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Abstract

We study arithmetic problems for representations of finite groups over
algebraic number fields and their orders under the ground field extensions.
Let E/F be a Galois extension, and let G ⊂ GLn(E) be a subgroup stable
under the natural operation of the Galois group of E/F . A concept gener-
alizing permutation modules is used to determine the structure of groups G
and their realization fields. We also compare the possible realization fields
of G in the cases if G ⊂ GLn(E) and if all coefficients of matrices in G are
algebraic integers. Some related results and conjectures are considered.
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1. Introduction

It is interesting to study the relationship between the classical representations h :
H → GLn(K) over fields K and some related representations f : H → GLn(S) over
Dedekind rings S in K as well as establishing extra properties of these representations;
here we are interested in the property of stability of h(H) under the natural action of
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Galois group. This condition was considered earlier for Galois stability of groups and or-
ders in [16] and some other papers. In some mysterious way the representations involved
appear to be of special interest for nilpotent groups, many results are just related to rep-
resentations abelian groups. However, it is also interesting to establish the conditions for
existence of faithful representations of groups of the given nilpotency class (see [7], [8],
[13] for group representations of nilpotency class 2 and also [13], [14]) having this extra
property. It would be interesting to extend our considerations to some other classes of
groups [4], [6].

In this paper we study some arithmetic problems for representations of finite groups
over algebraic number fields and arithmetic rings under the ground field extensions. We
study finite subgroups G ⊂ GLn(S) for certain Dedekind rings S in algebraic number
fields K with the focus on S = OK , the ring of integers of K.

The following definition and result generalize [20] and [17]:

Definition 1.1. Consider a finite Galois extension K of the rationals Q and a free Z-
module M of rank n with basis m1, . . . ,mn. The group GLn(OK) acts in a natural way
on OK ⊗M ∼=

⊕n
i=1OKmi. The finite group G ⊂ GLn(OK) is said to be of A-type,

if there exists a decomposition M =
⊕k

i=1Mi such that for every g ∈ G there exists a
permutation Π(g) of {1, 2, . . . , k} and roots of unity εi(g) such that εi(g)gMi = MΠ(g)i

for 1 ≤ i ≤ k.

Fix a prime number p, a primitive p-th root of unity ζp, and for the ring of p-adic
integers Zp set π = 1− ζp, R = Zp(ζp) and Fp = R/πR.

We say R-representation M of G for an RG module M which is free of finite rank as
an R-module. A permutation lattice (respectively module) for G is a direct sum of ZpG
(resp. FpG for a finite field Fp containing p elements) modules of the form indGH(1). A
generalized permutation lattice for G is a direct sum of RG-modules of the form indGHφ
for some homomorphism φ : H →< ζp > of a subgroup H of G.

Theorem 1.1. ([20], Theorem 3). Let M be an R-representation of the finite p-group
G so that M = M/πM is a permutation Fp-module of G. Then M is a generalized
permutation lattice for G.

We consider some Galois extension E/F of finite degree d with the Galois group
Γ for a field F of characteristic 0 and a finite abelian subgroup G ⊂ GLn(E) of the
given exponent t, where we assume that G is stable under the natural coefficientwise
Γ-operation.

Throughout the paper OE is the maximal order of E and F (G) denotes a field that is
obtained via adjoining to F all matrix coefficients of all matrices g ∈ G.

The main objective of this paper is to prove the existence of abelian Γ-stable sub-
groups G such that F (G) = E provided some reasonable restrictions for the fixed normal
extension E/F and integers n, t, d hold and to study the interplay between the existence
of Γ-stable groups G over algebraic number fields and over their rings of integers.
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We use the following result describing groups of A-type (see Definition 1.1) proven
in [2], see Section 3:

Theorem 1.2. Let K/Q be a normal extension with Galois group Γ, and let G ⊂
GLn(OK) be a finite Γ-stable subgroup. Then G is a group of A-type.

