INTERACTIONS OF ELEMENTARY WAVES FOR THE NONLINEAR CHROMATOGRAPHY EQUATIONS*

XIAOXIA WANG LIHUI GUO ${ }^{\dagger}$ GAN YIN
College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, P.R.China

Abstract

In this article, we study the global solution of the elementary waves interaction problem for the nonlinear chromatography equations. We constructively obtain the solutions when the initial data are three piecewise constant states. The global structures and large time-asymptotic behaviors of the solutions are analyzed case by case. During the process of the interaction, it is easy to see that the solutions of the perturbed Riemann problem converge to nothing but the corresponding Riemann solutions as $\epsilon \rightarrow 0$, from which the stability of the Riemann solutions with respect to this local small perturbation of the Riemann initial data are obtained.

1. Introduction:

In this paper, we are concerned with the one-dimensional nonlinear chromatography equations

$$
\left\{\begin{array}{l}
u_{t}+\left(\left(1+\frac{1}{1-u+v}\right) u\right)_{x}=0, \tag{1.1}\\
v_{t}+\left(\left(1+\frac{1}{1-u+v}\right) v\right)_{x}=0
\end{array}\right.
$$

where $u \geq 0$ and $v \geq 0$ are functions of the variables $(x, t) \in R \times R^{+}$, which express the concentrations of the species to be separated, and we consider system (1.1) under the situation $1-u+v>0$. It is easy to see that the system (1.1) belongs to the Temple class, i.e., the shock curves coincide with the rarefaction curves in the phase plane, we can refer to $[3,5,9,16,17]$ and the references cited therein.

Chromatography is not only a common analytical tool but also a powerful and efficient tool for preparative separations in the pharmaceutical, food, and agrochemical industries. Both single-column and multi-column operating modes of various degrees of complexity have been developed $[7,8,12]$. So it is necessary to study different chromatography equations. Mazzotti et al.[10, 11] have studied the more general nonlinear chromatography equations

[^0]of the system (1.1), which can be read
\[

\left\{$$
\begin{array}{l}
\frac{\partial u}{\partial x}+\frac{\partial}{\partial t}\left(u+\frac{a u}{1-u+v}\right)=0 \tag{1.2}\\
\frac{\partial v}{\partial x}+\frac{\partial}{\partial t}\left(v+\frac{b v}{1-u+v}\right)=0
\end{array}
$$\right.
\]

where u and v are the concentrations of the two absorbing species, with $u, v \geq 0,1-u+v>0$ and $b>a>0$ are constants. The difference between (1.1) and (1.2) is that the system (1.2) is hyperbolic in the region of the (u, v) plane where $(a(1+v)+b(1-u))^{2}-4 a b(1-u+v)>0$ and elliptic in the remaining part of it, while (1.1) is always hyperbolic in the whole composition space.

Recently, Shen [13] has studied the wave interactions and stability of the Riemann solutions for another chromatography equations

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u}{1+u+v}\right)=0 \tag{1.3}\\
\frac{\partial v}{\partial t}+\frac{\partial}{\partial x}\left(\frac{v}{1+u+v}\right)=0
\end{array}\right.
$$

This chromatography equations is widely used by chemists and engineers to study the separation of two chemical components in a fluid phase.

Ambrosio et al. [2] introduced the change of variables $w=u+v$ and $z=u-v$, then the system (1.3) can be written as

$$
\left\{\begin{array}{l}
\partial_{t} z+\partial_{x}\left(\frac{z}{1+w}\right)=0 \tag{1.4}\\
\partial_{t} w+\partial_{x}\left(\frac{w}{1+w}\right)=0
\end{array}\right.
$$

They studied the system (1.4) as an example by using new well-posedness results for continuity and transport equations, so that exploited the transport equation techniques [1] heavily. Then, Sun [14] proved the existence and uniqueness of solutions involving the delta shock of (1.4) by employing the self-smilar viscosity vanishing method. Recently, Sun [15] has studied the interactions of delta shock waves for the system (1.4). In 1998, Bressan and Shen [4] adopted another change of variables $w=u+v$ and $\theta=v / u$, then the system (1.3) can be changed to

$$
\left\{\begin{array}{l}
w_{t}+\left(\frac{w}{1+w}\right)_{x}=0 \tag{1.5}\\
\theta_{t}+\frac{1}{1+w} \theta_{x}=0
\end{array}\right.
$$

In that article their attentions were mainly drawn on the study of ODES with discontinuous vector fields.

The Riemann problem for system (1.1) was solved by Cheng and Yang completely in [6]. We find it is essential to study the interactions of elementary waves for (1.1) not only because of their significance in practical applications of the chromatography systems, such as comparison with the numerical and experimental results, separated the two chemical components in the chemical fields, etc., but also because of their basis for the general mathematical theory of the chromatography systems. In the present paper, we mainly study the interactions of the classical elementary waves with three piecewise constant initial data for system (1.1). In order to cover all the cases completely, the discussion should be divided into twelve cases. By
analyzing the interactions of elementary waves case by case, we can prove that the solutions of the perturbed initial value problem converge to the corresponding Riemann solutions.

This paper is organized as follows. In Section 2, we present some preliminary knowledge for the system (1.1) and display the Riemann solutions of (1.1) with constant initial data. In Section 3, the interactions of all kinds of elementary waves are concerned, the global solutions are constructed and the stability of the Riemann solutions is analyzed case by case. Our conclusion is drawn in Section 4.

