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Abstract. In the present paper, we introduce a family of univalent harmonic mappings, which map the unit

disk onto domains convex in the direction of the imaginary axis. We find conditions for the linear combinations of

mappings from this family to be univalent and convex in the direction of the imaginary axis. Linear combinations

of functions from this family and harmonic mappings obtained by shearing of analytic vertical strip mappings are

also studied.

1 Introduction

A complex-valued continuous function f = u + iv is said to be harmonic in the open unit disk

E = {z : |z| < 1} if both u and v are real-valued harmonic functions in E. Such harmonic

mappings have canonical decomposition f = h + g, where h is known as the analytic and g the

co-analytic part of f . A harmonic mapping f = h + g defined in E, is locally univalent and

sense-preserving if and only if h′ 6= 0 in E and the dilatation function ω, defined by ω = g′/h′,

satisfies |ω| < 1 in E. The class of all harmonic, univalent and sense-preserving mappings

f = h + g in E and normalized by the conditions f(0) = 0 and fz(0) = 1 is denoted by SH .

Therefore, a function f = h + g in the class SH has the representation,

f(z) = z +
∞∑

n=2

anzn +
∞∑

n=1

bnzn, (1)

for all z in E. The class of functions of the type (1) with b1 = fz(0) = 0 is a subclass of SH and

is generally denoted by S0
H .

A domain Ω is said to be convex in the direction φ, 0 ≤ φ < π, if every line parallel to

the line through 0 and eiφ has either connected or empty intersection with Ω. The following

result due to Hengartner and Schober [3] is very useful in checking the convexity of an analytic

function in the direction of the imaginary axis.
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Lemma 1.1. Suppose f is analytic and non-constant in E. Then

<[(1− z2)f ′(z)] ≥ 0, z ∈ E

if and only if

(i) f is univalent in E;

(ii) f is convex in the direction of the imaginary axis;

(iii) there exist sequences {z′n} and {z′′n} converging to z = 1 and z = −1, respectively, such that

limn→∞ <(f(z′n)) = sup|z|<1 <(f(z)),

(2)

limn→∞ <(f(z′′n)) = inf|z|<1 <(f(z)).

Construction of univalent harmonic mappings is neither a very easy nor a straight forward

task. In 1984, Clunie and Sheil-Small [1] introduced a method, known as shear construction

or shearing, for constructing a univalent harmonic mapping from a related conformal mapping.

The following result of Clunie and Sheil-Small [1] is fundamental for constructing a univalent

harmonic mapping convex in a given direction.

Lemma 1.2. A locally univalent harmonic mapping f = h + g in E is a univalent harmonic

mapping of E onto a domain convex in the direction φ if and only if h − e2iφg is a univalent

analytic mapping of E onto a domain convex in the direction φ.

Another way of constructing desired univalent harmonic mappings is by taking the linear

combination of two suitable harmonic mappings. For example in the following result Dorff [2]

identified two suitable harmonic mappings f1 and f2 whose linear combination is univalent and

convex in the direction of the imaginary axis.

Theorem 1.3. Let f1 = h1 + g1 and f2 = h2 + g2 be two univalent harmonic mappings convex

in the direction of the imaginary axis with ω1 = ω2, where ω1 = g′1/h′1 and ω2 = g′2/h′2 are

dilatation functions of f1 and f2 respectively. If f1 and f2 satisfy the conditions (2) above, then

f3 = tf1 + (1− t)f2, 0 ≤ t ≤ 1, is univalent and convex in the direction of the imaginary axis.

