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Abstract

This paper deals with certain algebraic systems called polygroups. A poly-
group is a completely regular, reversible in itself hypergroup. The concept of
topological polygroups is a generalization of the concept of topological groups.
In this paper, we present the concept of topological hypergroups and prove
some properties. Then, we define the notion of topological polygroups. By
considering the relative topology on subpolygroups we prove some properties of
them. Finally, the topological isomorphism theorems of topological polygroups
are proved.

1 Basic definitions

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H) is called a
hyperoperation, where P∗(H) is the family of non-empty subsets of H. The couple
(H, ◦) is called a hypergroupoid. In the above definition, if A and B are two non-
empty subsets of H and x ∈ H, then we define A◦B =

⋃
a∈A,b∈B a◦b, x◦A = {x}◦A

and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called a semihypergroup if for every
x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z and is called a quasihypergroup if for
every x ∈ H, we have x ◦H = H = H ◦ x. This condition is called the reproduction
axiom. The couple (H, ◦) is called a hypergroup if it is a semihypergroup and a
quasihypergroup [5, 21].

For all n > 1, we define the relation βn on a semihypergroup H, as follows:

a βn b⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏
i=1

xi,
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and β =
⋃∞
i=1 βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation on H.

This relation was introduced by Koskas [20] and studied mainly by Corsini, Davvaz,
Freni, Leoreanu, Vougiouklis and many others. Suppose that β∗ is the smallest
equivalence relation on a hypergroup (semihypergroup) H such that the quotient
H/β∗ is a group (semigroup). If H is a hypergroup, then β = β∗ [13]. The relation
β∗ is called the fundamental relation on H and H/β∗ is called the fundamental group.
Let (H, ◦) be a semihypergroup and A be a non-empty subset of H. We say that A
is a complete part of H if for any non-zero natural number n and for all a1, · · · , an
of H, the following implication holds:

A ∩
n∏
i=1

ai 6= ∅ =⇒
n∏
i=1

ai ⊆ A.

The complete parts were introduced for the first time by Koskas [20]. Then, this
concept was studied by many authors, for example see [5, 6, 10, 11, 17, 22, 23].
Till now, only a few papers treated the notion of topological hyperstructures, in
the classical and fuzzy case, see [2, 7, 8, 14, 16]. Let (H1, ◦) and (H2, ∗) be two
hypergroups. A map f : H1 −→ H2, is called

• a homomorphism if for all x, y of H, we have f(x ◦ y) ⊆ f(x) ∗ f(y);

• a good homomorphism if for all x, y of H, we have f(x ◦ y) = f(x) ∗ f(y);

• an isomorphism if it is a homomorphism, and its inverse f−1 is a homomor-
phism, too.

A special subclass of hypergroups is the class of polygroups. We recall the
following definition from [3]. A polygroup is a system P =< P, ◦, e,−1>, where
◦ : P × P −→ P∗(P ), e ∈ P , −1 is a unitary operation on P and the following
axioms hold for all x, y, z ∈ P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z);

(2) e ◦ x = x ◦ e = x;

(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

The following elementary facts about polygroups follow easily from the axioms:
e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1. A non-empty
subset K of a polygroup P is a subpolygroup of P if and only if a, b ∈ K implies
a ◦ b ⊆ K and a ∈ K implies a−1 ∈ K. The subpolygroup N of P is normal in P if
and only if a−1 ◦N ◦ a ⊆ N for all a ∈ P . For a subpolygroup K of P and x ∈ P ,
denote the right coset of K by K ◦ x and let P/K be the set of all right cosets of
K in P . If N is a normal subpolygroup of P , then (P/N,�, N,−I ) is a polygroup
where N ◦ x�N ◦ y = {N ◦ z | z ∈ N ◦ x ◦ y} and (N ◦ x)−I = N ◦ x−1. For more
details about polygroups we refer to [1, 9, 10, 18].
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Now, we recall the definition of a topological group from [15]. A topological
group is a group G together with a topology on G that satisfies the following two
properties:

(1) the mapping p : G × G −→ G defined by p(g, h) = gh is continuous when
G×G is endowed with the product topology;

(2) the mapping inv : G −→ G defined by inv(g) = g−1 is continuous.

We remark that item (1) is equivalent to the statement that, whenever U ⊆ G is
open, and g1g2 ∈ U , then there exist open sets V1 and V2 such that g1 ∈ V1, g2 ∈ V2

and V1V2 = {v1v2 | v1 ∈ V1, v2 ∈ V2} ⊆ U . Also, item (2) is equivalent to showing
that whenever U ⊆ G is open, then U−1 = {g−1 | g ∈ U} is open.

Let X be a topological space and ∼ an equivalence relation on X. For every
x ∈ X, denote by [x] its equivalence class. The quotient space of X modulo ∼ is
given by the set X/ ∼= {[x] | x ∈ X}. We have the projection map p : X −→ X/ ∼,
x 7→ [x] and we equip X/ ∼ with the topology: U ⊆ X/ ∼ is open if and only if
p−1(U) is an open subset of X.

