
On Ultraspherical Matrix Polynomials and Their Properties

Ayman Shehata ∗

Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.

Department of Basic Applied Sciences, Unaizah Community College, Qassim University,

Qassim 10363, Kingdom of Saudi Arabia.

Ravi Bhukya†

Department of Mathematics, Govt Degree College Uravakonda, Ananthapur, 515812, India.

Abstract

ln this paper, the Ultraspherical matrix polynomials are introduced starting from the hyper-
geometric matrix function. The generating matrix function, an explicit representation, three-
term matrix recurrence relations and differential recurrence relations are given. We derive the
Rodrigues’s formula and orthogonality properties for the Ultraspherical matrix polynomials.
Finally, the expansions of the Ultraspherical matrix polynomials in a series of Hermite and
Laguerre matrix polynomials are established.
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1 Introduction

Orthogonal matrix polynomials comprise an emerging field whose development is reaching important
results from both the theoretical and practical points of view. Some recent results in this field can
be found in [6, 7, 8]. Development of other extensions, such as Rodrigues-type formula [2, 3], a
second-order Sturm-Liouville differential equation [3], or three-term recurrence relations [4]. The
theory of Lie algebra of 2-variable generalized Hermite and 2-variable Laguerre matrix polynomials
have earlier been developed by Subuhi Khan and Hassan [31], Subuhi Khan and Nusrat Raza [32].
Important connections between orthogonal matrix polynomials and matrix differential equations
appear in [10, 11]. The matrix framework of the classical families of Hermite, Jacobi, Laguerre,
Legendre and Chebychev polynomials have been introduced and studied in a number of previous
papers [1, 9, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The reason of interest for
this family of Ultraspherical matrix polynomials are due to their intrinsic mathematical importance.

The aim of this paper is to define and study of a new class of Ultraspherical matrix polynomials
from a different point of view, starting from a generalization of the generating function. The struc-
ture of the paper is organized as follows: In Section 2, the definition of the Ultraspherical matrix
polynomials are given from the hypergeometric matrix function. The study of developments the
generating matrix functions for the Ultraspherical matrix polynomials are obtained in Section 3. An
explicit representation, three-term matrix recurrence relations and differential recurrence relations,
in particular Ultraspherical matrix differential equations are established in Section 4. Rodrigues’s
formula developed for Ultraspherical matrix polynomials in section 5. We prove some orthogonality
properties of the Ultraspherical matrix polynomials in Section 6. Finally, the expansions for the
Ultraspherical in a series of Hermite and Laguerre matrix polynomials are obtained in Section 7.

This paper, is concerned with matrix polynomials

Pn(x) = Anx
n +An−1x

n−1 +An−2x
n−2 + ...+A1x+A0
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in which the coefficients Ai are members of CN×N , the space of real or complex matrices of order
N , and x is a real number. Pn(x) is of degree n if An is not the zero matrix for orthogonal matrix
polynomials, the leading coefficient, An, being nonsingular [4, 15].

Throughout this paper, for a matrix A in CN×N , its spectrum is denoted by σ(A) where σ(A)
is the set of all eigenvalues of A. The two-norm of A, which will be denoted by ‖A‖, is defined by

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖2

where, for a vector y ∈ CN , ‖y‖2 = (yT y)
1
2 is the Euclidean norm of y.

If f(z) and g(z) are holomorphic functions of the complex variable z, which are defined in an
open set Ω of the complex plane, and A, B are matrices in CN×N with σ(A) ⊂ Ω and σ(B) ⊂ Ω,
such that AB = BA, then from the properties of the matrix functional calculus in [5], it follows that

f(A)g(B) = g(B)f(A). (1.1)

The reciprocal Gamma function Γ−1(z) = 1
Γ(z) is an entire function of the complex variable z. Then,

the image of Γ−1(z) acting on A, denoted by Γ−1(A) is a well defined matrix. Furthermore, if

A+ nI is invertible for every integer n ≥ 0,

then Γ(A) is invertible, its inverse coincides with Γ−1(A) [12]

(A)n = A(A− I)(A− 2I)(A− 3I)...(A− (n− 1)I) = Γ(A+ nI)Γ−1(A); n ≥ 1 (A)0 = I. (1.2)

From (1.2), it is easy to find that

(A)n−k = (−1)k(A)n[(I − nI −A)k]−1; 0 ≤ k ≤ n. (1.3)

From the relation (3) of [23], one obtains

(−1)k

(n− k)!
I =

(−n)k
n!