2. Preliminaries

In this section, we briefly review the Riemann solutions of (1.1) with initial data

$$
\begin{equation*}
(u(x, 0), v(x, 0))=\left(u_{ \pm}, v_{ \pm}\right), \pm x>0 \tag{2.1}
\end{equation*}
$$

where $u_{ \pm}>0$ and $v_{ \pm}>0$, the detailed study of which can be found in [6].
It is seen that the nonlinear chromatography equations (1.1) have two eigenvalues

$$
\begin{equation*}
\lambda_{1}=1+\frac{1}{1-u+v}, \quad \lambda_{2}=1+\frac{1}{(1-u+v)^{2}}, \tag{2.2}
\end{equation*}
$$

with corresponding right eigenvectors

$$
\begin{equation*}
r_{1}=(1,1)^{T}, r_{2}=(u, v)^{T} \tag{2.3}
\end{equation*}
$$

By simple calculation, we get $\nabla \lambda_{1} \cdot r_{1}=0$ and $\nabla \lambda_{2} \cdot r_{2}=2(u-v) /(1-u+v)^{3}$. So system (1.1) is nonstrictly hyperbolic. λ_{1} is always linearly degenerate, λ_{2} is genuinely nonlinear if $u \neq v$ and linearly degenerate if $u=v$. In this paper we will consider the case of $u \neq v$.

For a given left state $\left(u_{-}, v_{-}\right)$, it is easy to check that the self-similar waves $(u, v)(\xi)(\xi=$ $x / t)$ are the rarefaction wave curves that can be connected on the right as:

$$
R\left(u_{-}, v_{-}\right): \quad\left\{\begin{array}{l}
\frac{x}{t}=\lambda_{2}=1+\frac{1}{(1+u+v)^{2}} \tag{2.4}\\
\frac{u}{v}=\frac{u_{-}}{v_{-}}, \quad-u+v<-u_{-}+v_{-}
\end{array}\right.
$$

and the shock wave that can be connected on the right is

$$
S\left(u_{-}, v_{-}\right):\left\{\begin{array}{l}
\frac{x}{t}=\sigma=1+\frac{1}{(1-u+v)\left(1-u_{-}+v_{-}\right)}, \tag{2.5}\\
\frac{u}{v}=\frac{u_{-}}{v_{-}}, \quad 0<-u_{-}+v_{-}<-u+v \quad \text { or } \quad-u_{-}+v_{-}<-u+v<0
\end{array}\right.
$$

Since λ_{1} is linearly degenerate, the sets of states which can be connected to a given left state $\left(u_{-}, v_{-}\right)$by a contact discontinuity on the right if and only if

$$
J\left(u_{-}, v_{-}\right): \quad\left\{\begin{array}{l}
\frac{x}{t}=1+\frac{1}{1-u+v}=1+\frac{1}{1-u_{-}+v_{-}} \tag{2.6}\\
-u+v=-u_{-}+v_{-}
\end{array}\right.
$$

From (2.4)-(2.6), the solutions of (1.1) and (2.1) can be constructed by employing the method of phase plane analysis. The Riemann solutions contain a single classical wave when $-u_{+}+v_{+}=-u_{-}+v_{-}$or $u_{+} / v_{+}=u_{-} / v_{-}$. For the other cases, we can construct the solutions
except the delta-shock wave solution as follows:
(1) $S+J$, when $0<-u_{-}+v_{-}<-u_{+}+v_{+} ; \quad$ (2) $R+J$, when $0 \leq-u_{+}+v_{+}<-u_{-}+v_{-}$;
(3) $R+R$, when $-u_{+}+v_{+}<0<-u_{-}+v_{-} ;$(4) $J+R$, when $-u_{+}+v_{+}<-u_{-}+v_{-} \leq 0$;
(5) $J+S$, when $-u_{-}+v_{-}<-u_{+}+v_{+}<0$.

3. Interactions of elementary waves for the nonlinear chromatography EQUATIONS

In this section, we consider the initial value problem (1.1) with three pieces constant initial data as follows:

$$
(u, v)(x, t)= \begin{cases}\left(u_{-}, v_{-}\right), & -\infty<x<-\epsilon, \tag{3.1}\\ \left(u_{m}, v_{m}\right), & -\epsilon<x<\epsilon, \\ \left(u_{+}, v_{+}\right), & \epsilon<x<+\infty\end{cases}
$$

where $\epsilon>0$ is arbitrarily small. The data (3.1) is a small perturbation of the corresponding Riemann initial data (2.1). The interactions of elementary waves are analyzed and the global solutions are constructed here. Then we face the question of determining whether the solutions $\left(u_{\epsilon}, v_{\epsilon}\right)(x, t)$ of perturbation Riemann problem converge to the corresponding Riemann solutions as $\epsilon \rightarrow 0$.

In order to cover all the cases completely, we divide our discussion into twelve cases according to the different combinations of the Riemann solutions starting from $(-\varepsilon, 0)$ and $(\varepsilon, 0)$ as follows:
(1) $S+J$ and $R+R$;
(2) $R+J$ and $R+R$;
(3) $S+J$ and $S+J$;
(4) $R+J$ and $S+J$;
(5) $R+J$ and $R+J$;
(6) $S+J$ and $R+J$; (7) $R+R$ and $J+R$;
(8) $R+R$ and $J+S$;
(9) $J+S$ and $J+R$; (10) $J+S$ and $J+S$; (11) $J+R$ and $J+S$; (12) $J+R$ and $J+R$.