In our context we study whether a given field E normal over F can be realized as
a field E = F (G) in both cases G ⊂ GLn(E) and G ⊂ GLn(OE), and if this is so
what are the possible orders n of matrix realizations and the structure of G. Some similar
questions for Γ-stable orders in simple algebras were studied by Ritter and Weiss. The
results related to the Galois stability of finite groups in the situation similar to ours arise
in the theory of definite quadratic forms and Galois cohomologies of certain arithmetic
groups if F is an algebraic number field and G is realized over its maximal order ([1], see
also [18]). We can specify one application of the above result:

Corollary of Theorem 3.1. (Generalized ”Hasse principle”).
For arithmetic groups G defined over Q such that the group of R-points GR is com-

pact, totally real K/Q and Gal(K/Q)-stable subgroup GOK
of GLn(OK) the kernel of

the natural cohomology map

H1(Gal(K/Q), GOK
)→

∏
v

H1(Gal(Kv/Qv), Gv)

is trivial.

We give a positive answer to the first question: we prove that any finite normal field
extension E/F can be obtained as F (G)/F if n ≥ φE(t)d where φE(t) = [E(ζt) : E] is
the generalized Euler function and ζt is a primitive t-root of unity. An explicit construction
of these fields is given in Theorems 2.1 and Theorems 2.2 in Section 2. In fact, we
construct some Galois algebras in the sense of [5], and we establish the lower bounds for
their possible orders n. We show (see Theorem 2.2 in Section 2) that the restrictions for
the given integers n, t, and d in Theorem 2.1 cannot be improved.

The situation becomes different if E is an algebraic number field and all matrix coef-
ficients of g ∈ G are algebraic integers.

The existence of any Galois stable subgroups G ⊂ GLn(OE) such that F (G) 6= F is
a rather subtle question. In particular, for F = Q all fields F (G) whose discriminant is
divisible by an odd prime must contain non-trivial roots of 1 [2], [10], [11].

Our results have some applications to positive definite quadratic lattices, see Section
3. Note that some interesting results on orthogonal decompositions of integral lattices can
be found in [9], see also [19] for related finite linear groups.

We are also interested in applying our results to other problems using permutation
modules and the methods and techniques of [12], [17] where they were applied to the
Zassenhaus conjecture for the normalized unit group of the integral group ring of a p-
group.
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It would be interesting to use the explicit construction of the subgroups
G ⊂ GLn(OKab

) together with Theorem 1.2

Notation

We denote C, R and Q the fields of complex, real and rational numbers. Z is the
ring of rational integers. GLn(S) denotes the general linear group over a ring S. [E : F ]
denotes the degree of the field extension E/F . Throughout this paper we write Γ for
Galois groups, σ, γ ∈ Γ for the elements of Γ. Mn(S) is the full matrix algebra over a
ring S. Finite groups are usually denoted by capital letters G,H , and their elements by
small letters, e.g. g ∈ G, h ∈ H , 〈a, b . . .〉 denotes a group generated by a, b, .... We write
ζt for a primitive t-root of 1. We denote by φK(t) = [K(ζt) : K] the generalized Euler
function for a field K. Im stands for a unit m ×m-matrix. detM is the determinant of a
matrix M . If G is a finite linear group, F (G) stands for a field obtained by adjoining to F
all matrix coefficients of all matrices g ∈ G. For Γ acting on G and any σ ∈ Γ and g ∈ G
we write gσ for the image of g under σ-operation. dimKA denotes the dimension of the
K-algebra A over the field K. OK denotes the maximal order of a number field K.

2. Galois stable integral representations over fields

We are interested in the following existence theorem. Note that the proof is construc-
tive, so we can give explicitly the structure and the construction of the abelian Γ- stable
subgroup G ⊂ GLn(E) in the theorem below.

Theorem 2.1. Let F be an algebraic number field, let d, t be some prescribed positive
integers and either t > 1 such that n ≥ φE(t)d, or t = d = 1, and letE be a given normal
extension of F having the Galois group Γ and degree d. Then there is an abelian Γ- stable
subgroup G ⊂ GLn(E) of exponent t such that E = F (G).

In fact, G can be generated by matrices gγ , γ ∈ Γ for some g ∈ GLn(E).

Note that the order n = dφE(t) in our construction is the minimal possible order.

Proof of Theorem 2.1
If or t = d = 1, we have or E = F and G = {In}, in this case the theorem is

trivial. If or t > 1, d = 1, then E = F , [E(ζt) : E] = φE(t), and we can consider an
irreducible polynomial f(x) = xk + ak−1x

k−1 + ... + a1x + a0 ∈ E[x] for k = φE(t)
such that f(ζt) = 0. Since E = F, all ai ∈ F, and we can consider the following matrix
corresponding to a regular representation of ζt:

M =

∣∣∣∣∣∣∣∣
0 0 . . . 0 a0

1 0 . . . 0 a1

0
. . .