I =
(−nI)k
n!

; 0 ≤ k ≤ n. (1.4)

Using the results [2], one gets
∞∑
n=0

∞∑
k=0

B(k, n) =
∞∑
n=0

n∑
k=0

B(k, n− k),

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

[ 12n]∑
k=0

A(k, n− 2k).

(1.5)

Similarly, we can write
∞∑
n=0

n∑
k=0

B(k, n) =
∞∑
n=0

∞∑
k=0

B(k, n+ k),

∞∑
n=0

n∑
k=0

A(k, n) =
∞∑
n=0

[ 12n]∑
k=0

A(k, n− k),

∞∑
n=0

[ 12n]∑
k=0

A(k, n) =
∞∑
n=0

∞∑
k=0

A(k, n+ 2k).

(1.6)

If A, B, and C are matrices of CN×N for which C+nI is invertible for every integer n ≥ 0. Then the
hypergeometric matrix function 2F1(A,B;C; z) is defined in Jódar and Cortés [12, 13] as follows

2F1(A,B;C; z) =
∞∑
k=0

(A)k(B)k[(C)k]−1

k!
zk (1.7)

and the hypergeometric matrix differential equation [12, 13] in the form

z(1− z)d
2W (z)
dz2

− zAdW (z)
dz

+ (C − z(B + I))
dW (z)
dz

−ABW (z) = 0; 0 < |z| < 1. (1.8)

The following theorem and lemma, derived in [3], will be useful in the sequel.
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Theorem 1.1. Suppose that A, B and C are matrix in CN×N such that the matrix C satisfies the
condition that C + nI is invertible for all integer n ≥ 0. Suppose further that C and C − B are
positive stable with BC = CB. Then for |z| < 1 and | z1−z | < 1, it follows that

2F1(A,B;C; z) = (1− z)−A 2F1(A,C −B;C;− z

1− z
). (1.9)

Lemma 1.1. Let P and Q be two positive stable matrices in CN×N such that

Re(z) > −1 and Re(w) > −1, for all z ∈ σ(P ) and all w ∈ σ(Q), and PQ = QP. (1.10)

Then, ∫ 1

−1

(1 + x)P−I(1− x)Q−Idx = 2P+Q−IB(P,Q) (1.11)

where I is the identity matrix in CN×N and B(P,Q) denotes the Beta matrix function.

If P and Q are members of CN×N for which PQ = QP , and if, for all nonnegative integers n,
P + nI, Q+ nI and P +Q+ nI are all invertible [12], then

B(P,Q) = Γ(P )Γ(Q)Γ−1(P +Q) (1.12)

where B(P,Q) denotes the Beta matrix function [12] acting on the pair P , Q. We will exploit the
following relation due to [12]

(1− x)−A = 1F0(A;−;x) =
∞∑
n=0

1
n!

(A)nxn; |x| < 1. (1.13)

The above facts, notation, definition and theorems will be used throughout the next sections. In
next section, we introduce a new matrix polynomial which represents of the Ultraspherical matrix
polynomials as given by the relation and an explicit representation is given.

2 Ultraspherical matrix polynomials

Let A be a positive stable matrix in CN×N satisfying the spectral condition

Re(λ) > −1
2
, ∀ λ ∈ σ(A). (2.1)

For n ≥ 0, the Ultraspherical matrix polynomials PAn (x) is defined by the hypergeometric matrix
function

PAn (x) =
(A+ I)n

n! 2F1(−nI, 2A+ (n+ 1)I;A+ I;
1− x

2
) (2.2)

such that A + (n + 1)I is invertible for all integer n ≥ −1 and for | 1−x2 | < 1. From (2.2) it follows
that PAn (x) is a polynomial of degree precisely n in x.

An application of Theorem 1.1, to (2.2) yields

PAn (x) =
(A+ I)n

n!

(
x+ 1

2

)n
2F1(−nI,−nI −A;A+ I;

x− 1
x+ 1

). (2.3)

Each of (2.2), (2.3) and using (1.2), (1.3) and (1.4) yields a finite series form for Ultraspherical
matrix polynomials PAn (x)

PAn (x) =
n∑
k=0

(A+ I)n(2A+ I)n+k[(A+ I)k]−1[(2A+ I)n]−1

k!(n− k)!