Case 1: $S+J$ and $R+R$
In this case, when t is small enough and $-u_{+}+v_{+}<0<-u_{-}+v_{-}<-u_{m}+v_{m}$, the solution of the initial value problem (1.1)-(3.1) can be expressed briefly as follows (see Fig. 3.1):

$$
\left(u_{-}, v_{-}\right)+S_{1}+\left(u_{1}, v_{1}\right)+J_{1}+\left(u_{m}, v_{m}\right)+R_{1}+R_{2}+\left(u_{+}, v_{+}\right)
$$

Fig. 3.1 $-u_{+}+v_{+}<0<-u_{-}+v_{-}<-u_{m}+v_{m}$
where " + " means "followed by". The propagation speed of J_{1} and that of the wave back in the rarefaction wave R_{1} are $\tau_{1}=1+1 /\left(1-u_{m}+v_{m}\right)$ and $\xi=1+1 /\left(1-u_{m}+v_{m}\right)^{2}$ respectively. It is easy to see $\tau_{1}>\xi$ which means J_{1} will overtake R_{1} at a finite time t_{1}. The intersection point $\left(x_{1}, t_{1}\right)$ is determined by

$$
\left\{\begin{array}{l}
x_{1}+\epsilon=\left(1+\frac{1}{1-u_{m}+v_{m}}\right) t_{1} \tag{3.2}\\
x_{1}-\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)^{2}}\right) t_{1}
\end{array}\right.
$$

which leads to

$$
\begin{equation*}
\left(x_{1}, t_{1}\right)=\left(\frac{2 \epsilon\left(2-u_{m}+v_{m}\right)\left(1-u_{m}+v_{m}\right)}{-u_{m}+v_{m}}-\epsilon, \frac{2 \epsilon\left(1-u_{m}+v_{m}\right)^{2}}{-u_{m}+v_{m}}\right) . \tag{3.3}
\end{equation*}
$$

After interaction of J_{1} and R_{1}, a new rarefaction wave R_{3} and a new contact discontinuity J will appear. Meanwhile, the direction of R_{1} is unchanged and J_{1} will cross the rarefaction wave R_{1} with a varying speed of propagation during the penetration, that is, the contact discontinuity $J: x=x(t)$ is no longer a straight line when $t>t_{1}$. This process is determined by

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=1+\frac{1}{1-u+v} \tag{3.4}\\
x-\epsilon=\left(1+\frac{1}{(1-u+v)^{2}}\right) t \\
\frac{u}{v}=\frac{u_{m}}{v_{m}}, \quad 0 \leq-u+v<-u_{m}+v_{m} \\
x\left(t_{1}\right)=x_{1}
\end{array}\right.
$$

Differentiating (3.4) ${ }_{1}$ and $(3.4)_{2}$ with respect to t leads to

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}=-\frac{1}{(1-u+v)^{2}}\left(-\frac{d u}{d t}+\frac{d v}{d t}\right) \tag{3.5}\\
\frac{d x}{d t}=1+\frac{1}{(1-u+v)^{2}}-\frac{2 t}{(1-u+v)^{3}}\left(-\frac{d u}{d t}+\frac{d v}{d t}\right) \tag{3.6}
\end{gather*}
$$

Combine (3.4) ${ }_{1}$ with (3.6), we have

$$
\begin{equation*}
-\frac{d u}{d t}+\frac{d v}{d t}=-\frac{(-u+v)(1-u+v)}{2 t}<0 \tag{3.7}
\end{equation*}
$$

By (3.5) and (3.7), it is easy to see that $d^{2} x / d t^{2}>0$, which means that the propagation speed of the contact discontinuity J_{1} will increase during the process of passing through R_{1}. We also get that the speed of J is $\tau=2$ as $(u, v) \rightarrow(0,0)$ and that of the wave front of R_{1} is $\xi=2$, it is illustrated that the contact discontinuity $J: x=x(t)$ can not cross the whole of R_{1} completely, which means that $x=x(t)$ does not intersect with the characteristic $x-\epsilon=2 t$.

When $t>t_{1}$, we notice that the shock wave S_{1} and the rarefaction wave R_{3} will interact, due to the propagation speed of S_{1} is greater than the wave back in the rarefaction wave R_{3}.

The intersection point $\left(x_{2}, t_{2}\right)$ can be determined by

$$
\left\{\begin{array}{l}
x_{2}+\epsilon=\left(1+\frac{1}{\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)}\right) t_{2} \tag{3.8}\\
x_{2}-\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)^{2}}\right) t_{2}
\end{array}\right.
$$

which means that

$$
\begin{equation*}
\left(x_{2}, t_{2}\right)=\left(\frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(\left(1-u_{m}+v_{m}\right)^{2}+1\right)}{v_{m}-u_{m}+u_{-}-v_{-}}+\epsilon, \frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)^{2}}{-u_{m}+v_{m}+u_{-}-v_{-}}\right) \tag{3.9}
\end{equation*}
$$

When $t>t_{2}$, the sets of states can be connected to a given left state (u_{-}, v_{-}) by a shock wave S with the method of phase plane analysis and it is no longer a straight line. The varying speed of S can be determined by

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=1+\frac{1}{\left(1-u_{-}+v_{-}\right)(1-u+v)} \tag{3.10}\\
x-\epsilon=\left(1+\frac{1}{(1-u+v)^{2}}\right) t \\
\frac{u}{v}=\frac{u_{1}}{v_{1}}, \quad 0<-u+v<-u_{1}+v_{1} \\
x\left(t_{2}\right)=x_{2}
\end{array}\right.
$$

By $(3.10)_{1}$ and $(3.10)_{2}$, we obtain

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}=-\frac{1}{\left(1-u_{-}+v_{-}\right)(1-u+v)^{2}}\left(-\frac{d u}{d t}+\frac{d v}{d t}\right) \tag{3.11}\\
& -\frac{d u}{d t}+\frac{d v}{d t}=-\frac{\left((-u+v)-\left(-u_{-}+v_{-}\right)\right)(1-u+v)}{2 t\left(1-u_{-}+v_{-}\right)} \tag{3.12}
\end{align*}
$$

Due to $-u+v \geq-u_{-}+v_{-}>0$, from (3.11) and (3.12), we have

$$
\begin{equation*}
-\frac{d u}{d t}+\frac{d v}{d t}<0, \quad \frac{d^{2} x}{d t^{2}}>0 \tag{3.13}
\end{equation*}
$$

which means that the shock wave S accelerates and passes through R_{3}. Differentiating $(3.10)_{3}$ of variable t, we have

$$
\begin{equation*}
\frac{d u}{d t}=\frac{u_{1}}{v_{1}} \frac{d v}{d t} \tag{3.14}
\end{equation*}
$$