0 0 . . . 1 ak−1

∣∣∣∣∣∣∣∣
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We have M t = Ik, and < M > is a cyclic group of order t. Next take g = M
⊕
In−k ∈

GLn(E), the direct sum of In−k and M . Then the group G =< g >, generated by g,
satisfies the requirements of the theorem.

Therefore, we can assume that t > 1 and d > 1.
For a given basisw1, w2, ..., wn ofE/F we intend to construct a matrix g = [gij ]i,j =∑d

i=1Biwi and pairwise commuting matrices Bi in such a way that the normal closure
of the field F (g11, g12, ..., gnn) over F coincides with E and so the group G generated
by gσ, σ ∈ Γ is an abelian Γ-stable group of exponent t. First we determine the eigen-
values that matrices Bi should have if g has the prescribed set of eigenvalues. Collecting
the given eigenvalues of pairwise commuting semisimple matrices and using the regular
representation, we construct a Γ-stable abelian group G for integral parameters given in
Theorem 2.1

We consider two different cases in our proof.

1) We suppose that F (ζt) and E are linearly disjoint over F and [E : F ] = d. In
this case φE(t) = φF (t). Let w1 = 1, w2, ..., wd be a basis of E(ζt) over F (ζt), and let
Γ be the Galois group of E(ζt) over F (ζt). Let g be a semisimple d × d-matrix having
eigenvalues ζt, 1, ..., 1. Using the expansion g = B1+w2B2+...+wdBd we can construct
the matrices Bi, i = 1, 2, ..., d, and we can prove that the group G generated by gγ , γ ∈ Γ
is an abelian Γ-stable group of exponent t. Let us consider the matrix W = [wσj

i ]i,j for
{σ1 = 1, σ2, ..., σd} = Γ. Denote by Wi the matrix W whose i-th column is replaced by
d chosen eigenvalues ζt, 1, ..., 1 of g. We can calculate

λi =
detWi

detW

and construct matrices Bi as regular representations Bi = R(λi) of λi in E(ζt)/F (ζt).
Let αi,j be the coefficients of the inverse matrix W−1 = [αi,j ]i,j . Then ασj

i1 = αij and
λi = (ζt−1)αi1 for i 6= 1, and λ1 = 1+(ζt−1)α11. So λσj

i = (ζt−1)ασj

i1 = (ζt−1)αij
for i 6= 1, and λσj

1 = (ζt − 1)ασj

11 + 1 = (ζt − 1)α1j + 1. Since any linear relation

k1(λ1 − 1) +
d∑
i=2

kiλi = 0, ki ∈ F (ζt), i = 1, 2, ..., d

implies the linear relation

k1(λσj

1 − 1) +
d∑
i=2

kiλ
σj

i = 0, ki ∈ F (ζt), i = 1, 2, ..., d

for all σj ∈ Γ, this would also imply detW−1 = 0, which is impossible. Therefore, λ1 −
1, λ2, ..., λd generate the fieldE(ζt) overF (ζt), and soBi−Id, B2, ..., Bd generate F (ζt)-
span F (ζt)[B1, ..., Bd] over F (ζt). Note that Bi can be expressed as a linear combination
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of gσi , i = 1, 2, ..., d with coefficients in E: Bi =
∑d

j=1 αijg
σj . This can be obtained

from the system of matrix equations

gσj =
d∑
i=1

w
σj

i Bi, j = 1, 2, ..., d

if we consider Bi as indeterminates. Since G has exponent t, F (ζt) is a splitting field
for G, the group generated by all gσ, σ ∈ Γ. Therefore, the dimension of E(ζt)-span
E(ζt)G = E(ζt) ⊗F (ζt) F (ζt)G over E(ζt) is d, and so F (ζt)-dimension of F (ζt)-span
F (ζt)G is also d.