(
x− 1

2

)k
(2.4)

such that A+ (k+ 1)I and 2A+ (n+ 1)I are invertible for all integer k ≥ −1 and n ≥ −1. Equation
(2.4) is expanded forms of (2.2) and (2.3), respectively.
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3 Generating matrix function for Ultraspherical matrix poly-
nomials

We now give the generating matrix function for the Ultraspherical matrix polynomials.

Theorem 3.1. Suppose that A is a matrix in CN×N satisfying (2.1). Then the generating matrix
function for Ultraspherical matrix polynomials has the following representation

(1− t)−2A−I
1F0(A+

1
2
I;−;

2t(x− 1)
(1− t)2

) =
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn (3.1)

where the hypergeometric matrix function 1F0(..., ...; ...; ...) is given as

1F0(A+
1
2
I;−;

2t(x− 1)
(1− t)2

) =
∞∑
k=0

(
(A+ 1

2I)
)
k

k!

(
2t(x− 1)
(1− t)2

)k
and A+ (n+ 1)I is invertible for all integer n ≥ −1.

Proof: By using (1.6) and (2.2)
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

n∑
k=0

(2A+ I)n+k[(A+ I)k]−1

k!(n− k)!
(
x− 1

2
)ktn

=
∞∑
n=0

∞∑
k=0

(2A+ I)n+2k[(A+ I)k]−1

k!n!2k
(x− 1)ktn+k

=
∞∑
k=0

∞∑
n=0

(2A+ 2kI + I)ntn

n!
(2A+ I)2k[(A+ I)k]−1(x− 1)ktk

k!2k

=
∞∑
k=0

(2A+ I)2k[(A+ I)k]−1(x− 1)ktk

k!2k
(1− t)−(2A+(2k+1)I).

Since (2A+ I)2k = 22k
(
A+ I

)
k

(
A+ 1

2I
)
k
, it follows that

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
k=0

22k
(
(A+ 1

2I)
)
k
(x− 1)ktk

k!2k
(1− t)−(2A+(2k+1)I).

Therefore, the representation of the generating matrix function for the Ultraspherical matrix poly-
nomials (3.1) is established and the proof of Theorem 3.1 is completed.

Another representation of the generating matrix functions for the Ultraspherical matrix polyno-
mials given in the following theorem.

Theorem 3.2. Let A be a matrix in CN×N satisfying (2.1). Then we have thus derived generating
matrix function

0F1(−;A+ I;
t(x− 1)

2
) 0F1(−;A+ I;

t(x+ 1)
2

) =
∞∑
n=0

[(A+ I)n]−1[(A+ I)n]−1PAn (x)tn (3.2)

where the hypergeometric matrix functions 0F1(−; ...; ...) are given as

0F1(−;A+ I;
t(x− 1)

2
) =

∞∑
k=0

[(A+ I)k]−1

k!
(
x− 1

2
)ktk

and

0F1(−;A+ I;
t(x+ 1)

2
) =

∞∑
n=0

[(A+ I)n]−1

n!
(
x+ 1

2
)ntn

where A+ (k + 1)I and A+ (n+ 1)I are invertible for all integer k ≥ −1 and n ≥ −1.

4



Proof: From (2.3) and (1.5), we obtain
∞∑
n=0

[(A+ I)n]−1[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

n∑
k=0

[(A+ I)k]−1[(A+ I)n−k]−1(x−1
2 )k(x+1

2 )n−ktn

k!(n− k)!

=
[ ∞∑
k=0

[(A+ I)k]−1

k!
(
x− 1

2
)ktk

][ ∞∑
n=0

[(A+ I)n]−1

n!
(
x+ 1

2
)ntn

]
.

Hence the equation (3.2) is established and the proof of Theorem 3.2 is completed.
The following result gives another representation of the generating matrix functions for the

Ultraspherical matrix polynomials.

Theorem 3.3. Let A be a matrix in CN×N satisfying (2.1). Then a generating matrix function
representation for Ultraspherical matrix polynomials has the following

F (x, t, A) =
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
[
1− 2tx+ t2

]−(A+ 1
2 I)

; |t| < r, |x| < 1.

(3.3)

If r1 and r2 are the roots of the quadratic equation 1− 2xt+ t2 = 0 and if r is the minimum of the
set {r1, r2}, then the matrix function F (x, t, A) regarded as a function of t, is analytic in the disk
|t| < r, for every real number in |x| < 1.

