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1. Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real numbers

respectively. k is a positive integer. For any a, b ∈ Z, define Z(a) = {a, a+1, · · · }, Z(a, b) =

{a, a + 1, · · · , b} when a ≤ b. ∆ is the forward difference operator ∆un = un+1 − un,

∆2un = ∆(∆un). Besides, * denotes the transpose of a vector.

The present paper considers the fourth-order nonlinear p-Laplacian difference equation

∆2
(
γn−1ϕp(∆2un−2)

)
= f(n, un+1, un, un−1), n ∈ Z(1, k), (1.1)

with boundary value conditions

∆u−1 = ∆u0 = 0, ∆uk = ∆uk+1 = 0, (1.2)

where γn is nonzero and real valued for each n ∈ Z(0, k + 1), ϕp(s) is the p-Laplacian

operator ϕp(s) = |s|p−2s(1 < p < ∞), f ∈ C(R4,R).

Difference equations have attracted the interest of many researchers in the past twenty

years since they provided a natural description of several discrete models. Such discrete
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models are often investigated in various fields of science and technology such as computer

science, economics, neural network, ecology, cybernetics, biological systems, optimal control,

and population dynamics. These studies cover many of the branches of difference equations,

such as stability, attractivity, periodicity, oscillation, and boundary value problem, see [9,22-

24,28,33,34,47-49] and the references therein.

We may think of (1.1) with (1.2) as being a discrete analogue of the following fourth-order

nonlinear p-Laplacian differential equation

d2

dt2

[
γ(t)ϕp

(
d2u(t)

dt2

)]
= f(t, u(t + 1), u(t), u(t− 1)), t ∈ [a, b], (1.3)

with boundary value conditions

u(a) = u′(a) = 0, u(b) = u′(b) = 0. (1.4)

Eq. (1.3) includes the following equation

u(4)(t) = f(t, u(t)), t ∈ R, (1.5)

which is used to describe the bending of an elastic beam; see, for example, [1,6,25,27,46]

and references therein. Equations similar in structure to (1.3) arise in the study of the

existence of solitary waves [42] of lattice differential equations and periodic solutions [19,21]

of functional differential equations. Owing to its importance in physics, many methods are

applied to study fourth-order boundary value problems by many authors.

In recent years, the study of boundary value problems for differential equations develops

at relatively rapid rate. By using various methods and techniques, such as Schauder fixed

point theory, topological degree theory, coincidence degree theory, a series of existence re-

sults of nontrivial solutions for differential equations have been obtained in literatures, we

refer to [3,4,8,26,44]. And critical point theory is also an important tool to deal with prob-

lems on differential equations [15,20,35,39]. Only since 2003, critical point theory has been

employed to establish sufficient conditions on the existence of periodic solutions of difference

equations. By using the critical point theory, Guo and Yu [22-24] and Shi et al. [41] have

successfully proved the existence of periodic solutions of second-order nonlinear difference

equations. We also refer to [47,48] for the discrete boundary value problems. Compared to

first-order or second-order difference equations, the study of higher-order equations, and in

particular, fourth-order equations, has received considerably less attention(see, for example,

[10-14,17,18,28-31,34,38,43,45] and the references contained therein). Yan, Liu [45] in 1997

and Thandapani, Arockiasamy [43] in 2001 studied the following fourth-order difference

equation of form,

∆2
(
γn∆2un

)
+ f(n, un) = 0, n ∈ Z. (1.6)

The authors obtain criteria for the oscillation and nonoscillation of solutions for equation

(1.6). In 2005, Cai, Yu and Guo [7] have obtained some criteria for the existence of periodic

solutions of the fourth-order difference equation

∆2
(
γn−2∆2un−2

)
+ f(n, un) = 0, n ∈ Z. (1.7)
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In 1995, Peterson and Ridenhour considered the disconjugacy of equation (1.7) when γn ≡ 1

and f(n, un) = qnun(see [38]).

