every maximal subgroup of G is solvable.

Otherwise, assume that M is a non-solvable maximal subgroup of G. By Lemma 3.1 and the hypothesis, M has exactly 21 non-cyclic non-TI-subgroups. It follows that every maximal subgroup of G is a TI-subgroup. By Lemma 2.4, G is solvable, a contradiction.

So every maximal subgroup of G is solvable. It follows that $G / \Phi(G)$ is a minimal non-abelian simple group. Therefore, every maximal subgroup of G is a non-cyclic non-TI-subgroup. By Lemma 2.3 (1) and the hypothesis, G has exactly 21 maximal subgroups. It follows that $G / \Phi(G) \cong A_{5}$ by Lemma 2.3 (2).

We claim that $\Phi(G)=1$.
Otherwise, assume that $\Phi(G) \neq 1$. Let P be a Sylow 2-subgroup of G. Then $P \Phi(G) / \Phi(G)$ is a Sylow 2-subgroup of $G / \Phi(G)$. Obviously, $P \Phi(G)$ is non-cyclic and $P \Phi(G)$ is not a TI-subgroup of G. Moreover, $P \Phi(G)$ is not a maximal subgroup of G. It follows that G has more than 21 non-cyclic non-TI-subgroups, a contradiction.

So $\Phi(G)=1$, and then $G \cong A_{5}$.

Lemma 3.3 Let G be a group having exactly 22 or 23 non-cyclic non-TI-subgroups, then G is solvable.

Proof. Assume that G is non-solvable. Then every maximal subgroup of G is non-cyclic. We claim that every maximal subgroup of G is solvable.

Otherwise, assume that M is a non-solvable maximal subgroup of G. By Lemma 3.1 and the hypothesis, M has exactly 21 or 22 or 23 non-cyclic non-TI-subgroups. It follows that G has at most two maximal subgroups that are not TI-subgroups. Since the number of conjugates of any non-normal maximal subgroup of G must be greater than 2 , it follows that every maximal subgroup of G is a TI-subgroup. Then G is solvable by Lemma 2.4, a contradiction.

Therefore, G is a minimal non-solvable group. It follows that $G / \Phi(G)$ is a minimal non-abelian simple group. Obviously, every maximal subgroup of G is not a TI-subgroup. By Lemma 2.3 (1) and the hypothesis, G might have exactly 21 or 22 or 23 maximal subgroups. It follows that $G / \Phi(G)$ might be isomorphic to A_{5} or PSL $(2,7)$ by Lemma 2.3. Obviously, $\operatorname{PSL}(2,7)$ has more than 23 non-cyclic non-TI-subgroups. Therefore, $G / \Phi(G)$ cannot be isomorphic to $\operatorname{PSL}(2,7)$.

Next assume that $G / \Phi(G) \cong A_{5}$. Obviously, by Lemma 3.2, $\Phi(G) \neq 1$. Let Q be a Sylow 2-subgroup of G. It is easy to see that $Q \Phi(G)$ is a non-cyclic non-TI-subgroup of G. Since $\left|G: N_{G}(Q \Phi(G))\right|=\left|G / \Phi(G): N_{G / \Phi(G)}(Q \Phi(G) / \Phi(G))\right|=5$ and $Q \Phi(G)$ is not a maximal subgroup of G, it follows that G has at least 26 non-cyclic non-TI-subgroups, a contradiction. Hence, G is solvable.

Lemma 3.4 Let G be a group having exactly 24 or 25 non-cyclic non-TI-subgroups, then G is solvable.