Let us denote byE′ the image ofE(ζt) under the regular representation ofE(ζt)/F (ζt)
over F (ζt). Then A = E(ζt)G = E(ζt) ⊗F (ζt) F (ζt)G, the E(ζt)-span of G, is the Ga-
lois E′-algebra in the sense of [5], that is, it is an associative and commutative separable
E′-algebra having a normal basis. We can choose idempotents

εi =
1

ζt − 1
(gσj − Id), j = 1, 2, ..., d

as a normal basis of A over E′ so that εj = ε
σj

1 .
We have F (ζt)G = F (ζt)[< gσ1 , ..., gσd >] = F (ζt)[(g − Id)σ1 , ..., (g − Id)σd ], and

dimF (ζt)F (ζt)G = d. As the length of the orbit of M = [mij ] = (g − Id) under Γ-
operation is d, we can use the coefficients of matrices Mσi , i = 1, 2, ..., d to construct an
element θ =

∑
i,j kijmij , kij ∈ F (ζt), which generates a normal basis of E(ζt)/F (ζt).

Therefore, for any given α ∈ E(ζt) we have α =
∑

i kiθ
σi for some ki ∈ F (ζt).

Therefore, our choice of eigenvalues implies that F (ζt)(G) = E(ζt).
Now, we can apply the regular representation RF of F (ζt) over F to matrices M =

[mij ]i,j ,mi,j ∈ F (ζt) in the following way: RF (M) = [RF (mij)]i,j . So, using RF
for all components of matrices Bi ∈ Mn(F (ζt)) we can obtain an abelian subgroup
G ⊂ GLn1(E), n1 = [F (ζt) : F ]d of exponent t which is Γ-stable if we identify
the isomorphic Galois groups of the extensions E/F and E(ζt)/F (ζt). We have again
dimFFG = dimEEG, E is again the Galois algebra, and F (G) = E. Now, using the
natural embedding of G to GLn(E), n ≥ n1, we complete the proof of Theorem 2.1 in
the case 1).

2) In virtue of 1) we can consider the case when the intersection F0 =
E ∩ F (ζt) 6= F . We can use the regular representation R of E over F . Let Γ0 =
{σ′1, σ′2, ..., σ′d} be the set of some extensions of elements Γ = {σ1, σ2, ..., σd} toE(ζt)/F ,
and let w1 = 1, w2, ...wd be a basis of E over F . So we can use our previous nota-
tion and go through a similar argument as in the part 1) of the proof for construction of
g =

∑d
i=1Biwi and matrices Bi as the regular representations R0 of eigenvalues

λi =
detWi

detW
=

φE(t)∑
j=1

λijζ
j , i = 1, 2, ..., d,
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in the following way: we consider

Bi = R0(λi) =
φE(t)∑
j=1

R(λij)ζj ,

whereR is the regular representation ofE over F . We also have λ
σ′j
1 = α1j+1, λ

σ′j
i = αij

for j = 2, ..., d . Now, if we have any linear relation between the rows of the matrix

[αij(ζ
σ′j
t − 1)]i,j , this would imply a linear relation between its columns, and so the

columns of W−1 = [αij ] are linearly dependent, and detW−1 = 0 which is a contra-
diction. So, again we obtain that λ1 − 1, λ2, ..., λd are linearly independent over F , so
dimFFG

′ = dimFF [B1−Id, B2, ..., Bd] = dimEEG
′ = d forG′ generated by gσ

′
i , i =

1, 2, ..., d. As earlier we can consider the elementwise regular representation RE(Bi) of
matrices Bi in the field extension E(ζt)/E. So we obtain g0 =

∑d
i=1RE(Bi)wi, and

we can take the group G generated by all gσi
0 , i = 1, 2, ..., d. Since [E(ζt) : F ] =

[E(ζt) : E][E : F ] = φE(t)d, the order n = φE(t)d coincides with the one required
in the formulation of Theorem 2.1. In this way we can construct a Γ-stable group G that
satisfies the conditions of Theorem 2.1.

This completes the proof of Theorem 2.1.

As a corollary of Theorem 2.1 we have

Theorem 2.2. Let E/F be a given normal extension of algebraic number fields with
the Galois group Γ, [E : F ] = d, and let G ⊂ GLn(E) be a finite abelian Γ-stable
subgroup of exponent t such that E = F (G) and n is the minimum possible. Then
n = dφE(t) and G is irreducible under conjugation in GLn(F ). Moreover, if G has
the minimum possible order, then G is a group of type (t, t, ..., t) and order tm for some
positive integer m ≤ d.

In the case of quadratic extensions we can give an obvious example. In particular,
it shows that there is an infinite number of realization fields E = Q(G) for the fixed
integers d = t = 2 (which is not the case if G ⊂ GLn(OE)).