Proof: From (2.2), it follows that
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

(2A+ I)ntn

n! 2F1(−nI, 2A+ (n+ 1)I;A+ I;
1− x

2
)

=
∞∑
n=0

(2A+ I)n
n!

n∑
k=0

(−nI)k(2A+ (n+ 1)I)k[(A+ I)k]−1

k!
(
1− x

2
)ktn

=
∞∑
n=0

n∑
k=0

(−nI)k(2A+ I)n(2A+ (n+ 1)I)k[(A+ I)k]−1

k!n!
(
1− x

2
)ktn.

(3.4)

Therefore, by using (3.4) and (1.2) , we have
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

n∑
k=0

(−nI)k(2A+ I)n+k[(A+ I)k]−1

k!n!
(
1− x

2
)ktn

=
∞∑
n=0

n∑
k=0

(−1)k(−nI)k(2A+ I)n+k[(A+ I)k]−1

k!n!
2−k(x− 1)ktn.

Using (1.4) and applying (1.6), we have
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

n∑
k=0

(2A+ I)n+k[(A+ I)k]−1

k!(n− k)!

(
x− 1

2

)k
tn

=
∞∑
n=0

∞∑
k=0

(2A+ I)n+2k[(A+ I)k]−1

k!n!

(
x− 1

2

)k
tn+k.
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From the relation (1.2), we obtain that

(2A+ I + 2kI)n = (2A+ I)n+2k[(2A+ I)2k]−1,

[(2A+ I)2k]−1 = 2−2k[(A+ I)k]−1[(A+
1
2
I)k]−1

and

(2A+ I + 2kI)n = 2−2k(2A+ I)n+2k[(A+ I)k]−1[(A+
1
2
I)k]−1

(3.5)

which by inserting (3.5) with the help of (1.13) yields

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

22k(A+ I)k(A+ 1
2I)k[(A+ I)k]−1(2A+ I + 2kI)n

k!n!
(
x− 1

2
)ktn+k

=
∞∑
n=0

∞∑
k=0

(A+ 1
2I)k(2A+ 2kI + I)n

k!n!
2k(x− 1)ktn+k

=
∞∑
k=0

(A+ 1
2I)k

k!
2k(x− 1)ktk

∞∑
n=0

(2A+ 2kI + I)n
n!

tn

=
∞∑
k=0

(A+ 1
2I)k

k!
2k(x− 1)ktk(1− t)−(2A+2kI+I)

=
∞∑
k=0

(A+ 1
2I)k

k!
2k(x− 1)ktk

(1− t)2k
(1− t)−(2A+I)

=
[
1− 2t(x− 1)

(1− t)2

]−(A+ 1
2 I)

(1− t)−(2A+I) =
[
(1− t)2 − 2t(x− 1)

]−(A+ 1
2 I)

=
[
1− 2tx+ t2

]−(A+ 1
2 I).

Thus the result is established and the proof of Theorem 3.3 is completed.
If in (3.3), we replace x by −x and t by −t, the left side remains unchanged and we obtain

PAn (−x) = (−1)nPAn (x). (3.6)

In equation (3.3) put x = 0 to obtain

(1 + t2)−(A+ 1
2 I) =

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (0)tn.

Using the binomial expansion of

(1 + t2)−(A+ 1
2 I) =

∞∑
n=0

(−1)n(A+ 1
2I)n

n!
t2n; |t| < 1

we get

PA2n(0) =
(−1)n

n!
(A+ I)2n(A+

1
2
I)n[(2A+ I)2n]−1, PA2n+1(0) = 0.

For x = 1 we have
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (1)tn =
[
1− t

]−(2A+I); |t| < 1.

So that by (1.13) it follows

PAn (1) =
1
n!

(A+ I)n.
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Theorem 3.4. Suppose that A is a matrix in CN×N satisfying (2.1). Then, the Ultraspherical
matrix polynomials has the following representation

PAn (x) =
[ 12n]∑
k=0

(−1)k(2x)n−2k

k!(n− 2k)!
(A+

1
2
I)n−k(A+ I)n[(2A+ I)n]−1. (3.7)

Proof: By using (1.13) and (1.6), we have

(1− 2xt+ t2)−(A+ 1
2 I) =

∞∑
n=0

(A+ 1
2I)n(2x− t)ntn

n!