In this paper, we introduce the concept of topological hypergroups and topo-
logical polygroups as a generalization of topological groups. Let (P, ◦, e,−1 ) be a
polygroup and (P, τ) be a topological space such that the mappings (x, y) 7→ x ◦ y
from P × P to P∗(P ) and x 7→ x−1 from P to P are continuous with respect to
product topology on P ×P and the topology τ∗ on P∗(P ) induced by τ . By consid-
ering the relative topology on subpolygroups we prove some properties about them.
In the last section, we prove the isomorphism theorems on topological polygroups.

2 Topological algebraic hyperstructures

Let (H, τ) be a topological space. The following lemma give us a topology on P∗(H)
induced by τ .

Lemma 2.1. [16] Let (H, τ) be a topological space. Then, the family B consisting
of all sets SV = {U ∈ P∗(H) | U ⊆ V,U ∈ τ} is a base for a topology on P∗(H).
This topology is denoted by τ∗.

Let (H, τ) be a topological space. Then, we can consider the product topology
on H ×H and the topology τ∗ on P∗(H).

Definition 2.2. Let (H, ◦) be a hypergroup and (H, τ) be a topological space.
Then, the system (H, ◦, τ) is called a topological hypergroup if

(1) the mapping (x, y) 7→ x ◦ y, from H ×H −→ P∗(H) is continuous;

(2) the mapping (x, y) 7→ x/y, from H × H −→ P∗(H) is continuous, where
x/y = {z ∈ H | x ∈ z ◦ y}.
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Let H be a hypergroup and A and B be non-empty subsets of H. Then, A/B =⋃
{a/b | a ∈ A, b ∈ B}. Let (H, ◦, τ) be a topological hypergroup and β∗ be the

fundamental relation on H. Then, (H/β∗, τ) is a topological space, where τ is
the quotient topology induced by the natural mapping π : H −→ H/β∗. That is
A ⊆ H/β∗ is open in H/β∗ if and only if π−1(A) is open in H. Let (H, ◦, τ) be a
topological hypergroup such that every open subset of H is a complete part. Then,
the natural mapping π : H −→ H/β∗ is an open mapping [14].

Theorem 2.3. [14] Let (H, ◦, τ) be a topological hypergroup such that every open
subset of H is a complete part. Then, (H/β∗,⊗, τ) is a topological group.

Theorem 2.4. Let (H, ◦, τ) be a topological hypergroup and U ∈ τ such that U is a
complete part. Then, U =

⋃
u∈U β

∗(u).

Proof. Obviously, U ⊆
⋃
u∈U β

∗(u). Suppose that u ∈ U and x ∈ β∗(u). Then,
there exist a1, · · · , an ∈ H such that {x, u} ⊆

∏n
i=1 ai. Since U is a complete part,

it follows that x ∈
∏n
i=1 ai ⊆ U and so β∗(u) ⊆ U . Therefore, U =

⋃
u∈U β

∗(u).

Lemma 2.5. Let (H, ◦) be a hypergroup and β∗ be the fundamental relation on H.
Then, B = {β∗(x) | x ∈ H} is a base for a topology on H and every open subset of
H is a complete part.

Proof. Since H =
⋃
x∈H β

∗(x), it follows that B is a base for a topology on H. It is
easy to see that every open subset of H is a complete part.

We denote the topology in the previous lemma by τβ.
Let τ1 and τ2 be two topologies on the same set X. Then, we say that τ1 is

stronger or finer than τ2 if τ1 ⊃ τ2, and that then τ2 is weaker or coarser than τ1.

Theorem 2.6. Let (H, ◦) be a hypergroup and β∗ be the fundamental relation on H.
Then, τβ is the finest topology on H such that H becomes a topological hypergroup
and every open subset of H is a complete part.

Proof. Firstly, we prove that (H, ◦, τβ) is a topological hypergroup. Suppose that
x, y ∈ H such that x ◦ y ⊆ U for some open subset U of H. So by Theorem 2.4, we
have U =

⋃
u∈U β

∗(u). Thus, there exists u ∈ U such that x ◦ y ⊆ β∗(u). Hence,
β∗(x) ◦ β∗(y) ⊆ β∗(u) ⊆ U and β∗(x) and β∗(y) are open subsets of H containing x
and y, respectively. Therefore, the hyperoperation ◦ is continuous.

Similarly, we can prove that if x/y ⊆ U for some open subset U and x, y ∈ H,
then β∗(x)/β∗(y) ⊆ U .

Now, suppose that τ is a topology on H such that every open subset of (H, τ)
is a complete part and (H, ◦, τ) is a topological hypergroup. Let x ∈ U and U ∈ τ .
Then, by Theorem 2.4, we have U =

⋃
u∈U β

∗(u). Thus, β∗(x) ⊆ U and β∗(x) is
an open subset of (H, τβ). Therefore, τβ is the finest topology on H such that H
becomes a topological hypergroup and every open subset of H is a complete part.

4



Theorem 2.7. Let (H, ◦, τ) be a T0 topological hypergroup such that every open
subset of H is a complete part. Then, H is a group.