Example 2.1. Let d = 2, t = 2. Pick E = Q(
√
a) and g =

∣∣∣∣ 0 1
a−1 0

∣∣∣∣√a for any

a ∈ F which is not a square in F . Then Γ is a group of order 2 and G = {I2,−I2, g,−g}
is a Γ-stable abelian group of exponent 2. Note that
G 6⊂ GLn(OE) in this example.

Proof of Theorem 2.2.
We can use the proof of Theorem 2.1.

7



Let G ⊂ GLn(E) be a group given in the formulation of Theorem 1.1, and let n be
minimal possible. Then we have the following decomposition of E-span A = EG:

A = ε1A+ ε2A+ ...+ εkA

for some primitive idempotents ε1, ..., εk of A. εi are conjugate under the operation of
the Galois group Γ = {σ1, ..., σd}. For if the sum of εσj

i , j = 1, 2, ..., d is not In then
In = e1 + e2 for e1 = εσ1

1 + ...+ εσd
1 and e2 = In − e1, and e1, e2 are fixed by Γ and so

e1, e2 are conjugate in GLn(F ) to a diagonal form. Since either of 2 components eiG has
rank smaller than n, there is a group satisfying the conditions of Theorem 2.1 of smaller
than n degree.

Therefore, εi = εσi
1 , k = d and the idempotents ε1, ..., εd form a normal basis of A.

But the rank of a matrix εi is not smaller than φE(t). Indeed, εiG contains an element
εig, for some g ∈ G of order t such that (εig)t = εi, but (εig)k 6= εi for k < t. We can
find g ∈ G in the following way. Since In = ε1 + ...+ εk for any h ∈ G of order t there
is εj such that (εjh)t = εj , but (εjh)k 6= εj for k < t, and the same property holds true
for εjh with any σ ∈ Γ. Then using the property of normal basis εk = εσk

1 we can take

g = hσ
−1
j σi .

So, the irreducible component εiG determines a faithful irreducible representation
of a cyclic group generated by g. But if T : C → GLr(E) is a faithful irreducible
representation of a cyclic group C generated by an element g of order t, its degree r is
equal to φE(t). It follows that the rank of matrices εi is φE(t). So the dimension of A
over E is φE(t)d.

If G is generated by gγ , γ ∈ Γ and its order is minimal, Γ-stability implies that g has
d conjugates under Γ-operation, and so G an abelian group of type (t, ..., t) and order tm

for some positive integer m ≤ d. This completes the proof of Theorem 2.2.

Let G be a finite group and f : G → GLn(C) a complex representation of G. Let
F be the field generated by the traces of {f(g) : g ∈ G}. In this context it would be
reasonable to ask a question:

Question. Is it true that there exist a representation h : G→ GLn(K) over a number
field K, normal over F with Galois group Γ = Gal(K/F ), which is similar to f(G),
h(G) = M−1f(G)M for some M ∈ GLn(C), such that h(G) is Γ-invariant?

3. Galois stable integral representations

Let K be a totally real algebraic number field with the maximal order OK , G an
algebraic subgroup of the general linear group GLn(C) defined over the field of rationals
Q. Because of the embedding ofG inGLn(C) the intersectionG(OK) ofGLn(OK) and
GK , the subgroup ofK-rational points ofG, can be considered as the group ofOK-points
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of an affine group scheme over Z, the ring of rational integers. Assume G to be definite in
the following sense: the real Lie group GR is compact. The problem which is our starting
point is the question: Does the condition G(OK) = GZ always hold true?

This problem is easily reduced to the following conjecture from representation theory:
Let K/Q be a finite Galois extension of the rationals and G ⊂ GLn(OK) be a finite
subgroup stable under the natural operation of the Galois group Γ := Gal(K/Q). Then
there is the following

Conjecture 3.1. If K is totally real, then G ⊂ GLn(Z).

There are several reformulations and generalizations of the conjecture. Consider an
arbitrary not necessarily totally real finite Galois extension K of the rationals Q. The
following conjecture generalizes (and would imply) conjecture 1:

Conjecture 3.2. Any finite subgroup of GLn(OK) stable under the Galois group
Γ = Gal(K/Q) is of A-type.