Proof. Suppose not. Assume that G is non-solvable. Then every maximal subgroup of G is non-cyclic. If G has a non-solvable maximal subgroup, say M. By Lemmas 3.1, 3.2, 3.3 and the hypothesis, M might have exactly 21 or 24 or 25 non-cyclic non-TI-subgroups. Arguing as in proof of Lemma 3.3, M cannot have exactly 24 or 25 non-cyclic non-TIsubgroups. If M has exactly 21 non-cyclic non-TI-subgroups, then $M \cong A_{5}$ by Lemma 3.2. It follows that G has at most four maximal subgroups that are not TI-subgroups. Let H be a maximal subgroup of G that is not a TI-subgroup. Obviously, $H \nexists G$. One has $\left|G: N_{G}(H)\right|=|G: H|=n$, where $3 \leq n \leq 4$. It follows that $G / \operatorname{Core}_{G}(H) \lesssim S_{n}$ for $3 \leq n \leq 4$, where $\operatorname{Core}_{G}(H)$ is the largest normal subgroup of G that is contained in H. Since S_{n} is solvable for $3 \leq n \leq 4, G / \operatorname{Core}_{G}(H)$ has a normal maximal subgroup, say $K / \operatorname{Core}_{G}(H)$. Then K is a normal maximal subgroup of G. Obviously, $K \neq M$. Then $K \cap M=1$. One has $G=K \rtimes M$. It follows that $M \cong G / K$ is a cyclic group of prime order, a contradiction.

Therefore, every maximal subgroup of G is solvable. It follows that $G / \Phi(G)$ is a minimal non-abelian simple group. It is clear that every maximal subgroup of G is not a TI-subgroup. By Lemma 2.3 (1) and the hypothesis, G might have exactly 21 or 22 or 23 or 24 or 25 maximal subgroups. If $\Phi(G)=1$, by Lemmas 2.3 and $2.5, G$ only may be isomorphic to A_{5} or $\operatorname{PSL}(2,7)$. Obviously, both A_{5} and $\operatorname{PSL}(2,7)$ do not have exactly 24 or 25 non-cyclic non-TI-subgroups. It follows that $\Phi(G) \neq 1$. By Lemmas 2.3 and 2.5, $G / \Phi(G)$ only may be isomorphic to A_{5}. Arguing as in proof of Lemma 3.3, we have that G has at least 26 non-cyclic non-TI-subgroups, a contradiction. So G is solvable.

Lemma 3.5 Let G be a non-solvable group having exactly 26 non-cyclic non-TI-subgroups, then $G \cong \mathrm{SL}(2,5)$.

Proof. Since G is non-solvable, every maximal subgroup of G is non-cyclic.
We claim that every maximal subgroup of G is solvable.
Otherwise, assume that M is a non-solvable maximal subgroup of G. Arguing as in proof of Lemma 3.4, M only may have exactly 21 non-cyclic non-TI-subgroups and G has exactly five conjugate maximal subgroups that are not TI-subgroups. By Lemma 3.2, $M \cong A_{5}$. Let H be a maximal subgroup of G that is not a TI-subgroup. Since $\mid G$: $H\left|=\left|G: N_{G}(H)\right|=5\right.$, one has $G / \operatorname{Core}_{G}(H) \lesssim S_{5}$. Since $G / \operatorname{Core}_{G}(H)$ has a non-normal maximal subgroup $H / \operatorname{Core}_{G}(H)$ with index 5 in $G / \operatorname{Core}_{G}(H)$, one has $G / \operatorname{Core}_{G}(H) \cong$ $\mathbb{Z}_{5} \rtimes \mathbb{Z}_{2}$ or $\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$ or A_{5} or S_{5}.
(i) Suppose that $G / \operatorname{Core}_{G}(H) \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{2}$ or $\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$ or S_{5}. We have that $G / \operatorname{Core}_{G}(H)$ has a normal maximal subgroup $L / \operatorname{Core}_{G}(H)$. Then L is a normal maximal subgroup of G. Obviously, $L \neq M$. Then $L \cap M=1$. One has $G=L \rtimes M$. It follows that $M \cong G / L$ is a cyclic group of prime order, a contradiction.
(ii) Suppose that $G / \operatorname{Core}_{G}(H) \cong A_{5}$, one has $H / \operatorname{Core}_{G}(H) \cong A_{4}$. If $\operatorname{Core}_{G}(H) \leq M$, one has $\operatorname{Core}_{G}(H)=1$. Then $G \cong A_{5}$, this contradicts the hypothesis. If $\operatorname{Core}_{G}(H) \not \leq M$, one has $\operatorname{Core}_{G}(H) \cap M=1$. It follows that $G=\operatorname{Core}_{G}(H) \rtimes M$. Let M_{1} be any non-cyclic non-TI-subgroup of G contained in M. It is easy to see that $\operatorname{Core}_{G}(H) \rtimes M_{1}$ is also a non-cyclic non-TI-subgroup of G. It follows that G has at least 42 non-cyclic non-TIsubgroups, a contradiction.