Proof. We prove that |x ◦ y| = 1 for every x, y ∈ H. Assume for the contradiction
that a, b ∈ x ◦ y and a 6= b. Since H is T0, it follows that there exists an open subset
U of H containing exactly one of a or b. Let a ∈ U and b /∈ U . Then, a ∈ β∗(u) for
some u ∈ U . Thus, b ∈ β∗(b) = β∗(a) = β∗(u) hence, b ∈ U and it is a contradiction.
So |x ◦ y| = 1. Therefore, H is a group.

Now, we introduce the concept of topological polygroups and prove some prop-
erties. Let P be a polygroup and τ a topology on P . Then, as in topological hyper-
group we consider a topology τ∗ on P∗(P ) which is generated by B = {SV | V ∈ τ},
where SV = {U ∈ P∗(P ) | U ⊆ V,U ∈ τ}.

In the following we use the topology τ∗ on P∗(P ) and the product topology on
P × P .

Definition 2.8. Let P = (P, ◦, e,−1 ) be a polygroup and (P, τ) be a topological
space. Then, the system P = (P, ◦, e,−1 , τ) is called a topological polygroup if the
mappings ◦ : P × P −→ P∗(P ) and −1 : P −→ P are continuous.

Obviously, every topological group is a topological polygroup. Now, we give
some other examples of topological polygroups.

Example 1. Every polygroup equipped with discrete or indiscrete topology is a
topological polygroup.

Example 2. Let P be a polygroup and β∗ be the fundamental relation of P . Then,

τ =

{ ⋃
u∈U

β∗(u) | U ⊆ P

}
∪ {∅}

is a topology on P and (P, ◦, e,−1 , τ) is a topological polygroup.

In [4], an extension of polygroups by polygroups have been introduced in the
following way: Suppose A and B are polygroups whose elements have been renamed
so that A ∩ B = {e}, where e is the identity of both A and B. A new system
A[B] = (M, ∗, e,I ) called the extension of A by B, is formed in the following way:
Set M = {x | x ∈ A, x 6= e} ∪ {x | x ∈ B, x 6= e} ∪ {e} and let eI = e, xI = x−1 (in
the appropriate system), e ∗ x = x ∗ e = x for all x ∈M , and for all x, y ∈ {x | x ∈
M,x 6= e}:

x ∗ y =


x.y if x, y ∈ A
x if x ∈ B, y ∈ A
y if x ∈ A, y ∈ B
x.y if x, y ∈ B, y 6= x−1

x.y ∪A if x, y ∈ B, y = x−1.

The extension A[B] is a polygroup.
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Theorem 2.9. Let (A, ◦1, e1,−1 ) be a polygroup and (B, ◦2, e2,−1 , τB) be a topo-
logical polygroup. Then, there is a topology on A[B] such that A[B] is a topological
polygroup.

Proof. We define a topology on A[B] as follows

τA[B] = {U ∪A | U ∈ τB} ∪ {∅}.

Then, (A[B], τA[B]) is a topological space. Suppose that x ∈ A[B] and U ∪ A be an
open subset of A[B] such that x−1 ∈ U ∪A for some open subset U of B. If x−1 ∈ A,
then x ∈ A ⊆ U ∪A. If x−1 ∈ U , then there exists an open subset V of B such that
x ∈ V and V −1 ⊆ U hence, V −1 ⊆ U ∪ A. Therefore, the mapping x 7−→ x−1 is
continuous. Suppose that x, y ∈ A[B] and U ∈ τB such that x ∗ y ⊆ U ∪A, then we
have the following cases:

Case 1. If x, y ∈ A, then x ∗ y = x ◦1 y ⊆ A.A ⊆ A ⊆ U ∪A.
Case 2. If x ∈ A and y ∈ B, then x ∗ y = y ∈ U ⊆ U ∪A.
Case 3. If x ∈ B and y ∈ A, then x ∗ y = x ∈ U ⊆ U ∪A.
Case 4. If x, y ∈ B and x 6= x−1, then x ∗ y = x ◦2 y ⊆ U . So there exist open

subsets V and W of B containing x and y, respectively, such that V ·W ⊆ U . Thus,
(V ∪A) ∗ (W ∪A) ⊆ V ·W ∪A ⊆ U ∪A.

Case 5. If x, y ∈ B, then x ∗ y = x ◦2 y ∪A ⊆ U ∪A. Also, we can do the similar
way to Case 4.

Thus, the hyperoperation ∗ is continuous. Therefore, (A[B], ∗, I, τA[B]) is a topo-
logical polygroup.

By using the previous theorem we can construct topological polygroups by con-
sidering B as a topological group.

Example 3. Consider the topological group (R,+) with standard topology. Then,
Z3[R] is a topological polygroup.

Example 4. Consider symmetric group S3. Let τ = {∅, A3, A
c
3, S3}, where A3 is the

set of all even permutations of S3 and Ac3 = S3 \ A3. Then, (S3, τ) is a topological
group so Z2[S3] is a topological polygroup.

In [14] we prove the next two lemmas for topological hypergroups. In the fol-
lowing we rewrite them for topological polygroups.