The boundary value problem (BVP) for determining the existence of solutions of difference

equations has been a very active area of research in the last twenty years, and for surveys of

recent results, we refer the reader to the monographs by Agarwal et al. [2,16,30,36,40]. How-

ever, to the best of our knowledge, the results on solutions to boundary value problems of

fourth-order p-Laplacian difference equations are scarce in the literature [5,10,32-34,49]. Fur-

thermore, since (1.1) contains both advance and retardation, there are very few manuscripts

dealing with this subject. As a result, the goal of this paper is to fill the gap in this area.

Motivated by the above results, we, in this paper, use the critical point theory to give some

sufficient conditions of the nonexistence and existence of solutions for the BVP (1.1) with

(1.2). We shall study the suplinear and sublinear cases. The main idea in this paper is to

transfer the existence of the BVP (1.1) with (1.2) into the existence of the critical points of

some functional. The proof is based on the notable Mountain Pass Lemma in combination

with variational technique. The purpose of this paper is two-folded. On one hand, we shall

further demonstrate the powerfulness of critical point theory in the study of solutions for

boundary value problems of difference equations. On the other hand, we shall complement

existing results. The motivation for the present work stems from the recent paper in [11].

About the basic knowledge for variational methods, please refer the reader to [35,37,39].

Let

γ̄ = max{γn : n ∈ Z(1, k)}, γ = min{γn : n ∈ Z(1, k)}.

Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:

(γ) for any n ∈ Z(1, k), γn < 0;

(F1) there exists a functional F (n, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such that

∂F (n− 1, v2, v3)
∂v2

+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3), ∀n ∈ Z(1, k);

(F2) there exists a constant M0 > 0 for all (n, v1, v2) ∈ Z(1, k)×R2 such that
∣∣∣∣
∂F (n, v1, v2)

∂v1

∣∣∣∣ ≤ M0,

∣∣∣∣
∂F (n, v1, v2)

∂v2

∣∣∣∣ ≤ M0.

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.1. Assumption (F2) implies that there exists a constant M1 > 0 such that

(F ′
2) |F (n, v1, v2)| ≤ M1 + M0(|v1|+ |v2|), ∀(n, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.2. Suppose that (F1) and the following hypotheses are satisfied:

(γ′) for any n ∈ Z(1, k), γn > 0;

(F3) there exists a functional F (n, ·) ∈ C1(Z×R2,R) such that

lim
r→0

F (n, v1, v2)
rp

= 0, r =
√

v2
1 + v2

2, ∀n ∈ Z(1, k);
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(F4) there exists a constant β > p such that for any n ∈ Z(1, k),

0 <
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)
∂v2

v2 < βF (n, v1, v2), ∀(v1, v2) 6= (0, 0).

Then the BVP (1.1) with (1.2) possesses at least two nontrivial solutions.

Remark 1.2. Assumption (F4) implies that there exist constants a1 > 0 and a2 > 0 such

that

(F ′
4) F (n, v1, v2) > a1

(√
v2
1 + v2

2

)β
− a2, ∀n ∈ Z(1, k).

Theorem 1.3. Suppose that (γ′), (F1) and the following assumption are satisfied:

(F5) there exist constants R > 0 and α, 1 < α < 2 such that for n ∈ Z(1, k) and
√

v2
1 + v2

2 ≥
R,

0 <
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)
∂v2

v2 ≤ α

2
pF (n, v1, v2).

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.3. Assumption (F5) implies that for each n ∈ Z(1, k) there exist constants

a3 > 0 and a4 > 0 such that

(F ′
5) F (n, v1, v2) ≤ a3

(√
v2
1 + v2

2

)α
2

p
+ a4, ∀(n, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.4. Suppose that (γ), (F1) and the following assumption are satisfied:

(F6) v2f(n, v1, v2, v3) > 0, for v2 6= 0, ∀n ∈ Z(1, k).

Then the BVP (1.1) with (1.2) has no nontrivial solutions.

Remark 1.4. In the existing literature, results on the nonexistence of solutions of discrete

boundary value problems are very scarce. Hence, Theorem 1.4 complements existing ones.