In a recent paper, Wang et al.[6] derived several sufficient conditions on univalent harmonic

mappings f1 and f2 so that their linear combination f3 = tf1 + (1− t)f2, 0 ≤ t ≤ 1, is univalent

and convex in the direction of the real axis. In particular they established:

Theorem 1.4. Let fj = hj + gj ∈ SH with hj(z) + gj(z) = z/(1 − z) for j = 1, 2. Then

f3 = tf1 + (1− t)f2, 0 ≤ t ≤ 1, is univalent and convex in the direction of the real axis.
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From the above two papers it is observed that dilatation functions of f1 and f2 play an

important role in deciding the behavior of their linear combinations. In the present paper,

our aim is to study linear combinations of mappings from a family of locally univalent and

sense-preserving harmonic mappings fα = hα + gα, obtained by shearing of Fα(z) = hα(z) +

gα(z) = z(1− αz)/(1− z2), α ∈ [−1, 1] when suitable dilatations ω = g′α/h′α are given. Linear

combinations of fα and fθ are also studied, where fθ = hθ+gθ is the harmonic mapping obtained

by shearing of analytic vertical strip mapping

hθ(z) + gθ(z) =
1

2i sin θ
log

(
1 + zeiθ

1 + ze−iθ

)
, θ ∈ (0, π), (3)

when a dilatation ω = g′θ/h′θ, with |ω| < 1, is given.

2 Main Results

Let

fα = hα + gα, where Fα(z) = hα(z) + gα(z) =
z(1− αz)

1− z2
, α ∈ [−1, 1] and

∣∣∣∣
g′α
h′α

∣∣∣∣ < 1,

be a normalized , locally univalent and sense-preserving harmonic mapping in E. We first prove

that fα is in SH and convex in the direction of the imaginary axis. Since

<[(1− z2)F ′
α(z)] = <

[
1 + z2 − 2αz

(1− z2)

]
=

(1− |z|2)(1 + |z|2 − 2α<(z))
|1− z2|2 > 0 for all z ∈ E, (4)

therefore, in view of Lemma 1.1, the analytic function Fα = hα + gα is univalent in E and

convex in the direction of the imaginary axis. Consequently, by Lemma 1.2, the harmonic

mapping fα = hα + gα is in SH and also convex in the direction of the imaginary axis. However

the harmonic mappings fα = hα + gα, α ∈ [−1, 1], may not be convex in the direction of the

real axis, in general (e.g. take α = −0.5 and the dilatation ω(z) = g′(z)/h′(z) = −z2).

In the following result we show that for the linear combination of fα1 and fα2 to be in SH

and convex in the direction of the imaginary axis it is sufficient that the linear combination is

locally univalent and sense-preserving.

Theorem 2.1. Let fαi = hαi + gαi
, where hαi(z) + gαi(z) = z(1− αiz)/(1− z2), αi ∈ [−1, 1]

and |g′αi
/hα′i | < 1 in E , i = 1, 2, be two normalized harmonic mappings. Then the mapping

f = tfα1 + (1− t)fα2 , 0 ≤ t ≤ 1, is in SH and is convex in the direction of the imaginary axis,

provided f is locally univalent and sense-preserving.

Proof. Let f = h + g and h + g = F. Then it is easy to verify that F = tFα1 + (1− t)Fα2 , where

Fαi = hαi + gαi (i = 1, 2). Using (4), we immediately get

<[
(1− z2)F ′(z)

]
= t<[

(1− z2)F ′
α1

(z)
]
+ (1− t)<[

(1− z2)F ′
α2

(z)
]

> 0, for all z ∈ E.
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Thus F is analytic univalent and convex in the direction of the imaginary axis, by Lemma 1.1.

Therefore if f = h + g is locally univalent and sense-preserving in E, then, in view of Lemma

1.2, f ∈ SH and maps E onto a domain convex in the direction of the imaginary axis.

We know that f = h + g will be locally univalent and sense-preserving if and only if h′ 6= 0

in E and its dilatation function ω satisfies |ω| < 1, in E. So, we first find expression for ω.

Theorem 2.2. Let fαi = hαi + gαi
, i = 1, 2, be two normalized harmonic mappings such that

hαi(z) + gαi(z) = z(1− αiz)/(1− z2), αi ∈ [−1, 1] and ωi = g′αi
/h′αi

(|ωi| < 1 inE), for i = 1, 2.