Lemma 2.10. Let P be a topological polygroup. Then, the hyperoperation ◦ : P ×
P −→ P∗(P) is continuous if and only if for every x, y ∈ P and U ∈ τ such that
x ◦ y ⊆ U then there exist V,W ∈ τ such that x ∈ V and y ∈W and V ◦W ⊆ U .

Lemma 2.11. Let P be a topological polygroup. Then, the mappings

aϕ : P −→ P∗(P ) by x 7→ a ◦ x,
ϕa : P −→ P∗(P ) by x 7→ x ◦ a

are continuous, for every a ∈ P .
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Lemma 2.12. Let P be a topological polygroup, A ⊆ P and U be an open subset of
P . Then, A ⊆ x−1 ◦ U if and only if x ◦A ⊆ U for all x ∈ P .

Proof. Suppose that A ⊆ x−1 ◦ U and t ∈ x ◦ a for some a ∈ A. Then, a ∈
x−1 ◦ t∩x−1 ◦U . So a ∈ x−1 ◦u for some u ∈ U . Thus, u ∈ x◦a∩U hence x◦a ⊆ U .
Therefore, x ◦A ⊆ U .

Conversely, suppose that x ∈ P and x◦A ⊆ U . Then, we have A ⊆ (x−1◦x)◦A =
x−1 ◦ (x ◦A) ⊆ x−1 ◦ U.

Lemma 2.13. Let U be an open subset of a topological polygroup P such that U is
a complete part. Then, a ◦ U and U ◦ a are open subsets of P for every a ∈ P .

Proof. Suppose that U is an open subset of P such that U is a complete part and
a ∈ P . Then, by Lemma 2.12 we have

ϕ−1
a−1(SU ) = {x ∈ P | a−1 ◦ x ⊆ U} = a ◦ U.

So by Lemma 2.11, the mapping ϕa−1 is continuous, thus a ◦ U is open. Similarly,
we can prove that U ◦ a is open.

Theorem 2.14. Let P be a topological polygroup and A,B be open subsets of P . If
A or B is a complete part, then A ◦B is open.

Proof. Suppose that A is a complete part. By Lemma 2.11, A ◦ b is open. Since
every arbitrary union of open subsets is open, it follows that A ◦B =

⋃
b∈B A ◦ b is

open.

Lemma 2.15. Let P be a topological polygroup such that every open subset of P is
a complete part. Let U be an open basis at e. Then, the families {x◦U} and {U ◦x},
where x runs through all elements of P and U runs through all elements of U , are
open basis for P .

Proof. Suppose that W is an open subset of P and a ∈ W . Since e ∈ a−1 ◦W , it
follows that there exists U ∈ U such that e ∈ U ⊆ a−1 ◦W . Since W is a complete
part we conclude that a ∈ a ◦ U ⊆ W . Thus, W is a union of open subsets a ◦ U .
Therefore, {x ◦ U} is an open basis for P . Similarly, the family {U ◦ x} is a basis
for P .

Theorem 2.16. Let P be a topological polygroup and U be a basis at e. Then, the
following assertions hold:

(1) for every U ∈ U and x ∈ U there exists V ∈ U such that x ◦ V ⊆ U ;

(2) for every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U ;

(3) for every U ∈ U there exists V ∈ U such that V −1 ⊆ U .

Proof. The proofs are straightforward.
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As in topological spaces, we use the term “neighborhood“ for open subsets. An
open subset U of a topological polygroup P is called a symmetric neighborhood if
U−1 = U .

Theorem 2.17. Every topological polygroup has an open basis at e containing a
symmetric open basis at e.

Proof. Suppose that U is an open basis at e. Then, for every U ∈ U , put V =
U ∩ U−1. Then, V = V −1 and V ⊆ U .

Theorem 2.18. Let P be a topological polygroup such that every open subset of P
is a complete part. Then, for every neighborhood U of e there exists a neighborhood
V of e such that V ⊆ U , where V is the closure of V .

Proof. Suppose that V is a symmetric neighborhood of e such that V ◦V ⊆ U . Now,
if x ∈ V , then x ◦ V ∩ V 6= ∅. So there exist v1, v2 ∈ V such that v2 ∈ x ◦ v1. Thus,
x ∈ v2 ◦ v−1

1 ⊆ V ◦ V −1 = V ◦ V ⊆ U .

Theorem 2.19. Let P be a topological polygroup such that every open subset of P
is a complete part, U be any neighborhood of e and F be a any compact subset of P .
Then, there exists a neighborhood V of e such that x ◦ V ◦ x−1 ⊆ U for all x ∈ F .

Proof. Suppose that U be a neighborhood of e so by Theorem 2.16 there exists
a symmetric neighborhood T of e such that T ◦ T ⊆ U . Applying Theorem 2.16
for T , we conclude that there exists a symmetric neighborhood W of e such that
W ◦ W ⊆ T . So we have W ◦ W ◦ W ⊆ T ◦ T ⊆ U . Since F is compact and
F ⊆ ∪x∈FW ◦x, it follows that there exist x1, · · · , xn ∈ F such that F ⊆ ∪ni=1W ◦xi.