The remaining of this paper is organized as follows. Firstly, in Section 2, we shall establish

the variational framework for the BVP (1.1) with (1.2) and transfer the problem of the

existence of the BVP (1.1) with (1.2) into that of the existence of critical points of the

corresponding functional. Some related fundamental results will also be recalled. Then, in

Section 3, we shall complete the proof of the results by using the critical point method.

Finally, in Section 4, we shall give three examples to illustrate the main results.

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding variational

framework for the BVP (1.1) with (1.2) and give some lemmas which will be of fundamental

importance in proving our main results. Firstly, we state some basic notations.

Let Rk be the real Euclidean space with dimension k. Define the inner product on Rk as

follows:

〈u, v〉 =
k∑

j=1

ujvj , ∀u, v ∈ Rk, (2.1)
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by which the norm ‖ · ‖ can be induced by

‖u‖ =




k∑

j=1

u2
j




1
2

, ∀u ∈ Rk. (2.2)

On the other hand, we define the norm ‖ · ‖r on Rk as follows:

‖u‖r =




k∑

j=1

|uj |r



1
r

, (2.3)

for all u ∈ Rk and r > 1.

Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥ c1 > 0,

and

c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ Rk. (2.4)

Clearly, ‖u‖ = ‖u‖2. For any u = (u1, u2, · · · , uk)∗ ∈ Rk, for the BVP (1.1) with (1.2),

when k > 2, consider the functional J defined on Rk as follows:

J(u) =
1
p

k−2∑

n=1

γn+1

∣∣∆2un

∣∣p −
k∑

n=1

F (n, un+1, un) +
1
p
γ1 |∆u1|p +

1
p
γk |∆uk−1|p , (2.5)

where
∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)
∂v2

= f(n, v1, v2, v3),

∆u−1 = ∆u0 = 0, ∆uk = ∆uk+1 = 0.

Clearly, J ∈ C1(Rk,R) and for any u = {un}k
n=1 = (u1, u2, . . . , uk)∗, by using ∆u−1 =

∆u0 = 0, ∆uk = ∆uk+1 = 0, we can compute the partial derivative as

∂J

∂un
= ∆2

(
γn−1ϕp(∆2un−2)

)− f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

∆2
(
γn−1ϕp(∆2un−2)

)
= f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

We reduce the existence of the BVP (1.1) with (1.2) to the existence of critical points of J

on Rk. That is, the functional J is just the variational framework of the BVP (1.1) with

(1.2).

Remark 2.1. In the case k = 1 and k = 2 are trivial, and we omit their proofs.

Let D be the k × k matrix defined by

D =




6 −4 1 0 0 · · · 0 0 0
−4 6 −4 1 0 · · · 0 0 0
1 −4 6 −4 1 · · · 0 0 0
0 1 −4 6 −4 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 6 −4 1
0 0 0 0 0 · · · −4 6 −4
0 0 0 0 0 · · · 1 −4 6




.
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Clearly, D is positive definite. Let λ1, λ2, · · · , λk be the eigenvalues of D. Applying matrix

theory, we know λj > 0, j = 1, 2, · · · , k. Without loss of generality, we may assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λk. (2.6)

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-differentiable

functional defined on E. J is said to satisfy the Palais-Smale condition (P.S. condition for

short) if any sequence
{
u(l)

} ⊂ E for which
{
J

(
u(l)

)}
is bounded and J ′

(
u(l)

) → 0(l →∞)

possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 2.1 (Mountain Pass Lemma [39]). Let E be a real Banach space and J ∈ C1(E,R)

satisfy the P.S. condition. If J(0) = 0 and

(J1) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and

(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ a given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (2.7)

where

Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (2.8)

Lemma 2.2. Suppose that (γ′), (F1), (F3) and (F4) are satisfied. Then the functional J

satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J

(
u(l)

)}
is bounded. Then there exists a

positive constant M2 such that

−M2 ≤ J
(
u(l)

)
≤ M2, ∀l ∈ N.