So every maximal subgroup of G is solvable. It follows that $G / \Phi(G)$ is a minimal non-abelian simple group. Therefore, every maximal subgroup of G is not a TI-subgroup. By the hypothesis, G has at most 26 maximal subgroups. Moreover, by Lemmas 2.3, 2.5 and the hypothesis, we can get that $G / \Phi(G) \cong A_{5}$. Obviously, $\Phi(G) \neq 1$.

We claim that $\Phi(G)$ is cyclic. Otherwise, assume that $\Phi(G)$ is non-cyclic. Let E be any subgroup of G satisfying $\Phi(G)<E<G$. Since $G / \Phi(G) \cong A_{5}$, one has that E is a noncyclic non-TI-subgroup of G. Observe that A_{5} has more than 26 non-trivial subgroups. It follows that G has more than 26 non-cyclic non-TI-subgroups, a contradiction. Thus $\Phi(G)$ is cyclic.

If $|\Phi(G)|$ has an odd prime divisor, say p. Let F be a maximal subgroup of $\Phi(G)$ such that $|\Phi(G): F|=p$. Since $\Phi(G)$ is cyclic, one has $F \unlhd G$. Let $\bar{G}=G / F$. Then $\bar{G} / \Phi(\bar{G})=(G / F) / \Phi(G / F)=(G / F) /(\Phi(G) / F) \cong G / \Phi(G) \cong A_{5}$. It follows that $|\bar{G}|=60 p$. We denote by $\pi(A)$ the set of all prime divisors of $|A|$, the order of group A. Since $\pi(G)=\pi(G / \Phi(G))$, we have $\pi(G)=\{2,3,5\}$. Then $p=3$ or 5 . It follows that \bar{G} is a non-solvable group of order 180 or 300 . Using the small groups library in GAP (see [2]), one has that $A_{5} \times \mathbb{Z}_{3}$ is a unique non-solvable group of order 180 and $A_{5} \times \mathbb{Z}_{5}$ is a unique non-solvable group of order 300. It follows that \bar{G} might be isomorphic to $A_{5} \times \mathbb{Z}_{3}$ or $A_{5} \times \mathbb{Z}_{5}$. However, $\Phi\left(A_{5} \times \mathbb{Z}_{3}\right)=1 \not \not \mathbb{Z}_{3}$ and $\Phi\left(A_{5} \times \mathbb{Z}_{5}\right)=1 \not \not \mathbb{Z}_{5}$, this contradicts that $\Phi(\bar{G})=\Phi(G) / F \cong \mathbb{Z}_{p}$. Thus $|\Phi(G)|$ cannot have any odd prime divisor. It follows that $\Phi(G)$ is a cyclic 2-group.

Let P be a Sylow 2-subgroup of G. Obviously, P is a non-cyclic non-TI-subgroup of G. Moreover, $\left|G: N_{G}(P)\right|=\left|G / \Phi(G): N_{G / \Phi(G)}(P / \Phi(G))\right|=5$ and P is not a maximal subgroup of G. Therefore, 26 non-cyclic non-TI-subgroups of G consist of 21 maximal subgroups of G and 5 Sylow 2-subgroups of G.

We claim that P is a minimal non-cyclic group.
Otherwise, assume that P_{1} is a maximal subgroup of P such that P_{1} is non-cyclic. By above arguments, we have that P_{1} is a TI-subgroup of G. Since $P_{1} \not \leq \Phi(G)$ and $G / \Phi(G)$ is a non-abelian simple group, one has $P_{1} \nexists G$. Obviously, $P_{1} \cap \Phi(G) \unlhd G$ since $\Phi(G)$ is cyclic. Since P_{1} is a TI-subgroup of G, we must have that $P_{1} \cap \Phi(G)=1$. Then $\Phi(G) \cong \Phi(G) /\left(P_{1} \cap \Phi(G)\right) \cong P_{1} \Phi(G) / P_{1}=P / P_{1} \cong \mathbb{Z}_{2}$. It follows that $G \cong \mathrm{SL}(2,5)$. However, the Sylow 2-subgroup of $\operatorname{SL}(2,5)$ is isomorphic to Q_{8} so $\Phi(G) \leq P_{1}$, this is a contradiction.