Let V = ∩ni=1x
−1
i W ◦xi. We claim that x−1

i ◦V ◦xi ⊆W , for i = 1, · · · , n. Since
W is a complete part and w ∈ (xi ◦ x−1

i ) ◦ w ◦ (x−1
i ◦ xi) ∩W for i = 1, · · · , n and

w ∈W . Thus, (xi ◦ x−1
i ) ◦ w ◦ (x−1

i ◦ xi) ⊆W . So for every 1 ≤ k ≤ n we have

xk ◦ V ◦ x−1
k = xk ◦ (

n⋂
i=1

(x−1
i ◦W ◦ xi)) ◦ xk

⊆ xk ◦ x−1
k ◦W ◦ xk ◦ x

−1
k ⊆W.

Therefore, for every x ∈ F there exist w ∈ W and 1 ≤ k ≤ n such that x ∈ w ◦ xk,
hence we have

x ◦ V ◦ x−1 ⊆ (w ◦ xk) ◦ V ◦ (x−1
k ◦ w

−1) ⊆ w ◦ (xk ◦ V ◦ x−1
k ) ◦ w−1

⊆ w ◦W ◦ w ⊆W ◦W ◦W ⊆ U.

Theorem 2.20. Let P be a topological polygroup such that every open subset of P is
a complete part, U be any neighborhood of e and F be a any compact subset of P such
that F ⊆ U . Then, there exists a neighborhood V of e such that (F ◦V )∪(V ◦F ) ⊆ U .
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Proof. Suppose that F is a compact subset of P and U be a neighborhood of e such
that F ⊆ U . Then, for every x ∈ F there exist a neighborhood Wx of e such that
x◦Wx ⊆ U and a neighborhood Vx of e such that Vx ◦Vx ⊆Wx. Since F is compact
and F ⊆ ∪x∈Fx ◦ Vx so there exist x1, · · · , xn ∈ F such that F ⊆ ∪ni=1xi ◦ Vxi . Let
V1 = ∩ni=1xi ◦ Vxi . Hence, we have

F ◦ V1 ⊆ (
n⋃
i=1

xi ◦ Vxi) ◦ V1 ⊆
n⋃
i=1

xi ◦ Vxi ◦ Vxi ⊆
n⋃
i=1

xi ◦Wxi ⊆ U.

3 Subpolygroups of a topological polygroup

In this section we introduce the concept of subpolygroups of a topological polygroup.
We consider the relative topology on a subpolygroup.

Theorem 3.1. Let P be a topological polygroup. Then, every subpolygroup K of P
with relative topology is a topological polygroup.

Proof. Since the restriction of mappings hyperoperation and inverse to K are con-
tinues the result holds.

Lemma 3.2. Let A and B be subsets of a topological polygroup P such that every
open subset of P is a complete part. Then, the following assertions hold:

(1) A ◦B ⊆ A ◦B;

(2) (A)−1 = (A−1).

Proof. (1) Suppose that t ∈ A ◦ B. Then, t ∈ x ◦ y for some x ∈ A and y ∈ B. We
prove that each neighborhood U of t has a non-empty intersection with A◦B. Since
U is a complete part, it follows that x ◦ y ⊆ U . Thus, there exist neighborhoods V
and W containing x and y, respectively, such that V ◦W ⊆ U . From x ∈ V ∩A and
y ∈ W ∩ B we conclude that there exist a ∈ V ∩ A and b ∈ W ∩ B. Now, we have
a ◦ b ⊆ U ∩A ◦B. Therefore, t ∈ A ◦B.

(2) Suppose that x ∈ A−1. Then, x−1 ∈ A. If x ∈ U ∈ τ , then x−1 ∈ U−1 so
there exists y ∈ A ∩ U−1 thus y−1 ∈ A−1 ∩ U . Hence, x ∈ A−1. Thus, A−1 ⊆ A−1.
Similarly, we can prove that A−1 ⊆ A−1. Therefore, (A)−1 = (A−1).

Theorem 3.3. Let P be a topological polygroup such that every open subset of P is
a complete part. Then, the following assertions hold:

(1) If K is a subsemihypergroup of P , then K is a subsemihypergroup of P .

(2) If K is a subpolygroup of P , then K is a subpolygroup of P .
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Proof. (1) Suppose that K is a subsemihypergroup of P ; then K ◦ K ⊆ K. By
Lemma 3.2, we have K ◦K ⊆ K ◦K ⊆ K thus K is a subsemihypergroup of P .

(2) Suppose that K is a subpolygroup of P ; then K−1 ⊆ K. By Lemma 3.2, we
have K−1 = K−1 ⊆ K thus K is a subpolygroup of P .

Theorem 3.4. Let P be a topological polygroup such that every open subset of P is
a complete part. Then, every subpolygroup K of P is open if and only if its interior
is non-empty.

Proof. Suppose that x is an interior point of K. Then, there exists a neighborhood
U of e such that x ◦ U ⊆ K. Now, for every y ∈ K we have

y ◦ U ⊆ y ◦ (x−1 ◦ x) ◦K = (y ◦ x−1) ◦ (x ◦K) = (y ◦ x−1) ◦K = K.

So y is an interior point of K. Hence, K is open.