=
∞∑
n=0

n∑
k=0

(A+ 1
2I)n(−1)k(2x)n−k

k!(n− k)!
tn+k

=
∞∑
n=0

[ 12n]∑
k=0

(−1)k(2x)n−2k(A+ 1
2I)n−k

k!(n− 2k)!
tn.

(3.8)

Thus by identification of the coefficients of tn in (3.3) and (3.8), in both sides gives the explicit
representation (3.7) and hence the proof of Theorem 3.4 is completed.

From (3.6), we obtain another hypergeometric matrix function form for Ultraspherical matrix
polynomials PAn (x), namely,

PAn (x) =
(−1)n(A+ I)n

n! 2F1(−nI, (n+ 1)I + 2A; I +A;
1 + x

2
), (3.9)

PAn (x) =
(2A+ I)2n[(2A+ I)n]−1

n!

(
x+ 1

2

)n
2F1(−nI,−nI −A;−2A− 2nI;

2
1 + x

) (3.10)

and

PAn (x) =
n∑
k=0

(−1)n−k(A+ I)n(2A+ I)n+k[(A+ I)k]−1[(2A+ I)n]−1

k!(n− k)!

(
x+ 1

2

)k
(3.11)

where A+ (n+ 1)I, A+ (k + 1)I, 2A+ (n+ 1)I and 2A+ (n+ k + 1)I are invertible.

4 Matrix recurrence relations for Ultraspherical matrix poly-
nomials

In this section, we derive several matrix differential recurrence relations, the pure matrix recurrence
relations and Ultraspherical matrix differential equations from this matrix generating functions.

By differentiating (3.3) with respect to x and t yields, respectively

∂

∂x
F (x, t, A) =

t

1− 2xt+ t2
2(A+

1
2
I) F (x, t, A) (4.1)

and

∂

∂t
F (x, t, A) =

x− t
1− 2xt+ t2

2(A+
1
2
I) F (x, t, A). (4.2)

So that the matrix function F (x, t, A) satisfies the partial matrix differential equation

(x− t) ∂
∂x
F (x, t, A)− t ∂

∂t
F (x, t, A) = 0.

Therefore, by (3.3), we get
∞∑
n=0

x(2A+ I)n[(A+ I)n]−1 d

dx
PAn (x)tn −

∞∑
n=0

n(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=1

(2A+ I)n−1[(A+ I)n−1]−1 d

dx
PAn−1(x)tn.
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Since d
dxP

A
0 (x) = 0, we obtain the differential recurrence relation

x(2A+ nI)
d

dx
PAn (x)− n(2A+ nI)PAn (x) = (A+ nI)

d

dx
PAn−1(x); n ≥ 1. (4.3)

From (4.1) and (4.2) with the aid of (3.3), we get the following

2(A+ 1
2I)

1− 2xt+ t2
(1− 2xt+ t2)−(A+ 1

2 I) =
∞∑
n=1

(2A+ I)n[(A+ I)n]−1 ∂

∂x
PAn (x)tn−1 (4.4)

and

2(x− t)(A+ 1
2I)

1− 2xt+ t2
(1− 2xt+ t2)−(A+ 1

2 I) =
∞∑
n=1

n(2A+ I)n[(A+ I)n]−1PAn (x)tn−1. (4.5)

Note that 1 − t2 − 2t(x − t) = 1 − 2xt + t2, we multiplying the left side of (4.4) by 1 − t2, the left
side of (4.5) by 2t, subtract and obtain the left side of (3.3). In this way, we obtain

2(A+ (n+
1
2

)I)(2A+ nI)(A+ nI)PAn (x) = (2A+ (n+ 1)I)
d

dx
PAn+1(x)

−(A+ nI)
d

dx
PAn−1(x).

(4.6)

From (4.3) and (4.6), one gets

x(A+ nI)
d

dx
PAn (x) = (2A+ (n+ 1)I)

d

dx
PAn+1(x)

−
[
2(A+ (n+

1
2

)I)(A+ nI)− nI
]
(2A+ nI)PAn (x).

(4.7)

Substituting n− 1 for n in (4.7) and putting the resulting expression for d
dxP

A
n−1(x) into (4.3), gives

(x2 − 1)
d

dx
PAn (x) = nxPAn (x)− (A+ nI)PAn−1(x). (4.8)

Now, by multiplying (4.3) by (x2− 1) and substituting for (x2− 1) d
dxP

A
n (x) and (x2− 1) d

dxP
A
n−1(x)

from (4.8) to obtain the three terms matrix recurrence relations in the form

n(A+ nI)(A+ (n+ 1)I)PAn (x) = x(A+ (n+ 1)I)(2A+ (2n− 1)I)(2A+ nI)

PAn−1(x)− (2A+ (n− 1)I)(2A+ nI)(2A+ (n+ 1)I)PAn−2(x); n ≥ 2.
(4.9)

Formulas (4.3), (4.6), (4.7) (4.8) and (4.9) are called the matrix recurrence formulas for Ultraspherical
matrix polynomials.