By (F ′
4), we have

−M2 ≤ J
(
u(l)

)
=

1
p

k−2∑

n=1

γn+1

∣∣∣∆2u(l)
n

∣∣∣
p
−

k∑

n=1

F
(
n, u

(l)
n+1, u

(l)
n

)
+

1
p
γ1

∣∣∣∆u
(l)
1

∣∣∣
p
+

1
p
γk

∣∣∣∆u
(l)
k−1

∣∣∣
p

≤ γ̄

p
cp
2

[
k−2∑

n=1

(
u

(l)
n+2 − 2u

(l)
n+1 + u(l)

n

)2
] p

2

−a1

k∑

n=1

[√(
u

(l)
n+1

)2
+

(
u

(l)
n

)2
]β

+a2k+
2pγ̄

p

∥∥∥u(l)
∥∥∥

p

p

≤ γ̄

p
cp
2

[(
u(l)

)∗
Du(l)

] p
2 − a1c

β
1

∥∥∥u(l)
∥∥∥

β
+ a2k +

2pγ̄

p

∥∥∥u(l)
∥∥∥

p

≤ γ̄

p
cp
2λ

p
2
k

∥∥∥u(l)
∥∥∥

p
− a1c

β
1

∥∥∥u(l)
∥∥∥

β
+ a2k +

2pγ̄

p

∥∥∥u(l)
∥∥∥

p
,

where u(l) =
(
u

(l)
1 , u

(l)
2 , · · · , u

(l)
k

)∗
, u(l) ∈ Rk. That is,

a1c
β
1

∥∥∥u(l)
∥∥∥

β
− γ̄

p

(
cp
2λ

p
2
k + 2p

) ∥∥∥u(l)
∥∥∥

p
≤ M2 + a2k.

Since β > p, there exists a constant M3 > 0 such that
∥∥∥u(l)

∥∥∥ ≤ M3, ∀l ∈ N.

Therefore,
{
u(l)

}
is bounded on Rk. As a consequence,

{
u(l)

}
possesses a convergence

subsequence in Rk. Thus the P.S. condition is verified. ¤
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3. Proof of the main results

In this Section, we shall prove our results by using the critical point method.

3.1. Proof of Theorem 1.1

Proof. By (F ′
2), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1
p

k−2∑

n=1

γn+1

∣∣∆2un

∣∣p −
k∑

n=1

F (n, un+1, un) +
1
p
γ1 |∆u1|p +

1
p
γk |∆uk−1|p

≤ γ̄

p
cp
1

[
k−2∑

n=1

(un+2 − 2un+1 + un)2
] p

2

+ M0

k∑

n=1

(|un+1|+ |un|) + M1k

≤ γ̄

p
cp
1 (u∗Du)

p
2 + 2M0

k∑

n=1

|un|+ M1k

≤ γ̄

p
cp
1λ

p
2
1 ‖u‖p + 2M0

√
k‖u‖+ M1k

→ −∞ as ‖u‖ → +∞.

The above inequality means that −J(u) is coercive. By the continuity of J(u), J attains its

maximum at some point, and we denote it ǔ, that is,

J(ǔ) = max
{

J(u)|u ∈ Rk
}

.

Clearly, ǔ is a critical point of the functional J . This completes the proof of Theorem 1.1.¤

3.2. Proof of Theorem 1.2

Proof. By (F3), for any ε =
γ

2pkcp
1λ

p
2
1 (λ1 can be referred to (2.6)), there exists ρ > 0, such

that

|F (n, v1, v2)| ≤
γ

2pk
cp
1λ

p
2
1

(
v2
1 + v2

2

) p
2 ,∀n ∈ Z(1, k),

for
√

v2
1 + v2

2 ≤
√

2ρ.

For any u = (u1, u2, · · · , uk)∗ ∈ Rk and ‖u‖ ≤ ρ, we have |un| ≤ ρ, n ∈ Z(1, k).