Substituting (3.14) into (3.12), we get

$$
\begin{equation*}
\frac{1}{t} d t=-\frac{2\left(1-u_{-}+v_{-}\right)\left(v_{1}-u_{1}\right)}{\left((-u+v)-\left(-u_{-}+v_{-}\right)\right)(1-u+v) v_{1}} d v \tag{3.15}
\end{equation*}
$$

Integrating (3.15) from t_{2} to t, we obtain

$$
\begin{equation*}
\ln \frac{t}{t_{2}}=\int_{v_{1}}^{v}-\frac{2\left(1-u_{-}+v_{-}\right)\left(v_{1}-u_{1}\right)}{\left((-u+v)-\left(-u_{-}+v_{-}\right)\right)(1-u+v) v_{1}} d v \tag{3.16}
\end{equation*}
$$

It is obvious that $t \rightarrow \infty$ as $-u+v \rightarrow-u_{-}+v_{-}$. Due to $0<-u+v<-u_{1}+v_{1}$, it is impossible for the shock wave $S: x=x(t)$ to cross the whole of R_{3} completely. Moreover, it can be shown that $x=x(t)$ does not intersect with characteristic line $x-\epsilon=$ $\left(1+1 /\left(1-u_{-}+v_{-}\right)^{2}\right) t$.

When $t \rightarrow \infty$, the final solution can be shown as (see Fig. 3.1)

$$
\left(u_{-}, v_{-}\right)+R_{4}+R_{2}+\left(u_{+}, v_{+}\right)
$$

It is easy to see that $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$ tend to $(0,0)$ as $\epsilon \rightarrow 0$ from (3.3) and (3.9). Thus, the limit of the solution of (1.1) and (3.1) is still a backward rarefaction wave plus a forward rarefaction wave, which is exactly the corresponding Riemann solution of (1.1) and (2.1) in this case.

Remark 1. The situation is similar to the case $R+R$ and $J+S$. The occurrence of this case depends on the situation $-u_{m}+v_{m}<-u_{+}+v_{+}<0<-u_{-}+v_{-}$.

Case 2: $R+R$ and $J+R$
In this case, when t is small enough and $-u_{+}+v_{+}<-u_{m}+v_{m}<0<-u_{-}+v_{-}$, the solution of the initial value problem (1.1)-(3.1) can be expressed briefly as follows (see Fig. $3.2)$:

$$
\left(u_{-}, v_{-}\right)+R_{1}+R_{2}+\left(u_{m}, v_{m}\right)+J_{1}+\left(u_{1}, v_{1}\right)+R_{3}+\left(u_{+}, v_{+}\right)
$$

The propagation speed of J_{1} and that of the wave front in the rarefaction wave R_{2} are $\tau_{1}=1+1 /\left(1-u_{m}+v_{m}\right)$ and $\xi=1+1 /\left(1-u_{m}+v_{m}\right)^{2}$ respectively. By $-1<-u_{m}+v_{m}<0$, it is easy to see that $\xi>\tau_{1}$ which means R_{2} will interact with J_{1} at a finite time t_{1}.

The intersection $\left(x_{1}, t_{1}\right)$ is determined by

$$
\left\{\begin{array}{l}
x_{1}-\epsilon=\left(1+\frac{1}{1-u_{m}+v_{m}}\right) t_{1} \tag{3.17}\\
x_{1}+\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)^{2}}\right) t_{1}
\end{array}\right.
$$

which yields

$$
\begin{equation*}
\left(x_{1}, t_{1}\right)=\left(\frac{2 \epsilon\left(2-u_{m}+v_{m}\right)\left(1-u_{m}+v_{m}\right)}{-u_{m}+v_{m}}+\epsilon, \frac{2 \epsilon\left(1-u_{m}+v_{m}\right)^{2}}{-u_{m}+v_{m}}\right) . \tag{3.18}
\end{equation*}
$$

Fig. $3.2-u_{+}+v_{+}<-u_{m}+v_{m}<0<-u_{-}+v_{-}$

Therefore, a new Riemann problem is formed at $t=t_{1}$, the interaction of R_{2} and J_{1} gives rise to a new contact discontinuity J and a new rarefaction wave R_{4}. Meanwhile, the propagation direction of R_{2} is unchanged during the process of penetration.

The expression of the contact discontinuity $J: x=x(t)$ passing through R_{2} is similar to (3.4). From (3.5)-(3.7) and $-1<-u_{m}+v_{m}<-u+v \leq 0$ (see Fig. 3.2). It is obtained that $-d u / d t+d v / d t=(-(-u+v)(1-u+v)) / 2 t \geq 0, d^{2} x / d t^{2} \leq 0$. It illustrates that the contact discontinuity J decelerates and passes through R_{2}. The speed of J is $\tau=2$ when $(u, v) \rightarrow 0$ and that of the wave back in the rarefaction wave R_{2} is $\xi=2$. It shows that contact discontinuity J cannot penetrate the whole rarefaction wave R_{2} completely and ultimately has $x+\epsilon=2 t$ as its asymptote (see Fig. 3.2). The propagation speed of the wave front in the rarefaction wave R_{4} is equivalent to that of the wave back in the rarefaction wave R_{3}. So R_{4} will no longer interact with R_{3}.

When $t \rightarrow \infty$, the solution can be expressed as (see Fig. 3.2)

$$
\left(u_{-}, v_{-}\right)+R_{1}+R_{4}+\left(u_{1}, v_{1}\right)+R_{3}+\left(u_{+}, v_{+}\right)
$$

It is easy to obtain that $\left(x_{1}, t_{1}\right)$ tend to $(0,0)$ as $\epsilon \rightarrow 0$ from (3.18). Thus, the solution of (1.1) and (3.1) is apparently converges to the solution of the Riemann initial value problem (1.1) and (2.1).