Then the dilatation function ω of f = tfα1 + (1− t)fα2 , 0 ≤ t ≤ 1, is given by

ω(z) =
[
(1 + z2)(tω1 + (1− t)ω2 + ω1ω2)− 2z(α1tω1 + α1tω1ω2 + (1− t)ω2α2 + (1− t)ω1ω2α2)

(1 + z2)(1 + tω2 + (1− t)ω1)− 2z(α2 + α1tω2 + (1− t)α2ω1 + α1t− α2t)

]
.

(5)

Proof. As f = tfα1 + (1− t)fα2 = thα1 + (1− t)hα2 + tgα1
+ (1− t)gα2

so,

ω =
tg′α1

+ (1− t)g′α2

th′α1
+ (1− t)h′α2

=
tω1h

′
α1

+ (1− t)ω2h
′
α2

th′α1
+ (1− t)h′α2

.

From hαi(z) + gαi(z) =
z(1− αiz)

1− z2
and ωi =

g′αi

h′αi

, i = 1, 2, we get

h′α1
(z) =

1 + z2 − 2α1z

(1 + ω1)(1− z2)2
and h′α2

(z) =
1 + z2 − 2α2z

(1 + ω2)(1− z2)2
.

Substituting these values of h′α1
and h′α2

into the above expression for ω we get

ω(z) =
tω1(1 + z2 − 2α1z)(1 + ω2) + (1− t)ω2(1 + z2 − 2α2z)(1 + ω1)

t(1 + ω2)(1 + z2 − 2α1z) + (1− t)(1 + ω1)(1 + z2 − 2α2z)
,

which reduces to (5) after rearrangement of terms in the numerator and denominator.

Theorem 2.3. For i = 1, 2, let fi = hi + gi be two normalized locally univalent harmonic

mappings such that hi(z) + gi(z) = z(1− αz)/(1− z2), α ∈ [−1, 1]. Then f = tf1 + (1 − t)f2,

0 ≤ t ≤ 1, is in SH and is convex in the direction of the imaginary axis.

Proof. In view of Theorem 2.1, it suffices to show that f is locally univalent and sense-preserving.

Let ωi = g′i/h′i, i = 1, 2 be the dilatation functions of fi, i = 1, 2, respectively and ω be the

dilatation function of f . If ω1 = ω2 in E, then there is nothing to prove. So we take ω1 6= ω2 in

E. By setting α1 = α2 = α in (5), we get

ω =
tω1 + (1− t)ω2 + ω1ω2

1 + tω2 + (1− t)ω1
.

From the proof of Theorem 3 in [6], we get |ω| < 1. Hence f is locally univalent and sense-

preserving.
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By taking α = −1 in Theorem 2.3, we get the following result.

Corollary 2.4. For i = 1, 2, let fi = hi + gi be two normalized locally univalent harmonic

mappings such that hi(z) + gi(z) = z/(1− z). Then f = tf1 + (1− t)f2, 0 ≤ t ≤ 1, is in SH and

is convex in the direction of the imaginary axis.

Michalski [4], defined the class CODH(θ) consisting of functions f ∈ SH , which map the unit

disk E onto domains convex in directions of the lines z = teiθ , t ∈ R and z = tei(θ+π
2
) , t ∈ R for

each θ ∈ [0, π/2). Combining results of Theorem 1.4 and Corollary 2.4, we immediately get the

following result.

Theorem 2.5. Let fi = hi + gi, i = 1, 2, be two normalized harmonic mappings, where hi(z) +

gi(z) = z/(1− z) and |g′i/h′i| < 1 in E for i = 1, 2. Then, f = tf1 + (1 − t)f2, 0 ≤ t ≤ 1, is in

CODH(0).

The following lemma, popularly known as Cohn’s Rule, will be required in proving our next

result.

Lemma 2.6. ([5, p.375]) Given a polynomial p(z) = a0 +a1z +a2z
2 + ...+anzn of degree n, let

p∗(z) = znp

(
1
z

)
= an + an−1z + an−2z

2 + ... + a0z
n.