For totally real fields K, the only roots of unity contained in K are 1 and -1. Hence
conjecture 2 reduces to conjecture 1.

Let F (G) denote the field obtained via adjoining to F the matrix coefficients of all
matrices g ∈ G. The following result was obtained in [2] (see also [10], [11] for the case
of totally real fields).

The case F = Q, the field of rationals, is specially interesting. The following theorem
was proven in [2] using the classification of finite flat group schemes over Z annihilated
by a prime p obtained by V. A. Abrashkin and J.- M. Fontaine:

Theorem 3.1. Let K/Q be a normal extension with Galois group Γ, and let G ⊂
GLn(OK) be a finite Γ-stable subgroup. Then G is a group of A-type in the sense of our
definition given in the introduction.

Corollary 3.1. Let K/Q be a normal extension with Galois group Γ, and let G ⊂
GLn(OK) be a finite Γ-stable subgroup. Then G ⊂ GLn(OKab

) where Kab is the maxi-
mal abelian over Q subfield of K.

Similar results for totally real extensions K/Q were considered earlier. In this case
there are some interesting arithmetic applications to positive definite quadratic lattices and
Galois cohomology.

But if an extension E/F of number fields is unramified, the situation is completely
different, see proposition below.

Let us formulate a criterion for the existence of an integral realization of an abelian
group G with properties introduced above. This theorem has interesting applications in
[2], and [10].

Let E, L be finite normal extensions of a number field F . Remark that the theorems
below remain true also in the case of local fields L,E, F that are finite extensions of Qp,
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the rational p-adic number field. Let SE , SF , SL be Dedekind rings in E,F, L with the
fields of fractions E,F, L respectively such that SE and SL are free SF -modules (and
have SF -bases), and both SE and SL are invariant under automorphisms of E/F and
L/F respectively. If F = Q we can define SF to be the intersection of F and SE . For
example, semilocal rings SE , SF , SL that are obtained by intersection of valuation rings
of all ramified prime ideals in the rings OE , OF , OL satisfy the above conditions, as well
as OE , OF and OL themselves, provided OE and OL have OF -bases (the latter is always
true for F = Q). Let w1, w2, . . . , wd be a basis of SE over SF , and let D be a square root
of the discriminant of this basis. By the definitionD2 = det[TrE/F (wiwj)]ij . It is known
that D = det[wσk

m ]k,m. Let us suppose that some matrix g ∈ GLn(E) has order t (gt =
In) and all Γ-conjugates gγ , γ ∈ Γ generate a finite subgroup G ⊂ GLn(E) of exponent
t. Let σ1 = 1, σ2, . . . , σd denote all automorphisms of the Galois group Γ of E over
F . Assume that L = E(ζ(1), ζ(2), . . . , ζ(n)) where ζ(1), ζ(2), . . . , ζ(n) are the eigenvalues
of the matrix g. We shall reserve the same notations for certain fixed extensions of σi
to L. Automorphisms of L over F will be denoted σ1, σ2, ..., σr, r > d. Theorem 2.1
from Section 2 implies the existence of the group G provided n ≥ φE(t)[E : F ]. Let
E = F (G) be obtained by adjoining to F all coefficients of all g ∈ G. For an appropriate
set of d eigenvalues ζ(1), ζ(2), . . . , ζ(d) which depends on the primitive idempotents of
algebra LG the following Theorem is true (see also [2]):

Theorem 3.2. Let G ⊂ GLn(E) be irreducible under GLn(F )-conjugation. Then G
is conjugate in GLn(F ) to a subgroup of GLn(SE) if and only if all determinants

Dk = det

∣∣∣∣∣∣∣∣∣
w1 . . . wk−1 ζ(1) wk+1 . . . wd
wσ2

1 . . . wσ2
k−1 ζσ2

(2) wσ2
k+1 . . . wσ2

d

...
wσd

1 . . . wσd
k−1 ζσd

(t) wσd
k+1 . . . wσd

d

∣∣∣∣∣∣∣∣∣
are divisible by D in the ring SL.

In this theorem G is Γ-stable and generated by g and all gγ , γ ∈ Γ but this condition
is not very restrictive for 2 reasons. First, any Γ-stable subgroup H ∈ GLn(E) contains
subgroups like G. And by Theorem 2.2 in Section 2, if H is a minimal subgroup of
exponent t with the property E = F (H), thenH is just of the form given in Theorem 3.2.