Remark 2. The situation is similar to the case $R+J$ and $R+R$. The occurrence of this case depends on the situation $-u_{+}+v_{+}<0<-u_{m}+v_{m}<-u_{-}+v_{-}$.

Case 3: $J+S$ and $J+R$
In this case, when t is small enough and $-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}<0$ or $-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}<0$, the solution of the initial value problem (1.1)-(3.1) can be expressed briefly as follows (see Fig. 3.3):

$$
\left(u_{-}, v_{-}\right)+J_{1}+\left(u_{1}, v_{1}\right)+S_{1}+\left(u_{m}, v_{m}\right)+J_{2}+\left(u_{2}, v_{2}\right)+R_{1}+\left(u_{+}, v_{+}\right)
$$

The propagation speeds of S_{1} and J_{2} are $\sigma_{1}=1+1 /\left(\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)\right)$ and $\tau_{2}=1+1 /\left(1-u_{m}+v_{m}\right)$ respectively. Due to $-1<-u_{-}+v_{-}<0$, we obtain $\sigma_{1}>\tau_{2}$. It is illustrated that the shock wave S_{1} will interact with J_{2} at the point $\left(x_{1}, t_{1}\right)$. The intersection $\left(x_{1}, t_{1}\right)$ is given by

$$
\left\{\begin{array}{l}
x_{1}+\epsilon=\left(1+\frac{1}{\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)}\right) t_{1} \tag{3.19}\\
x_{1}-\epsilon=\left(1+\frac{1}{1-u_{m}+v_{m}}\right) t_{1}
\end{array}\right.
$$

which leads to

$$
\begin{equation*}
\left(x_{1}, t_{1}\right)=\left(\frac{2 \epsilon\left(2-u_{m}+v_{m}\right)\left(1-u_{-}+v_{-}\right)}{u_{-}-v_{-}}+\epsilon, \frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)}{u_{-}-v_{-}}\right) . \tag{3.20}
\end{equation*}
$$

Fig. 3.3(a) $-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}<0$

Fig. 3.3(b) $-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}<0$
After the interaction of S_{1} and J_{2}, a new contact discontinuity J_{3} and a new shock S_{2} will generate. The propagation speed of the shock wave S_{2} is equivalent to that of the shock wave S_{1}.

We also get that the propagation speeds of J_{1} and J_{3} are $\tau_{1}=1+1 /\left(1-u_{-}+v_{-}\right)$and $\tau_{3}=1+1 /\left(1-u_{-}+v_{-}\right)$respectively, which means that J_{3} is parallel to J_{1}. By $-1<$ $-u_{-}+v_{-}<-u_{m}+v_{m}<0$, it is easy to see that the propagation speed of J_{3} is greater than that of J_{2}. The propagation speed of the wave back in the rarefaction wave R_{1} is $\xi=1+1 /\left(1-u_{m}+v_{m}\right)^{2}$. It is obvious that S_{2} will overtake R_{1} at the point $\left(x_{2}, t_{2}\right)$, which is determined by

$$
\left\{\begin{array}{l}
x_{2}+\epsilon=\left(1+\frac{1}{\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)}\right) t_{2} \tag{3.21}\\
x_{2}-\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)^{2}}\right) t_{2}
\end{array}\right.
$$

it means that

$$
\begin{equation*}
\left(x_{2}, t_{2}\right)=\left(\frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(\left(1-u_{m}+v_{m}\right)^{2}+1\right)}{v_{m}-u_{m}+u_{-}-v_{-}}+\epsilon, \frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)^{2}}{-u_{m}+v_{m}+u_{-}-v_{-}}\right) . \tag{3.22}
\end{equation*}
$$

When $t>t_{2}$, the sets of states can be connected to a given left state $\left(u_{3}, v_{3}\right)$ by a shock wave S with the method of phase plane analysis and it is no longer a straight line (see Fig. 3.3). The expression of the shock $S: x=x(t)$ during the penetration of R_{1} is similar to (3.10). So we also obtain the results of (3.11)-(3.13), which means that the propagation speed of the shock wave increases during the process of S_{2} passing through R_{1}. In order to analyze whether the shock wave S will penetrate the whole rarefaction wave R_{1} completely or not, the corresponding discussion should be divided into the following two subcases.

If $-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}<0$, the shock wave $S: x=x(t)$ will cross the whole of R_{1} completely at a finite time t_{3} (see Fig. 3.3(a)), a new shock S_{3} will appear, which is determined by

$$
t_{3}=t_{2} \exp \left(\int_{v_{2}}^{v_{+}} \frac{2\left(1-u_{3}+v_{3}\right)\left(v_{+}-u_{+}\right)}{-\left((-u+v)-\left(-u_{3}+v_{3}\right)\right)(1-u+v) v_{+}} d v\right) .
$$

When $t>t_{3}$, the solution can be expressed as (see Fig 3.3(a))

$$
\left(u_{-}, v_{-}\right)+J_{1}+\left(u_{1}, v_{1}\right)+J_{3}+\left(u_{3}, v_{3}\right)+S_{3}+\left(u_{+}, v_{+}\right)
$$

If $-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}<0$, it is impossible for the shock wave S to cross the whole rarefaction wave R_{1} completely, it ultimately has $x-\epsilon=\left(1+1 /\left(1-u_{3}+v_{3}\right)^{2}\right) t$ as its asymptote. And the solution can be expressed as

$$
\left(u_{-}, v_{-}\right)+J_{1}+\left(u_{1}, v_{1}\right)+J_{3}+\left(u_{3}, v_{3}\right)+R+\left(u_{+}, v_{+}\right) .
$$

It is easy to see that $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$ tend to $(0,0)$ as $\epsilon \rightarrow 0$ from (3.20) and (3.22). Thus, the limit of (1.1) and (3.1) is $J+S$ for $-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}<0$ or $J+R$ for $-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}<0$, which is exactly the corresponding Riemann solution of (1.1) and (2.1) in this case.