Denote by r and s the number of zeros of p inside and on the unit circle |z| = 1, respectively. If

|a0| < |an|, then

p1(z) =
anp(z)− a0p

∗(z)
z

is of degree n − 1 and has r1 = r − 1 and s1 = s number of zeros inside and on the unit circle

|z| = 1, respectively.

We now prove the following.

Theorem 2.7. Let fαi = hαi + gαi
, i = 1, 2, be two normalized harmonic mappings such that

hαi(z) + gαi(z) = z(1− αiz)/(1− z2), αi ∈ [−1, 1], for i = 1, 2. If ω1(z) = −z and ω2(z) = z

are dilatations of fα1 and fα2 respectively, then f = tfα1 + (1− t)fα2 , 0 ≤ t ≤ 1, is in SH and

is convex in the direction of the imaginary axis provided α1 ≥ α2.

Proof. In view of Theorem 2.1, it is sufficient to show that dilatation ω of f satisfies |ω| < 1 in

E. By using the shearing technique, we explicitly get hαi and gαi , i = 1, 2, as follows:

hα1(z) =
(1− α1)
4(1− z)2

− (1 + α1)
4(1 + z)

+
(1 + α1)

8
log

[
1 + z

1− z

]
+

α1

2
,
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gα1(z) =
z(1− α1z)

1− z2
− (1− α1)

4(1− z)2
+

(1 + α1)
4(1 + z)

− (1 + α1)
8

log
[
1 + z

1− z

]
− α1

2
;

and

hα2(z) =
(1− α2)
4(1− z)

− (1 + α2)
4(1 + z)2

+
(1− α2)

8
log

[
1 + z

1− z

]
+

α2

2
,

gα2(z) =
z(1− α2z)

1− z2
− (1− α2)

4(1− z)
+

(1 + α2)
4(1 + z)2

− (1− α2)
8

log
[
1 + z

1− z

]
− α2

2
.

The case when α1 = α2 follows from Theorem 2.3. So, we shall only consider the case when

α1 > α2. Setting ω1(z) = −z and ω2(z) = z in (5) we get

ω(z) =
[
(1 + z2)(−tz + (1− t)z − z2)− 2z(−α1tz − α1tz

2 + (1− t)α2z − (1− t)α2z
2)

(1 + z2)(1 + tz − (1− t)z)− 2z(α2 + α1tz − (1− t)α2z + α1t− α2t)

]

= −z
[z3 + (2t− 1− 2α1t− 2α2(1− t))z2 + (1 + 2α2(1− t)− 2α1t)z + (2t− 1)]
[(2t− 1)z3 + (1 + 2α2(1− t)− 2α1t)z2 + (2t− 1− 2α1t− 2α2(1− t))z + 1]

. (6)

Let

γ(z) = z3 + (2t− 1− 2α1t− 2α2(1− t))z2 + (1 + 2α2(1− t)− 2α1t)z + (2t− 1)

= a3z
3 + a2z

2 + a1z + a0

and

γ∗(z) = (2t− 1)z3 +(1+2α2(1− t)− 2α1t)z2 +(2t− 1− 2α1t− 2α2(1− t))z +1 = z3γ

(
1
z

)

and notice that by (6), ω(z) = −z
γ(z)
γ∗(z)

.

Thus if z0 6= 0 is a zero of γ then 1/z0 is a zero of γ∗. Therefore, we can write

ω(z) = −z
(z + A)(z + B)(z + C)

(1 + Az)(1 + Bz)(1 + Cz)
.

For |β| ≤ 1, the function φ(z) =
z + β

1 + βz
maps E = {z : |z| ≤ 1}, onto E. So, to prove that

|ω| < 1 in E, it suffices to show that |A| ≤ 1, |B| ≤ 1 and |C| ≤ 1. We take t ∈ (0, 1/2)∪(1/2, 1),

as the cases when t = 0 or t = 1 are trivial and the case when t = 1/2 will be dealt separately.