For any n ∈ Z(1, k),

J(u) =
1
p

k−2∑

n=1

γn+1

∣∣∆2un

∣∣p −
k∑

n=1

F (n, un+1, un) +
1
p
γ1 |∆u1|p +

1
p
γk |∆uk−1|p

≥ γ

p
cp
1

[
k−2∑

n=1

(un+2 − 2un+1 + un)2
] p

2

− γ

2pk
cp
1λ

p
2
1

k∑

n=1

(
u2

n+1 + u2
n

) p
2

≥ γ

p
cp
1 (u∗Du)

p
2 − γ

2p
cp
1λ

p
2
1 ‖u‖p

p

≥ γ

p
cp
1λ

p
2
1 ‖u‖p − γ

2p
cp
1λ

p
2
1 ‖u‖p

=
γ

2p
cp
1λ

p
2
1 ‖u‖p,

where u = (u1, u2, · · · , uk)∗, u ∈ Rk.
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Take a =
γ

2pcp
1λ

p
2
1 ρp > 0. Therefore,

J(u) ≥ a > 0, ∀u ∈ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and ρ > 0 such that

J |∂Bρ ≥ a. That is to say, J satisfies the condition (J1) of the Mountain Pass Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass Lemma in critical

point theory, we need to verify other conditions of the Mountain Pass Lemma. By Lemma

2.2, J satisfies the P.S. condition. So it suffices to verify the condition (J2).

From the proof of the P.S. condition, we know

J(u) ≤ γ̄

p

(
cp
2λ

p
2
k + 2p

)
‖u‖p − a1c

β
1 ‖u‖β + a2k.

Since β > p, we can choose ū large enough to ensure that J(ū) < 0.

By the Mountain Pass Lemma, J possesses a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

and

Γ = {h ∈ C([0, 1],Rk) | h(0) = 0, h(1) = ū}.

Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e., J(ũ) = c. Similar

to the proof of the P.S. condition, we know that there exists û ∈ Rk such that

J(û) = cmax = max
s∈[0,1]

J(h(s)).

Clearly, û 6= 0. If ũ 6= û, then the conclusion of Theorem 1.2 holds. Otherwise, ũ = û.

Then c = J(ũ) = cmax = max
s∈[0,1]

J(h(s)). That is,

sup
u∈Rk

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).

Therefore,

cmax = max
s∈[0,1]

J(h(s)), ∀h ∈ Γ.

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(ū) < 0 imply that there

exists s0 ∈ (0, 1) such that

J (h (s0)) = cmax.

Choose h1, h2 ∈ Γ such that {h1(s) | s ∈ (0, 1)} ∩ {h1(s) | s ∈ (0, 1)} is empty, then there

exists s1, s2 ∈ (0, 1) such that

J (h1 (s1)) = J (h2 (s2)) = cmax.

Thus, we get two different critical points of J on Rk denoted by

u1 = h1 (s1) , u2 = h2 (s2) .
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The above argument implies that the BVP (1.1) with (1.2) possesses at least two nontrivial

solutions. The proof of Theorem 1.2 is finished. ¤

3.3. Proof of Theorem 1.3

Proof. We only need to find at least one critical point of the functional J defined as in

(2.5).

By (F ′
5), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1
p

k−2∑

n=1

γn+1

∣∣∆2un

∣∣p −
k∑

n=1

F (n, un+1, un) +
1
p
γ1 |∆u1|p +

1
p
γk |∆uk−1|p

≥ γ

p
cp
1

[
k−2∑

n=1

(un+2 − 2un+1 + un)2
] p

2

− a3

k∑

n=1

(√
u2

n+1 + u2
n

)α
2

p

− a4k

=
γ

p
cp
1 (u∗Du)

p
2 − a3





[
k∑

n=1

(√
u2

n+1 + u2
n

)α
2

p
] 2

αp





α
2

p

− a4k

≥ γ

p
cp
1λ

p
2
1 ‖u‖p − a3c

α
2

p

2





[
k∑

n=1

(
u2

n+1 + u2
n

)
] 1

2





α
2

p

− a4k

≥ γ

p
cp
1λ

p
2
1 ‖u‖p − 2

α
2

pa3c
α
2

p

2 ‖u‖α
2

p − a4k

→ +∞ as ‖u‖ → +∞.