Remark 3. The situation is similar to the case $R+J$ and $S+J$. The occurrence of this case depends on the situation $0<-u_{m}+v_{m}<-u_{-}+v_{-}<-u_{+}+v_{+}$or $0<-u_{m}+v_{m}<$ $-u_{+}+v_{+}<-u_{-}+v_{-}$.

Case 4: $S+J$ and $S+J$
When t is small enough and $0<-u_{-}+v_{-}<-u_{m}+v_{m}<-u_{+}+v_{+}$, the solution of the initial value problem (1.1)-(3.1) can be expressed briefly as follows (see Fig. 3.4):

$$
\left(u_{-}, v_{-}\right)+S_{1}+\left(u_{1}, v_{1}\right)+J_{1}+\left(u_{m}, v_{m}\right)+S_{2}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right)
$$

The propagation speeds of J_{1} and S_{2} are

$$
\tau_{1}=1+1 /\left(1-u_{m}+v_{m}\right), \quad \sigma_{2}=1+1 /\left(\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)\right)
$$

Fig. $3.40<-u_{-}+v_{-}<-u_{m}+v_{m}<-u_{+}+v_{+}$
respectively, by $-u_{+}+v_{+}>0$ we obtain $\tau_{1}>\sigma_{2}$, which means J_{1} will catch up with S_{2} in finite time. The intersection $\left(x_{1}, t_{1}\right)$ is determined by

$$
\left\{\begin{array}{l}
x_{1}+\epsilon=\left(1+\frac{1}{1-u_{m}+v_{m}}\right) t_{1} \tag{3.23}\\
x_{1}-\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)}\right) t_{1}
\end{array}\right.
$$

which means that

$$
\begin{equation*}
\left(x_{1}, t_{1}\right)=\left(\frac{2 \epsilon\left(1-u_{+}+v_{+}\right)\left(2-u_{m}+v_{m}\right)}{-u_{+}+v_{+}}-\epsilon, \frac{2 \epsilon\left(1-u_{+}+v_{+}\right)\left(1-u_{m}+v_{m}\right)}{-u_{+}+v_{+}}\right) . \tag{3.24}
\end{equation*}
$$

After interaction, a new shock S_{3} and a new contact discontinuity J_{3} will appear. It is obvious that J_{3} is parallel to J_{2}. The propagation speeds of S_{1} and S_{3} are $\sigma_{1}=1+1 /((1-$ $\left.\left.u_{m}+v_{m}\right)\left(1-u_{-}+v_{-}\right)\right)$and $\sigma_{3}=1+1 /\left(\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)\right)$respectively. Due to $-u_{+}+v_{+}>-u_{-}+v_{-}>0$, we are easy to get $\sigma_{1}>\sigma_{3}$ which means S_{1} will overtake S_{3} in finite time. At the point $t=t_{2}$ a new shock wave S_{4} will appear. The intersection $\left(x_{2}, t_{2}\right)$ is determined by

$$
\left\{\begin{array}{l}
x_{2}+\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)\left(1-u_{-}+v_{-}\right)}\right) t_{2} \tag{3.25}\\
x_{2}-\epsilon=\left(1+\frac{1}{\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)}\right) t_{2}
\end{array}\right.
$$

which yields

$$
\left\{\begin{array}{l}
x_{2}=\frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)+1\right)}{-u_{+}+v_{+}+u_{-}-v_{-}}+\epsilon \tag{3.26}\\
t_{2}=\frac{2 \epsilon\left(1-u_{-}+v_{-}\right)\left(1-u_{m}+v_{m}\right)\left(1-u_{+}+v_{+}\right)}{-u_{+}+v_{+}+u_{-}-v_{-}}
\end{array}\right.
$$

When $t>t_{2}$, the propagating speed of the shock wave S_{4} is

$$
\sigma_{4}=1+1 /\left(\left(1-u_{-}+v_{-}\right)\left(1-u_{+}+v_{+}\right)\right)
$$

Fig 3.5(a) $0<-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}$

Fig 3.5(b) $0<-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}$
and satisfies $\sigma_{4}<\tau_{3}$, which implies S_{4} and J_{3} will not interact forever. So, when $t>t_{2}$, the solution can be expressed as (see Fig. 3.4)

$$
\left(u_{-}, v_{-}\right)+S_{4}+\left(u_{3}, v_{3}\right)+J_{3}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right) .
$$

Letting $\epsilon \rightarrow 0$, the limit of the solution of (1.1) and (3.1) is exactly identical with the Riemann solution of (1.1) and (2.1) in this case.

Remark 4. The situation is similar to the case $J+S$ and $J+S$. The occurrence of this case depends on the situation $-u_{-}+v_{-}<-u_{m}+v_{m}<-u_{+}+v_{+}<0$.

Case 5: $S+J$ and $R+J$
In this case, when t is small enough, $0<-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}$ or $0<-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}$, the solution of the initial value problem (1.1)-(3.1) can be presented briefly as follows (see Fig. 3.5):

$$
\left(u_{-}, v_{-}\right)+S_{1}+\left(u_{1}, v_{1}\right)+J_{1}+\left(u_{m}, v_{m}\right)+R_{1}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right)
$$

The propagation speed of J_{1} and that of the wave back in the rarefaction wave R_{1} are $\tau_{1}=1+1 /\left(1-u_{m}+v_{m}\right)$ and $\xi=1+1 /\left(1-u_{m}+v_{m}\right)^{2}$ respectively. It is easy to see that
$\tau_{1}>\xi$, which means J_{1} will catch up with R_{1} at a finite time t_{1}. The intersection point $\left(x_{1}, t_{1}\right)$ can be obtained similar as (3.3), we omit it.