As |a0| = 2t− 1 < 1 = |a3|, therefore, by applying Cohn’s rule on γ, it is sufficient to show that

all zeros of γ1 lie inside or on |z| = 1, where,

γ1(z) =
a3γ(z)− a0γ

∗(z)
z

= 4t(1− t)
[
z2 − (α1 + α2)z − (α1 − α2 − 1)

]
(7)

= b2z
2 + b1z + b0.

Now, if α1 = 1 and α2 = −1, then both the zeros of γ1 lie on the circle |z| = 1 and otherwise, if

α1−α2 > 0, we have |b0| < |b2| because α1, α2 ∈ (−1, 1) and 4t(1−t) 6= 0 for t ∈ (0, 1/2)∪(1/2, 1).

Again, by applying Cohn’s rule on γ1, we need to show that all zeros of γ2 lie inside or on |z| = 1,

where

γ2(z) =
b2γ1(z)− b0γ

∗
1(z)

z
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= (4t(1− t))2(α1 − α2)[(2− α1 + α2)z − (α1 + α2)]

and γ∗1(z) = z2γ1

(
1
z

)
.

If z2 is the zero of γ2 then |z2| ≤ 1 is equivalent to (1−α1)(1 + α2) ≥ 0 which is true as |αi| ≤ 1

for i = 1, 2. Hence zeros of γ1 and γ both lie in or on the unit circle |z| = 1.

In the case t = 1/2 we observe that

γ(z) = z[z2 − (α1 + α2)z − (α1 − α2 − 1)].

In view of (7) we can easily verify that all the zeros of γ lie in or on the unit circle |z| = 1.

Hence the result is proved.

The result of Theorem 2.7 is illustrated in the following figures by choosing particular values

of α1 and α2. Images of E under fα1 , fα2 and f are shown in Figure 1, Figure 2 and Figure 3,

respectively.

Figure 1: Image of E under fα1 for α1 = 0.5 Figure 2: Image of E under fα2 for α2 = −0.5

Figure 3: Image of E under f , for α1 = 0.5, α2 = −0.5 and t = 1
4 .

Remark 2.8. Note that in Theorem 2.7 it is not possible to take α2 > α1 because in that case it

will then follow from (7) that the modulus of the product of zeros of γ1 is |1 + α2−α1| which is
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strictly greater than 1. Hence at least one zero of γ1 and therefore of γ shall lie outside |z| = 1

implying that there will exist some z ∈ E for which |ω(z)| 6< 1 i.e, linear combination of fα1 and

fα2 shall no longer remain locally univalent and sense-preserving.

Theorem 2.9. Let fα1 be thesame as in Theorem 2.7 and let fα2 = hα2 + gα2
be such that

hα2(z) + gα2(z) = z(1− α2z)/(1− z2), α2 ∈ [−1, 1] with dilatation ω2 (|ω2| < 1 inE). Let

f = tfα1 + (1− t)fα2 , 0 ≤ t ≤ 1, then we have the following:

(i) If ω2(z) = −z2 and α1 ≥ α2, then f is in SH and is convex in the direction of the imaginary

axis.

(ii) If ω2(z) = z2, |α1| ≥ |α2| and α1α2 ≥ 0, then f is in SH and is convex in the direction of

the imaginary axis.

As the proof runs on the same lines as that of Theorem 2.7, it is omitted here.

Remark 2.10. If we take ω2(z) = z3 in the above theorem, then we observe that f may not be

locally univalent and sense-preserving. For t = 3/4 if we set α1 = 0.4 and α2 = 0.3 or α1 = 0.3

and α2 = 0.6, it can be easily verified that |ω3| 6< 1 in E, where ω3 is the dilatation of f .

Remark 2.11. In [6], Wang et al. proved the following theorem:

Let fi = hi + gi ∈ SH(i = 1, 2) be univalent harmonic mappings convex in the direction of the

real axis. Suppose also that <
(
(1− ω1ω2)h′1h′2

)
≥0. Then f = tf1 + (1− t)f2 ∈ SH , 0 ≤ t ≤ 1

is convex in the direction of the real axis.