The proof of Theorem 3.2 is constructive. It is based on the commutativity of the
L-algebra LG, the L-span of G, and uses a system of linear equations that arises from
simultaneous diagonalization of commuting matrices

g =
d∑
i=1

wiBi, g
σ =

d∑
i=1

wσi Bi, σ ∈ Γ,

whose solutions are the eigenvalues of commuting matrices Bi, i = 1, 2, . . . , d.
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In fact, we prove that the eigenvalues of B1, B2, . . . , Bd are just the elements of the
set {(DjD

−1)γ , γ are varying in the Galois group of L/F}.
We also use the fact that each semisimple matrix B ∈ GLn(F ) is conjugate in

GLn(F ) to a matrix from GLn(SF ) if and only if all its eigenvalues are contained in
SL (see [2], [10]):

Lemma 3.1. 1) Let all eigenvalues λi, i = 1, 2, . . . , n of a semisimple matrix
B ⊂ GLn(F ) be contained in the ring SL for some field L ⊃ F . Then B is conju-
gate in GLn(F ) to a matrix that is contained in GLn(SF ). 2) Conversely, if a matrix B

is contained in GLn(SF ), then its eigenvalues are contained in SL.

We note that the reduction to the case of an irreducible group G is motivated by the
following easy lemma [2], [10]:

Lemma 3.2. If G ⊂ GLn(E1) is a finite Γ-stable subgroup which has GLn(F1)-
irreducible components G1, G2, . . . , Gr, and E1, F1 are rings having quotient fields E
and F respectively, then F (G) is the composite of fields F (G1), F (G2), . . . , F (Gr).

Theorem 3.2 can be used in the problem of existence for Γ-stable subgroups G ⊂
GLm(SE) with the property F (G) 6= F for some integer m. The following Corollary
of Theorem 3.2 reduces the problem of existence for Γ-stable groups G to the case of
GLn(F )-irreducible G.

In the case of unramified extensions the following proposition for integral representa-
tions in a similar situation is proven in [15] and can be extended to the case of Dedekind
rings SE considered here. However, in the parts 2) and 3) of the following proposition
the statement is stronger if G is conjugate in GLn(F ) to a subgroup of GLn(OE) since
in the most interesting cases OE ⊂ SE :

Proposition 3.1. Let d > 1, t > 1 be given rational integers, and let E/F be an
unramified extension of degree d. Let h be the exponent of the class group of F .
1)If n ≥ φE(t)d, there is a finite abelian Γ- stable subgroup G ⊂ GLn(SE) of exponent
t such that E = F (G).
2)If n ≥ φE(t)dh, there is a finite abelian Γ-stable subgroup G ⊂ GLn(OE) of exponent
t such that E = F (G).
3)If d is odd, or n ≥ φE(t)d and h is relatively prime to n, thenG given in 1) is conjugate
in GLn(F ) to a subgroup of GLn(OE).

In all cases above G can be constructed as a group generated by matrices gγ , γ ∈ Γ
for some g ∈ GLn(E).

Theorem 3.3. If there is an abelian Γ-stable subgroup G ⊂ GLm(SE) generated
by gγ , γ ∈ Γ such that E = F (G) 6= F as above, then GLm(F )-irreducible com-
ponents Gi ⊂ GLmi(E), i = 1, ..., k of G are conjugate in GLmi(F ) to subgroups
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G′i ⊂ GLmi(SE) such that E = F (G1)F (G2)...F (Gk). In particular, F (Gi) 6= F for
some indices i.

Proof of Theorem 3.3.
If G ⊂ GLm(SE) is a group of exponent t and g = B1w1 +B2w2 + . . .+Bdwd for

a basis w1, ..., wd of SE over SF , then Bi ∈ Mm(SF ), and it follows from Lemma 3.1
that the eigenvalues of Bj are contained in SL. But eigenvalues are preserved under con-
jugation, so the latter claim is also true for all components Gi. We can apply Theorem 3.2
to Gi, i = 1, ..., k. It follows that Gi are conjugate to subgroups G′i ⊂ GLmi(SE). Now,
Lemma 3.2 implies E = F (G1)F (G2)...F (Gk). This completes the proof of Theorem
3.3.