By the continuity of J , we know from the above inequality that there exist lower bounds

of values of the functional. And this means that J attains its minimal value at some point

which is just the critical point of J with the finite norm. ¤

3.4. Proof of Theorem 1.4

Proof. Assume, for the sake of contradiction, that the BVP (1.1) with (1.2) has a nontrivial

solution. Then J has a nonzero critical point u?. Since

∂J

∂un
= ∆2

(
γn−1ϕp(∆2un−2)

)− f(n, un+1, un, un−1),

we get

k∑

n=1

f(n, u?
n+1, u

?
n, u?

n−1)u
?
n =

k∑

n=1

[
∆2

(
γn−1ϕp(∆2u?

n−2)
)]

u?
n

=
k−2∑

n=1

γn+1

∣∣∆2u?
n

∣∣p + γ1 |∆u?
1|p + γk

∣∣∆u?
k−1

∣∣p ≤ 0. (3.1)

On the other hand, it follows from (F6) that

k∑

n=1

f(n, u?
n+1, u

?
n, u?

n−1)u
?
n > 0. (3.2)

This contradicts (3.1) and hence the proof is complete. ¤
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4. Examples

As an application of Theorems 1.2, 1.3 and 1.4, finally, we give three examples to illustrate

our main results.

Example 4.1. For n ∈ Z(1, k), assume that

∆2
(
ϕp(∆2un−2)

)
= βun

[
φ(n)

(
u2

n+1 + u2
n

)β
2
−1 + φ(n− 1)

(
u2

n + u2
n−1

)β
2
−1

]
, (4.1)

with boundary value conditions (1.2), where ϕp(s) is the p-Laplacian operator ϕp(s) =

|s|p−2s(1 < p < ∞), β > p, φ is continuously differentiable and φ(n) > 0, n ∈ Z(1, k) with

ϕ(0) = 0.

We have

γn ≡ 1, f(n, v1, v2, v3) = βv2

[
φ(n)

(
v2
1 + v2

2

)β
2
−1 + φ(n− 1)

(
v2
2 + v2

3

)β
2
−1

]

and

F (n, v1, v2) = φ(n)
(
v2
1 + v2

2

)β
2 .

It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then the BVP (4.1)

with (1.2) possesses at least two nontrivial solutions.

Example 4.2. For n ∈ Z(1, k), assume that

∆2
(
8n−1ϕp(∆2un−2)

)
= αun

[
ψ(n)

(
u2

n+1 + u2
n

)α
4

p−1 + ψ(n− 1)
(
u2

n + u2
n−1

)α
4

p−1
]
, (4.2)

with boundary value conditions (1.2), where ϕp(s) is the p-Laplacian operator ϕp(s) =

|s|p−2s(1 < p < ∞), 1 < α < 2, ψ is continuously differentiable and ψ(n) > 0, n ∈ Z(1, k)

with ψ(0) = 0.

We have

γn = 8n, f(n, v1, v2, v3) = αv2

[
ψ(n)

(
v2
1 + v2

2

)α
4

p−1 + ψ(n− 1)
(
v2
2 + v2

3

)α
4

p−1
]

and

F (n, v1, v2) = ψ(n)
(
v2
1 + v2

2

)α
4

p
.

It is easy to verify all the assumptions of Theorem 1.3 are satisfied and then the BVP (4.2)

with (1.2) possesses at least one solution.

Example 4.3. For n ∈ Z(1, k), assume that

−∆2
(
ϕp(∆2un−2)

)
=

5
3
un

[(
u2

n+1 + u2
n

)− 1
6 +

(
u2

n + u2
n−1

)− 1
6

]
, (4.3)

with boundary value conditions (1.2), where ϕp(s) is the p-Laplacian operator ϕp(s) =

|s|p−2s(1 < p < ∞).

We have

γn ≡ −1, f(n, v1, v2, v3) =
5
3
v2

[(
v2
1 + v2

2

)− 1
6 +

(
v2
2 + v2

3

)− 1
6

]

and

F (n, v1, v2) =
(
v2
1 + v2

2

) 5
6 .
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It is easy to verify all the assumptions of Theorem 1.4 are satisfied and then the BVP (4.3)
with (1.2) has no nontrivial solutions.
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