After interaction of J_{1} and R_{1}, a new rarefaction wave R_{2} and a new contact discontinuity J_{3} will appear. We also have J_{3} is parallel to J_{2} and the direction of R_{1} is unchanged during the process of penetration.

Besides, the contact discontinuity J_{1} crosses the rarefaction wave R_{1} with a varying speed of propagation, the analysis is same as (3.4)-(3.7). Due to $-u_{2}+v_{2} \leq-u+v \leq-u_{m}+v_{m}$, we have $-d u / d t+d v / d t=(-(-u+v)(1-u+v)) / 2 t<0$ and $d^{2} x / d t^{2}>0$, which means that the propagation speed of the contact discontinuity J will increase during the process of passing through R_{1}.

From $(3.4)_{1}$ and $(3.4)_{2}$, we obtain

$$
\begin{equation*}
\frac{d x}{d t}=\sqrt{\frac{x-\epsilon}{t}-1}+1 \tag{3.27}
\end{equation*}
$$

By combining (3.3) with (3.27), the curve of contact discontinuity J is determined by

$$
\begin{equation*}
x=\left(\sqrt{t}-\sqrt{2 \epsilon\left(-u_{m}+v_{m}\right)}\right)^{2}+t+\epsilon . \tag{3.28}
\end{equation*}
$$

It is illustrated that the contact discontinuity J will penetrate the whole of the rarefaction wave R_{1} completely and the ending point can be calculated by

$$
\left\{\begin{array}{l}
x_{2}=\left(\sqrt{t_{2}}-\sqrt{2 \epsilon\left(-u_{m}+v_{m}\right)}\right)^{2}+t_{2}+\epsilon \tag{3.29}\\
x_{2}-\epsilon=\left(1+\frac{1}{\left(1-u_{+}+v_{+}\right)^{2}}\right) t_{2}
\end{array}\right.
$$

After the time t_{2}, we notice that the shock wave S_{1} and the rarefaction wave R_{2} will interact, due to the propagation speed of S_{1} is greater than the wave back in the rarefaction wave R_{2}. The intersection point $\left(x_{3}, t_{3}\right)$ is same as the (3.8) and (3.9).

When $t>t_{3}$, the sets of states can be connected to a given left state $\left(u_{-}, v_{-}\right)$by a shock wave S with the method of phase plane analysis and it is no longer a straight line. The process of S penetrating R_{2} is similar to (3.10), we also have the results of (3.11)-(3.13), which means that the shock wave S will accelerate during the process of passing through R_{2}. In order to analyze whether the shock wave S can penetrate the whole rarefaction wave R_{2} or not, our discussion should be divided into the following two subcases.

If $0<-u_{+}+v_{+}<-u_{-}+v_{-}<-u_{m}+v_{m}$, it is impossible for the shock wave $S: x=x(t)$ to cross the whole rarefaction wave R_{2} completely, the analysis is same as case 1 . From (3.14)-(3.15), combining with the initial value $\left(x_{3}, t_{3}\right)$, it is easy to have

$$
\begin{equation*}
\ln \frac{t}{t_{3}}=\int_{v_{1}}^{v}-\frac{2\left(1-u_{-}+v_{-}\right)\left(v_{3}-u_{3}\right)}{\left((-u+v)-\left(-u_{-}+v_{-}\right)\right)(1-u+v) v_{3}} d v . \tag{3.30}
\end{equation*}
$$

It is obvious that $t \rightarrow \infty$ as $-u+v \rightarrow-u_{-}+v_{-}$. Due to $-u_{3}+v_{3}<-u+v<-u_{1}+v_{1}$, it is impossible for the shock wave $x=x(t)$ to cross the whole of R_{2} completely . Moreover, it can be shown that the shock wave $x=x(t)$ does not intersect with characteristic line $x-\epsilon=\left(1+1 /\left(1-u_{-}+v_{-}\right)^{2}\right) t$ (see Fig. 3.5(a)).

Fig. $3.60<-u_{+}+v_{+}<-u_{m}+v_{m}<-u_{-}+v_{-}$
When $t \rightarrow \infty$, the solution can be shown as

$$
\left(u_{-}, v_{-}\right)+R+\left(u_{3}, v_{3}\right)+J_{3}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right) .
$$

If $0<-u_{-}+v_{-}<-u_{+}+v_{+}<-u_{m}+v_{m}$, the shock wave $S: x=x(t)$ will cross the whole of R_{2} completely at a finite time t_{4}, due to $0<-u_{-}+v_{-}<-u_{3}+v_{3} \leq-u+v<-u_{1}+v_{1}$ (see Fig 3.5(b)). A new shock wave S_{2} will occur at the time of $t=t_{4}$, and it is easy to obtain that $\sigma_{2}<\tau_{3}$ which means that S_{2} will not interact with J_{3} forever.

From (3.30) we can calculate that

$$
t_{4}=t_{3} \exp \left(\int_{v_{1}}^{v_{3}} \frac{2\left(1-u_{-}+v_{-}\right)\left(v_{3}-u_{3}\right)}{-\left((-u+v)-\left(-u_{-}+v_{-}\right)\right)(1-u+v) v_{3}} d v\right) .
$$

When $t>t_{4}$, the solution can be presented as (see Fig 3.5(b))

$$
\left(u_{-}, v_{-}\right)+S_{2}+\left(u_{3}, v_{3}\right)+J_{3}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right)
$$

Letting $\epsilon \rightarrow 0$, we can see that the solution is obviously like as our assertion.
Remark 5. The situation is similar to the case $J+R$ and $J+S$. The occurrence of this case depends on the situation $-u_{m}+v_{m}<-u_{-}+v_{-}<-u_{+}+v_{+}<0$ or $-u_{m}+v_{m}<-u_{+}+v_{+}<$ $-u_{-}+v_{-}<0$.