Theorem 3.4. Let E/F be a normal extension of number fields with Galois group
Γ. Let G ⊂ GLn(E) be an abelian Γ-stable subgroup of exponent t generated by g =
B1w1 + B2w2 + . . . + Bdwd and all matrices gγ , γ ∈ Γ, and let E = F (G). Then
G is conjugate in GLn(F ) to G ⊂ GLn(SF ) if and only if all eigenvalues of matrices
Bi, i = 1, ..., d are contained in SL, where L = E(ζt).

Proof of Theorem 3.4.
Let

C−1GC =

∣∣∣∣∣∣
G1 ∗

. . .
0 Gk

∣∣∣∣∣∣
for C ∈ GLn(F ) and irreducible components Gi ⊂ GLni(E), i = 1, ..., k. Then

C−1gC =

∣∣∣∣∣∣
g1 ∗

. . .
0 gk

∣∣∣∣∣∣ = B′1w1 +B′2w2 + . . .+B′dwd

for B′i = C−1BiC. Let us consider F -algebra A generated by all B′i, i = 1, ..., d over
F . Since A is semisimple, it is completely reducible. It follows that matrices B′i are
simultaneously conjugate in GLn(F ) to the block-diagonal form. Therefore, G is con-
jugate in GLn(F ) to a direct sum of its irreducible components Gi. We can apply Theo-
rem 3.2 to each of them. Theorem 3.3 implies that each Gi is conjugate in GLni(F ) to
G′i ⊂ GLni(SF ) if and only if all eigenvalues of matrices B′i, i = 1, ..., d are contained
in SLi , where Li = F (Gi)(ζt). But F (G) = F (G1)F (G2)...F (Gk) by Lemma 3.2, and
so L = L1L2...Lk. This completes the proof of Theorem 3.4.

The approach to describe all Γ-stable matrix groups up to GLn(S)-conjugation for
certain Dedekind rings S ⊂ E can be based on either of Theorems 3.2, Theorems 3.3
or Theorems 3.4 for the existence of integral realizations of the given Γ-stable subgroup
G ⊂ GLn(E). Therefore, if we have a description of G up to GLn(F )-conjugation,
we can also determine whether G is GLn(F )-conjugate to a subgroup of GLn(S) for
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any fixed n,E and F . In fact, we have an algorithm to answer the question: for a given
field extension E/F is it possible to find a Γ-stable subgroup G ⊂ GLn(S) which is not
contained in GLn(F )? Theorem 3.2 and Theorem 3.3 reduce this question to the case of
GLn(F )-irreducible G.

Actually, for a given Galois extension E/F having Galois group Γ and given t and n
with φE(t)[E : F ] ≤ n Theorem 2.1 (see Section 2) provides a construction of a Γ-stable
subgroup G ⊂ GLn(E) such that E = F (G). Our argument in proof of Theorems 2.1
and Theorems 2.2 in Section 2 specify that G can be chosen as a group generated by gγ ,
γ ∈ Γ. Theorem 3.2 allows us to check efficiently, whether it is possible to realize G over
the ring SE , in the terms of the basis of SE over SF and t. In the case if SE = OE a free
OF -module (and OE has an OF -basis) the argument in Theorem 3.2 makes possible to
apply this approach to subgroups G ⊂ GLn(OE), in particular for F = Q, as well as for
other arithmetic rings S. If a list of Γ-stable finite subgroups G ⊂ GLn(E) is given, we
can apply Theorem 3.2 to their generating elements.

Note that in the case of relative extensions E/F of algebraic number fields (F 6= Q),
which was considered in [3], the situation is more complicated, and there are series of
examples of nontrivial subgroups G ⊂ GLn(OE) due to the existence of unramified
extensions of the ground field F and the structure of the groups of units in OE . The
following example is given in the case of a ramified totally real extension E/F and a
Galois stable G ⊂ GL2(E) of order 4 such that F (G) 6= F .

Example 3.1. Let

g :=
∣∣∣∣
√

3 +
√

2 −
√

2 +
√

2√
2 +
√

2 −
√

3 +
√

2

∣∣∣∣ ,
let E = F (

√
3 +
√

2), F = Q(
√

3 +
√

2 ·
√

2 +
√

2). Then E/F is ramified at 2, the
ramification is wild, and G = {g,−g, I2,−I2} ⊂ GL2(OE) is a Γ-stable subgroup of
order 2 and exponent 2.
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