Theorem 3.5. Let P be a topological polygroup such that every open subset of P is
a complete part. Then, every open subpolygroup is closed.

Proof. Suppose that K is an open subpolygroup of P , then we have

P =
⋃
x∈P

x ◦K = K ∪ (
⋃
x/∈K

x ◦K).

So Kc =
⋃
x/∈K x◦K. Now, since K is a complete part, it follows that x◦K is open.

Thus, Kc is open and it conclude that K is closed.

Theorem 3.6. Let A be a family of neighborhoods of e in a topological polygroup P
such that

(1) for each U ∈ A, there is V ∈ A suchthat V ◦ V ⊆ U ;

(2) for each U ∈ A, there is V ∈ A such that V −1 ⊆ U ;

(3) for each U, V ∈ A, there is W ∈ A such that W ⊆ U ◦ V .

Let H = ∩{U | U ∈ A}. Then, H is a closed subpolygroup of P .

Proof. Suppose that x, y ∈ H and U ∈ A. Then, by (1) there exists V ∈ A such
that V ◦ V ⊆ U . Thus, x, y ∈ V so x ◦ y ⊆ V ◦ V ⊆ U . Hence, x ◦ y ⊆ H. Similarly,
we can prove that if x ∈ H, then x−1 ∈ H. Therefore, H is a subpolygroup of P .
Now, we prove that H is closed. Let x ∈ P \ H. Then, x /∈ U for some U ∈ A.
So by (1), (2) and (3) there exist V1, V2, V ∈ A such that V1 ◦ V1 ⊆ U, V −1

2 ⊆ V1

and V ⊆ V1 ∩ V2. Thus, V ◦ V −1 ⊆ U . Hence, if x ◦ V ∩ V 6= ∅, then we have
x ∈ V ◦ V −1 ⊆ U so x ∈ H and it is a contradiction. Thus, x ∈ x ◦ V ⊆ P \ H.
Thus, P \H is open; that is H is closed.
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Theorem 3.7. Let U be a symmetric neighborhood of e in a topological polygroup
P such that every open subset of P is a complete part. Then, the set L =

⋃∞
n=1 U

n

is an open and closed subpolygroup of P , where U2 = U ◦U and Un = Un−1 ◦U for
every n ∈ N.

Proof. If x ∈ Uk and y ∈ U t, then x ◦ y ⊆ Uk+t and x−1 ∈ (U−1)k = Uk, for
every k, t ∈ N. Hence, L is a subpolygroup of P . By Theorem 3.4, L is open and
closed.

Theorem 3.8. Let P be a topological polygroup such that every open subset of P is
a complete part. Then, a subpolygroup H of P is closed if and only if there is an
open subset U of P such that U ∩H = U ∩H 6= ∅.

Proof. If H is closed subpolygroup of P , then it is sufficient to consider U as a
neighborhood of e.

Conversely, suppose that there is an open subset U of P such that U∩H = U∩H
and U ∩H 6= ∅. Let x ∈ H and y ∈ U ∩H. Then, x ∈ x ◦ y−1 ◦ U and by Lemma
2.13 x ◦ y−1 ◦ U is an open subset of P . So there exists h ∈ H ∩ x ◦ y−1 ◦ U . Thus,
h ∈ x ◦ y−1 ◦ u for some u ∈ U , hence u ∈ y ◦ x−1 ◦ h. So u ∈ U ∩ H, since by
Theorem 3.3, H is a subpolygroup of P . Thus, u ∈ U ∩H hence x ∈ h◦u−1 ◦y ⊆ H.
Therefore, H = H; that is H is closed subpolygroup of P .

Theorem 3.9. Let P be a topological polygroup such that every open subset of P is
a complete part and H is a non-closed subpolygroup of P . Then, H ∩Hc is dense
in H.

Proof. Suppose that H is a non-closed subpolygroup of P . Then, by the previous
theorem, for every open subset U of P , U ∩H = ∅ or ∅ 6= U ∩H ( U ∩H. Let x ∈ H
and U be a neighborhood of x. Then, U ∩H 6= ∅. So there exists u ∈ U ∩H \U ∩H.
Thus, u ∈ U ∩ (H ∩Hc). Therefore, H ∩Hc is dense in H.

4 Isomorphism theorems

In this section we state and prove the isomorphism theorems for topological poly-
groups.

Let (P, ◦, e,−1 , τ) be a topological polygroup and N be a normal subpolygroup
of P . Let π be the natural mapping x 7→ N ◦ x of P onto P/N . Then, (P/N, τ)
is a topological space, where τ is the quotient topology induced by π. That is for
every subset X of P we have {N ◦ x | x ∈ X} is an open subset of P/N if and only
if π−1({N ◦ x | x ∈ X}) is an open subset of P . In the following, the notation X/N
is used for {N ◦ x | x ∈ X} for every subset X of P .

Theorem 4.1. Let (P, ◦, e,−1 , τ) be a topological polygroup such that every open
subset of H is complete part. Then, (P/β∗,⊗, τ) is a topological group, where β∗

is the fundamental relation of P and β∗(x) ⊗ β∗(y) = β∗(z), z ∈ x ◦ y for every
x, y ∈ P .

