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Abstract

Let G be an n-vertex graph. If λ1, λ2, . . . , λn are the adjacency eigenvalues of G,
then the Estrada index and the energy of G are defined as EE(G) =

∑n
i=1 eλi and

E(G) =
∑n

i=1 |λi|, respectively. Some new lower bounds for EE(G) are obtained
in terms of E(G). We also prove that if G has m edges and t triangles, then
EE(G) ≥

√
n2 + 2mn + 2nt. The new lower bounds improve previous lower bounds

on EE.
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1 Introduction

Throughout this paper we consider simple graphs, that is finite and undirected graphs
without loops and multiple edges. If G is a graph with vertex set {1, . . . , n}, the adjacency
matrix of G is an n × n matrix A = [aij], where aij = 1 if there is an edge between the
vertices i and j, and aij = 0 otherwise. Since A is a real symmetric matrix, its eigenvalues
λ1, λ2, . . . , λn are real numbers. These are referred to as the eigenvalues of G. In what
follows we assume that λ1 ≥ λ2 ≥ · · · ≥ λn. The multiset of eigenvalues of A is called
the spectrum of G. For details of the theory of graph spectra see [2, 3]. We denote the
complete graph on n vertices by Kn, the complete bipartite graph whose parts are of
orders a, b by Ka,b.

The energy of G is defined as [13]

E(G) =
n∑

i=1

|λi|.

For details on graph energy see the surveys [14, 16, 19], the recent papers [17, 20] and the
references cited therein.
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The Estrada index of G, is defined recently by Ernesto Estrada [6, 7, 8] as

EE(G) =
n∑

i=1

eλi .

The Estrada index has found a variety of applications. Initially it was used to quantify
the degree of folding of long-chain molecules, especially proteins [6, 7, 8]; for this purpose
the EE-values of pertinently constructed weighted graphs were employed. Another, fully
unrelated, application of EE (of simple graphs) was proposed by Estrada and Rodŕıguez-
Velázquez [10, 11]. They showed that EE provides a measure of the centrality of complex
(communication, social, metabolic, etc.) networks. In addition to this, in [12] a connection
between EE and the concept of extended atomic branching was considered. An application
of the Estrada index in statistical thermodynamic has also been reported [9].

Properties of the Estrada index were studied in a number of recent works [4, 15, 18];
for a review see [5].

In this paper we find a lower bound for the Estrada index of a graph in terms of the
number of vertices, edges and triangles and another two lower bounds in terms of energy.
These bounds improve previous bound given in [1, 4].

2 A lower bound in terms of number of vertices,

edges and triangles

In this section we give a lower bound for Estrada index of a graph in terms of the number
of vertices, edges and triangles which is a significant improvement of the following bound.

Theorem 1. ([4]) Let G be graph with n vertices, m edges and t triangles. Then

EE(G) ≥
√

n2 + 4m + 8t.

Equality holds if and only if G is the empty graph Kn.

Recall that ([2]) for a graph with eigenvalues λ1, λ2, . . . , λn, with m edges and t trian-
gles,

n∑
i=1

λi = 0, (1)

n∑
i=1

λ2
i = 2m, (2)

n∑
i=1

λ3
i = 6t. (3)

Lemma 1. For any real x, one has ex ≥ 1 + x + x2

2!
+ x3

3!
. Equality holds if and only if

x = 0.

Proof. By the Taylor’s theorem, for any x 6= 0, there is a real η 6= 0 between x and 0
such that ex = 1 + x + x2

2!
+ x3

3!
+ eη x4

4!
. This proves the lemma. �
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Theorem 2. Let G be graph with n vertices, m edges and t triangles. Then

EE(G) ≥
√

n2 + 2mn + 2nt.

Equality holds if and only if G is the empty graph Kn.

Proof. Suppose that λ1, λ2, . . . , λn are the eigenvalues of G. Using Lemma 1 we have

EE(G)2 =
n∑

i=1

n∑
j=1

eλi+λj

≥
n∑

i=1

n∑
j=1

(
1 + λi + λj +

(λi + λj)2

2
+

(λi + λj)3

6

)

=
n∑

i=1

n∑
j=1

(
1 + λi + λj + λ2

i /2 + λ2
j/2 + λiλj + λ3

i /6 + λ3
j/6 + λ2

i λj/2 + λiλ
2
j/2
)
.

Now, by (1),

n∑
i=1

n∑
j=1

(λi + λj) = n

n∑
i=1

λi + n

n∑
j=1

λj = 0,

n∑
i=1

n∑
j=1

λiλj =

(
n∑

i=1

λi

)2

= 0,

n∑
i=1

n∑
j=1

(λ2
i λj/2 + λiλ

2
j/2) =

1
2

n∑
i=1

λ2
i ·

n∑
j=1

λj +
1
2

n∑
i=1

λi ·
n∑

j=1

λ2
j = 0.

By (2),
n∑

i=1

n∑
j=1

(λ2
i /2 + λ2

j/2) =
n

2

n∑
i=1

λ2
i +

n

2

n∑
j=1

λ2
j = 2mn.