So P is a minimal non-cyclic group. Since $|P|=4|\Phi(G)| \geq 8$, we have that $P \cong Q_{8}$, the quaternion group of order 8 . Then $\Phi(G) \cong \mathbb{Z}_{2}$. It follows that $G \cong \operatorname{SL}(2,5)$.

Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5 combined together give Theorem 1.1.

4 Remark

From above arguments, a natural question arises:
Question 4.1 Let G be a group having exactly $\delta(G)$ non-cyclic non-TI-subgroups and $\tau(G)$ non-cyclic TI-subgroups. Suppose that G is non-solvable, is it always true that $\delta(G)>\tau(G)$?

Obviously, Question 4.1 is true for A_{5} and $\operatorname{SL}(2,5)$.

Acknowledgement

The authors are grateful to all referees who give valuable comments and suggestions.

References

[1] H. Bao and L. Miao, Finite groups with some \mathcal{M}-permutable primary subgroups, Bull. Malays. Math. Sci. Soc. (2) 36 (2013) 1041-1048.
[2] H.U. Besche, B. Eick and E.A. O'Brien, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002) 623-644.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, et al, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] X. Guo, S. Li and P. Flavell, Finite groups whose abelian subgroups are TI-subgroups, J. Algebra 307 (2007) 565-569.
[5] H. Mousavi, T. Rastgoo and V. Zenkov, The structure of non-nilpotent CTI-groups, J. Group Theory 16 (2013) 249-261.
[6] G. Pazderski, Über maximale Untergruppen endlicher Gruppen, Math. Nachr. 26 (1964) 307-319.
[7] D.J.S. Robinson, A Course in the Theory of Groups (Second Edition), SpringerVerlag, New York, 1996.
[8] M.R. Salarian, Finite groups containing certain abelian TI-subgroups, Bull. Belg. Math. Soc. Simon Stevin 19 (2012) 41-45.
[9] J. Shi and C. Zhang, Finite groups with given quantitative non-nilpotent subgroups, Commun. Algebra 39 (2011) 3346-3355.
[10] J. Shi, C. Zhang and W. Meng, On a finite group in which every non-abelian subgroup is a TI-subgroup, J. Algebra Appl. 12 (2013) 1250178 [6 pages].
[11] J. Shi and C. Zhang, Finite groups in which all nonabelian subgroups are TIsubgroups, J. Algebra Appl. 13 (2014) 1350074 [3 pages].
[12] J. Shi and C. Zhang, A note on TI-subgroups of a finite group, Algebra Colloq. 21 (2014) 343-346.
[13] J. Shi and C. Zhang, Some results on non-normal non-cyclic subgroups of finite groups, preprint.
[14] G. Walls, Trivial intersection groups, Arch. Math. 32 (1979) 1-4.
[15] J. Wang, The number and its type of maximal subgroups, Pure Appl. Math. 5 (1989) 24-33.
[16] L. Zhang, W. Shi, D. Yu and J. Wang, Recognition of finite simple groups whose first prime graph components are r-regular, Bull. Malays. Math. Sci. Soc. (2) 36 (2013) 131-142.
[17] L. Zhang, W. Nie and D. Yu, On AAM's conjecture for $D_{n}(3)$, Bull. Malays. Math. Sci. Soc. (2) 36 (2013) 1165-1183.

[^0]: ${ }^{*}$ The first author was supported by NSFC (Grant 11201401). The second author was supported by H.C. Ørsted Postdoctoral Fellowship at DTU (Technical University of Denmark).
 ** Corresponding author.
 E-mail addresses: shijt@math.pku.edu.cn (J. Shi), cuizhang2008@gmail.com (C. Zhang).