11



Proof. It follows from Theorem 2.3.

Definition 4.2. Let < P1, ◦1, e1,−1 , τ1 > and < P2, ◦2, e2,−1 , τ2 > be topological
polygroups. A mapping ϕ from P1 into P2 is said to be a good topological homo-
morphism if for all a, b ∈ P1,

(1) ϕ(e1) = e2;

(2) ϕ(a ◦1 b) = ϕ(a) ◦2 ϕ(b);

(3) ϕ is continuous;

(4) ϕ is open.

Clearly, a good topological homomorphism ϕ is a topological isomorphism if ϕ
is one to one and onto. We write P1

∼= P2 if P1 is topologically isomorphic to P2.
Because P1 is a polygroup, e2 ∈ a ◦1 a−1 for all a ∈ P1; then we have ϕ(e1) ∈

ϕ(a)◦2ϕ(a−1) or e2 ∈ ϕ(a)◦2ϕ(a−1) which implies ϕ(a−1) ∈ ϕ(a)−1 ◦2 e2; therefore,
ϕ(a−1) = ϕ(a)−1 for all a ∈ P1. Moreover, if ϕ is a strong topological homomorphism
from P1 into P2, then the kernel of ϕ is the set kerϕ = {x ∈ P1 | ϕ(x) = e2}. It is
trivial that kerϕ is a subpolygroup of P1 but in general is not normal in P1.

As in polygroups, if ϕ is a good topological homomorphism from P1 into P2,
then, ϕ it is injective if and only if kerϕ = {e1}.

Theorem 4.3. Let (P1, ◦1,−1 , e1, τ1) and (P2, ◦2,−1 , e2, τ2) be two topological poly-
groups and f : P1 −→ P2 be a homomorphism. Then, f is continuous if and only if
is continuous at e1.

Proof. Obviously, if f is continuous, then f is continuous at e1. Conversely, suppose
that f is continuous at e1 and f(x) ∈ U2 for some x ∈ P1 and open subset U2 of P2.
Now, we have f(e1) ∈ f(x−1 ◦1 x) = f(x)−1 ◦2 f(x) ⊆ f(x)−1 ◦2 U2, so there exists
an open subset U1 of P1 containing e1 such that f(U1) ⊆ f(x)−1 ◦2 U2. Hence, by
Lemma 2.12, we have f(x ◦1 U1) = f(x) ◦2 f(U1) ⊆ U2. Therefore, f is continuous
at x.

Lemma 4.4. Let P be a topological polygroup and N be a normal subpolygroup of
P . Let π be the natural mapping x 7−→ N ◦ x of P onto P/N . Then,

(1) π−1({N ◦ x | x ∈ X}) = N ◦X for every subset X of P ;

(2) {N ◦ x | x ∈ X} = {N ◦ y | y ∈ N ◦X} for every subset X of P ;

(3) If every open subset of P is a complete part, then the natural mapping π is
open.
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Proof. (1) Obviously, we have that N ◦X ⊆ π−1({N ◦ x | x ∈ X}) for every subset
X of P . We prove the converse of inclusion. Suppose that y ∈ π−1({N ◦x | x ∈ X}).
Then, π(y) = N ◦ y ∈ {N ◦ x | x ∈ X}. So N ◦ y = N ◦ x for some x ∈ X. Thus,
y ◦ x−1 ∩N 6= ∅. Hence, there exists n ∈ N such that n ∈ x ◦ y−1 and this implies
y ∈ n ◦ x ⊆ N ◦X. Therefore, the proof is complete.

(2) For every subset X of P we have X ⊆ N ◦X so {N ◦x | x ∈ X} ⊆ {N ◦y | y ∈
N ◦X}. On the other hand, if y ∈ N ◦X, there exist n ∈ N and x ∈ X such that
y ∈ n ◦ x. Thus, N ◦ y = N ◦ x and the proof is complete.

(3) If U is an open subset of P , then by (1) we have π−1(π(U)) = N ◦ U . Since
U is a complete part, it follows that N ◦U is open in P by Lemma 2.13. Therefore,
π is open.

Let N be a normal subpolygroup of topological polygroup P and every open
subset of P be a complete part. Let A be an open subset of P/N . Then, by the
previous lemma, A = U/N for some open subset U of P .

Theorem 4.5. Let N be a normal subpolygroup of topological polygroup P and
every open subset of P be a complete part. Then, < P/N,�, N,−I > is a topological
polygroup, where N ◦ x�N ◦ y = {N ◦ z | z ∈ x ◦ y} and (N ◦ x)−I = N ◦ x−1.

Proof. We prove that the hyperoperation � and the unitary operation −I are con-
tinuous. Suppose N ◦ x,N ◦ y ∈ P/N and A is an open subset of P/N such that
N ◦x�N ◦y ⊆ A. Then, x◦y ⊆ π−1(A). Since π−1(A) is open in P , there exist open
subsets V and W of P containing x and y, respectively, such that V ◦W ⊆ π−1(A).
It follows that π(V ) and π(W ) are open in P/N containing N ◦x and N ◦ y, respec-
tively, such that π(V )� π(W ) ⊆ A. Therefore, the hyperoperation � is continuous.