Similarly by (3),
n∑

i=1

n∑
j=1

(λ3
i /6 + λ3

j/6) = 2nt.

Combining the above relations, we get

EE(G)2 ≥ n2 + 2mn + 2nt.

So the inequality of the theorem is proved. By Lemma 1 equality holds if and only if for
all i, j, λi + λj = 0 and this happens if and only if all λi are zero that is G is Kn. �

3 Lower bounds in terms of energy

Recently, in [1] the following were proved.

Theorem 3. ([1]) Let p, η, and q be, respectively, the number of positive, zero, and
negative adjacency eigenvalues of G. Then

EE(G) ≥ η + peE(G)/(2p) + qe−E(G)/(2q) .

Equality holds if and only if G is either
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(i) a union of complete bipartite graphs Ka1,b1∪· · ·∪Kap,bp with (possibly) some isolated
vertices, such that a1b1 = a2b2 = · · · = apbp, or

(ii) a union of copies of the complete k-partite graph Kt,...,t, for some fixed positive
integers k, t, with (possibly) some isolated vertices.

Theorem 4. ([1]) If G is a bipartite graph, then EE(G) ≥ η + r cosh
(

E(G)
r

)
, where

r is rank of the adjacency matrix of G. Equality holds if and only if G is a union of
complete bipartite graphs Ka1,b1 ∪ · · · ∪Kap,bp with (possibly) some isolated vertices, such
that a1b1 = a2b2 = · · · = apbp.

We improve these lower bounds as follows.

Theorem 5. Let G be a graph with largest eigenvalue λ1 and let p, η, q be, respectively,
the number of positive, zero, and negative eigenvalues of G. Then

EE(G) ≥ eλ1 + η + (p− 1)e
E(G)−2λ1

2(p−1) + qe−
E(G)
2q . (4)

Equality holds if and only if G is a graph such that all negative eigenvalues and all
positive eigenvalues but the largest are equal, i.e. the spectrum of G is of the form
{[λ1], [θ1]

p−1, [0]η, [θ2]
q}, with λ1 ≥ θ1 > 0 > θ2, where the exponents show the multi-

plicities.

Proof. Let λ1 ≥ · · · ≥ λp be the positive, and λn−q+1, . . . , λn be the negative eigenvalues
of G. As the sum of eigenvalues of a graph is zero, one has

E(G) = 2

p∑
i=1

λi = −2
n∑

i=n−q+1

λi.

By the arithmetic-geometric mean inequality, we have

p∑
i=2

eλi ≥ (p− 1)e(λ2+···+λp)/(p−1) = (p− 1)e
E(G)/2−λ1

p−1 . (5)

Similarly,
n∑

i=n−q+1

eλi ≥ qe−E(G)/(2q). (6)

For the zero eigenvalues, we also have

n−q∑
i=p+1

eλi = η.

So we obtain
EE(G) ≥ eλ1 + η + (p− 1)e

E(G)/2−λ1
p−1 + qe−

E(G)
2q .

The equality holds in (4) if and only if equalities hold in both (5) and (6). By the
equality case in the arithmetic-geometric mean inequality, equality occurs in (5) iff eλ2 =
· · · = eλp and similarly equality occurs in (6) iff eλn−q+1 = · · · = eλn . Hence, the equality
holds in (4) if and only if λ2 = · · · = λp and λn−q+1 = · · · = λn. This means all negative
eigenvalues and all positive eigenvalues but the largest are equal which completes the
proof. �
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Theorem 5 can be improved for bipartite graphs to the following.

Theorem 6. If G is a bipartite graph, then

EE(G) ≥ η + 2 cosh(λ1) + (r − 2) cosh

(
E(G)− 2λ1

r − 2

)
, (7)

where r is rank of the adjacency matrix of G and λ1 is the largest eigenvalue of G.
Equality holds if and only if the spectrum of G is of the form {[±λ1], [±λ2]

p−1, [0]η}, with
λ1 ≥ λ2 > 0.

Proof. Since G is bipartite, its eigenvalues are symmetric with respect to zero, i.e.
λi = −λn−i+1 for i = 1, . . . , bn/2c. With a similar argument as the proof of Theorem 5,
we find that

EE(G) = η + eλ1 + e−λ1 +

p∑
i=2

eλi +

p∑
i=2

e−λi

≥ η + eλ1 + e−λ1 + (p− 1)e
E(G)/2−λ1

p−1 + (p− 1)e−
E(G)/2−λ1

p−1 .

Since the rank of adjacency matrix of G is equal to 2p, (7) follows.

By the equality case in the arithmetic-geometric mean inequality, equality holds in (7)
if and only if eλ2 = · · · = eλp and e−λ2 = · · · = e−λp . The proof is now complete. �

References

[1] H. Bamdad, F. Ashraf, I. Gutman, Lower bounds for Estrada index and Laplacian
Estrada index, Applied Mathematics Letters 23 (2010) 739–742.
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