Proceeding on the same lines as in the above theorem of Wang et al. we obtain:

Let fαi = hαi + gαi
be such that hαi(z) + gαi(z) = z(1− αiz)/(1− z2), αi ∈ [−1, 1] for i = 1, 2

and let ωi = g′αi
/h′αi

, i = 1, 2, be dilatation functions of fαi , i = 1, 2, respectively. Then

f = tfα1 + (1 − t)fα2 , 0 ≤ t ≤ 1, is in SH and convex in the direction of the imaginary axis if

<
(
(1− ω1ω2)h′1h′2

)
≥0.

We end this paper by considering one of the harmonic mappings involved in the linear

combination obtained by shearing of analytic strip mapping (3).

Theorem 2.12. Let fθ = hθ+gθ, where hθ(z)+gθ(z) =
1

2i sin θ
log

(
1 + zeiθ

1 + ze−iθ

)
, θ ∈ (0, π) with

|g′θ/h′θ| < 1 in E and fα = hα + gα, where hα(z) + gα(z) = z(1− αz)/(1− z2), α ∈ [−1, 1] with

|g′α/h′α| < 1 in E, be two given normalized harmonic mappings. Then fθ,α = tfθ +(1− t)fα, 0 ≤
t ≤ 1, is in SH and is convex in the direction of the imaginary axis provided fθ,α is locally

univalent and sense-preserving.

Proof. In view of the proof of Theorem 2.1 and (4), we need only to show that < [
(1− z2)F ′

θ(z)
]

>
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0, where Fθ = hθ + gθ. Let

φ(z) = (1− z2)F ′
θ(z) =

1− z2

(1 + zeiθ)(1 + ze−iθ)
.

Since φ(0) = 1 and for each γ ∈ R, <[φ(eiγ)] = 0, by the Minimum Principle for harmonic

functions, we have <[φ(z)] = < [
(1− z2)F ′

θ(z)
]

> 0, for z ∈ E. Hence we obtain our result.

The following example illustrates the result of the above theorem.

Example 2.13. Let fθ = hθ + gθ be the harmonic mapping considered in Theorem 2.12 with

θ = π/2 and ω1(z) = g′θ(z)/h′θ(z) = −z. Take fα = hα + gα such that hα(z) + gα(z) = z/(1− z)

and ω2(z) = g′α(z)/h′α(z) = z2. By shearing we get,

hθ(z) =
1
2

tan−1 z− 1
2

log(1−z)+
1
4

log(1+z2), gθ(z) =
1
2

tan−1 z+
1
2

log(1−z)− 1
4

log(1+z2);

and

hα(z) =
z

2(1− z)
− 1

2
log(1−z)+

1
4

log(1+z2), gα(z) =
z

2(1− z)
+

1
2

log(1−z)− 1
4

log(1+z2).

Now if ω is the dilatation of fθ,α = tfθ + (1− t)fα, 0 ≤ t ≤ 1, then,

|ω| =
∣∣∣∣
tg′θ + (1− t)g′α
th′θ + (1− t)h′α

∣∣∣∣ =
∣∣∣∣
tω1h

′
θ + (1− t)ω2h

′
α

th′θ + (1− t)h′α

∣∣∣∣ =
∣∣∣∣
z(z − t)
1− tz

∣∣∣∣ < 1.

This implies that fθ,α is locally univalent and sense-preserving in E. So, in view of Theorem

2.12, fθ,α ∈ SH and is convex in the direction of the imaginary axis.

Images of E under fθ, fα and fθ,α are shown in Figure 4, Figure 5 and Figure 6, respectively.

Figure 4: Image of E under fθ for θ = π
2 Figure 5: Image of E under fα for α = −1
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Figure 6: Image of E under fθ,α for θ = π
2 , α = −1 and t = 3

4 .
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