Suppose that (N ◦x)−I = N ◦x−1 ∈ A. Then, x−1 ∈ π−1(A). Thus, there exists
an open subset U in P such that x−1 ∈ U−1 ⊆ π−1(A) so π(x−1) = N ◦ x−1 ∈
π(U−1) ⊆ A and π(U−1) is open in P/N .

The isomorphism theorems of polygroups are presented in [10]. In the following
we prove them for topological polygroups.

Theorem 4.6. Let (P1, ◦1, e1,−1 , τ1) and (P2, ◦2, e2,−1 , τ2) be topological polygroups
such that every open subset of P1 is a complete part. Let ϕ be an open and continuous
good topological homomorphism from P1 onto P2 such that N = kerϕ is a normal
subpolygroup of P1. Then, P1/N and P2 are topologically isomorphic.

Proof. We define the mapping ψ : P2 −→ P1/N by setting ψ(x2) = N ◦1 x1 where,
ϕ(x1) = x2, for all x2 ∈ P2. Since ϕ is onto, so ϕ−1(x2) 6= ∅. If x1, y1 ∈ ϕ−1(x2),
then ϕ(x1) = x2 = ϕ(y1). Thus, e2 ∈ ϕ(x1 ◦1 y−1

1 ), hence there exists n ∈ x1 ◦1 y−1
1

such that ϕ(n) = e2. Now, we have N ◦1 x1 ⊆ N ◦1 (n ◦1 y1) = N ◦1 y1 ⊆ N ◦1 n−1 ◦1
x1 = N ◦1 x1. Therefore, ψ is well-defined. Obviously, ψ is onto and an algebraic
homomorphism. If ψ(x2) = N ◦1 x1 = ψ(y2) = N ◦1 y1, then x1 ∈ n ◦1 y1 for some
n ∈ N . Thus, x2 = ϕ(x1) ∈ ϕ(n) ◦2 ϕ(y1) = y2 hence, ψ is one-to-one. Therefore, ψ
is an algebraic isomorphism.
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Now, we show that ψ is open and continuous. Suppose that U2 is an open subset
of P2. Then, ψ(U2) = {N ◦1u1 | u1 ∈ ϕ−1(U2)} = ϕ−1(U2)/N . Since ϕ is continuous,
it follows that ϕ−1(U2)/N is open in P1/N . Therefore, ψ is open.

If U1/N is an open subset of P1/N , then ψ−1(U1/N) is open in P2 since ϕ is
open and we have

ψ−1(U1/N) = {u2 | ψ(u2) ∈ U1/N} = {u2 | N ◦1 u1 ∈ U1/N,ϕ(u1) = u2} = ϕ(U1).

Therefore, ψ is continuous and the proof is complete.

Theorem 4.7. Let K and N be subpolygroups of a polygroup P with N normal and
K open in P such that every open subset of P is a complete part. Then, K/(N ∩K)
and (N ◦K)/N are topologically isomorphic.

Proof. Define ϕ : K −→ P/N by ϕ(k) = N ◦ k. Then, ϕ is a strong homomorphism
and kerϕ = N ∩K. Since K ⊆ N ◦K and ϕ is the restriction of π on K, it follows
that ϕ is open and continuous. It remains to show that Im(ϕ) = N ◦ K/N . If
x ∈ N ◦ K, then x ∈ n ◦ k, for some n ∈ N and k ∈ K. Hence, ϕ(k) = N ◦ k =
N ◦ n ◦ k = N ◦ x. So N ◦ K/N ⊆ Im(K) ⊆ N ◦ K/N . Therefore, by previous
theorem, K/(N ∩K) ∼= (N ◦K)/N.

Theorem 4.8. Let K and N be normal subpolygroups of a polygroup P such that
every open subset of P is a complete part and N ⊆ K. Then, (P/N)/(K/N) and
P/K are topological isomorphic.

Proof. The mapping ϕ : P/N −→ P/K, where ϕ(N ◦ x) = K ◦ x is a good ho-
momorphism and we have Kerϕ = K/N . If U is an open subset of P , then we
have ϕ(U/N) = U/K. Therefore, ϕ is open and continuous. So by Theorem 4.6 we
conclude that (P/N)/(K/N) and P/K are topologically isomorphic.

Theorem 4.9. If N1, N2 are normal subpolygroups of P1 and P2 respectively, then
N1×N2 is a normal subpolygroup of P1×P2 and (P1×P2)/(N1×N2) and P1/N1×
P2/N2 are topological isomorphic.

Proof. It is straightforward.

5 Conclusion

This paper deal with one of the newest argument from hyperstructure theory namely
topological hypergroups. Applications of hypergroups have mainly appeared in spe-
cial subclasses. One of the important subclasses is the class of polygroups. Indeed
the structure of a polygroup is more near to the structure of a group. So, in the
paper we studied the concept of topological polygroups. The concept of topological
polygroups is a generalization of the concept of topological groups. It is important to
mention that in this paper the topological polygroups and topological hypergroups
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are different from topological hypergroups which was initiated by Dunkl [12] and
Jewett [19].
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