Case 6: $R+J$ and $R+J$
In this case, when t is small enough and $0<-u_{+}+v_{+}<-u_{m}+v_{m}<-u_{-}+v_{-}$, the solution of the initial value problem (1.1) and (3.1) can be shown briefly as (see Fig. 3.6):

$$
\left(u_{-}, v_{-}\right)+R_{1}+\left(u_{1}, v_{1}\right)+J_{1}+\left(u_{m}, v_{m}\right)+R_{2}+\left(u_{2}, v_{2}\right)+J_{2}+\left(u_{+}, v_{+}\right)
$$

The interaction of J_{1} and R_{2} is similar as case 5 (see Fig. 3.5 J_{1} and R_{1}). J_{1} accelerates during the process of penetration and the propagation direction of R_{2} is unchanged. A new rarefaction wave R_{3} and a new contact discontinuity J_{3} will appear, we also get J_{3} is parallel to J_{2}. In addition, it is obvious that the wave front in R_{1} and the wave back in R_{3} have the
same propagation speed $\xi=1+1 /\left(1-u_{m}+v_{m}\right)^{2}$, which means that R_{1} will not interact with R_{3} forever.

As $\epsilon \rightarrow 0, J_{2}$ and J_{3} will coincide with each other and the two rarefaction waves R_{1} and R_{3} will coalesce into one. So the limit situation is also a rarefaction wave plus a contact discontinuity which is corresponding to the Riemann solution of (1.1) and (2.1).

Remark 6. The situation is similar to the case $J+R$ and $J+R$. The occurrence of this case depends on the situation $-u_{+}+v_{+}<-u_{m}+v_{m}<-u_{-}+v_{-}<0$.

4. Conclusions

So far, we have finished the discussion for all kinds of interactions of elementary waves. The global solutions for the perturbed initial value problem (1.1) and (3.1) have been constructed. We also notice that the propagation directions of the shock wave and the rarefaction wave are unchanged when they interact with the contact discontinuity. In addition, it is easy to see that the limits of the perturbed Riemann solutions are exactly the corresponding Riemann solutions of (1.1) and (2.1) by making the limit $\epsilon \rightarrow 0$ and the asymptotic behavior of the perturbed Riemann solutions is governed completely by the states $\left(u_{ \pm}, v_{ \pm}\right)$.

References

1. L. Ambrosio, Transpot equation and Cauchy problem for BV vector fields, Invent. Math., 158(2004), pp: 227-260.
2. L. Ambrosio, G. Crippa, A. Figalli, L. A. Spinolo, Some new well-posedness results for continuity and transport equations and applications to the chromatography system, SIAM J. Math. Anal., 41(2009), pp: 1890-1920.
3. A. Bressan, P. Goatin, Stability of L^{∞} solutions of Temple class systems, Differential Integral Equations, 13(2000), pp: 1503-1528.
4. A. Bressan, W. Shen, Uniqueness of discontinuous ODE and conservation laws, Nonlinear Anal., 34(1998), pp: 637-652.
5. P. Barti, A. Bressan, The semigroup generated by a Temple class system with large data, Differential Integral Equations, 10(1997), pp: 401-418.
6. H. Cheng, H. Yang, Delta shock waves in chromatogrphy equations, J. Math. Anal. Appl., 380(2011), pp: 475-485.
7. G. Guiochon, Preparative liquid chromatography, J. Chromatogr. A., 965(2002), pp: 129-161.
8. M. Juza, M. Mazzotti, M. Morbidelli, Simulated moving-bed chromatography and its application to chirotechnology, Trends in Biotechnology, 18(2000), pp: 108-118.
9. T. P. Liu, T. Yang, L^{1} stability of conservation laws with coinciding Hugoniot and characteristic curves, Indiana Univ. Math. J., 48(1999), pp: 237-247.
10. M. Mazzotti, Nonclassical composition fronts in nonlinear chromatography: delta-shock, Ind. Eng. Chem. Res., 48(2009), pp: 7733-7752.
11. M. Mazzotti, A. Tarafder, J. Cornel, F. Gritti, G. Guiochon, Experimental evidence of a delta-shock in nonlinear chromatography, J. Chromatogr. A., 1217(2010), pp: 2002-2012.
12. A. Rajendran, G. Paredes, M. Mazzotti, Simulated moving bed chromatography for the separation of enantiomers, J. Chromatogr. A., 1216(2009), pp: 709-738.
13. C. Shen, Wave interactions and stability of the Riemann solutions for the chromatography equations, J. Math. Anal. Appl., 365(2010), pp: 609-618.
14. M. Sun, Delta shock waves for the chromatography equations as self-similar viscosity limits, Q. Appl. Math., 69(2011), pp: 425-443.
15. M. Sun, Interactions of delta shock waves for the chromatography equations, Applied Mathematics Letters, 26(2013), pp: 631-637.
16. B. Temple, Systems of conservations laws with invariant submanifolds, Trans. Amer. Math. Soc., 280(1983), pp: 781-795.
17. B. Temple, Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws, Adv. in Appl. Math., 3(1982), pp: 335-375.

[^0]: 1991 Mathematics Subject Classification. 35L65, 35L67, 76L05, 76N10.
 Key words and phrases. elementary waves, interaction, linear degenerate, chromatography equations, Riemann problem.
 *Supported by the Scientific Research Program of the Higher Education Institution of Xinjiang (No. XJEDU2011S02), the Ph.D Graduate Start Research Foundation of Xinjiang University Funded Project (No. BS100105 and BS090107), and the National Natural Science Foundation of China (No. 11101348)
 \dagger Corresponding author.
 Email address: xiaoxia_wang529@163.com (Xiaoxia Wang), lihguo@126.com (Lihui Guo), ganyinxj@gmail.com (Gan Yin) .