We can write (4.4) and (4.5) in the form

2(A+
1
2
I)(1− 2xt+ t2)−(A+ 3

2 I) =
∞∑
n=1

(2A+ I)n[(A+ I)n]−1 d

dx
PAn (x)tn−1

=
∞∑
n=0

(2A+ I)n+1[(A+ I)n+1]−1 d

dx
PAn+1(x)tn.

(4.10)

By applying (3.3), it follows

2(A+
1
2
I)(1− 2xt+ t2)−(A+ 3

2 I)

=
∞∑
n=0

2(A+
1
2
I)(2A+ 2I)n[(A+ 2I)n]−1 PA+I

n (x)tn.
(4.11)

Identification of the coefficients of tn in (4.10) and (4.11) yields

d

dx
PAn+1(x) = 2(A+

1
2
I)(A+ (n+ 1)I)(2A+ (n+ 1)I)−1 PA+I

n (x)
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this gives

d

dx
PAn (x) = 2(A+

1
2
I)(A+ nI)(2A+ nI)−1 PA+I

n−1 (x). (4.12)

Iteration (4.12) yields, for 0 ≤ r ≤ n;

dr

dxr
PAn (x) = 2r(A+

1
2
I)r(A+ nI)r[(2A+ nI)r]−1 PA+rI

n−r (x). (4.13)

We conclude this section introducing the Ultraspherical matrix differential equation as follows corol-
lary.

Corollary 4.1. Let A be a positive stable matrix in CN×N satisfying (2.1). Then the Ultraspherical
matrix polynomials are solutions of the matrix differential equations of the second order in the form

(1− x2)
d2

dx2
PAn (x)− 2x(A+ I)

d

dx
PAn (x) + n(2A+ (n+ 1)I)PAn (x) = 0. (4.14)

Proof. In (4.7), replace n by n− 1 and differentiate with respect to x to find

x(A+ (n− 1)I)
d2

dx2
PAn−1(x) + (A+ (n− 1)I)

d

dx
PAn−1(x) = (2A+ nI)

d2

dx2
PAn (x)

−
[
2(2A+ (n− 1

2
)I)(A+ (n− 1)I)− (n− 1)I

]
(2A+ (n− 1)I)

d

dx
PAn−1(x).

(4.15)

Also, by differentiating (4.3) with respect to x, we have

x(2A+ nI)
d2

dx2
PAn (x)− n(2A+ nI)

d

dx
PAn (x) = (A+ nI)

d

dx
PAn−1(x). (4.16)

From (4.3) and (4.16) by putting d
dxP

A
n−1(x) and d2

dx2P
A
n−1(x) into (4.15) and rearrangement terms,

we obtain (4.14) and hence the proof of Corollary.
Differentiating the identity (2.2) with respect to x, it follows

DPAn (x) =
n(A+ I)n(2A+ (n+ 1)I)

2(A+ I)n!
F (−nI + I, 2A+ nI + 2I;A+ 2I;

1− x
2

)

=
(A+ 2I)n−1(2A+ (n+ 1)I)

2(n− 1)! 2F1(−(n− 1)I, 2A+ 2I + nI;A+ 2I;
1− x

2
)

so that

DPAn (x) =
(2A+ (n+ 1)I)

2
PA+I
n−1 (x). (4.17)

Iteration of (4.1) yields, for 0 < k ≤ n

DkPAn (x) =
(2A+ (n+ 1)I)k

2k
PA+kI
n−k (x). (4.18)

Now, we can get the differential equation in a different way and prove the following theorem.

Theorem 4.1. Let A be a positive stable matrix in CN×N satisfying (2.1). For n ≥ 0, the Ultras-
pherical matrix polynomial pAn (x) satisfies the matrix differential equation

(1− x2)Y ′′(x)− 2x(A+ I)Y ′(x) + n(2A+ (n+ 1)I)Y (x) = 0; |x| < 1. (4.19)

Proof : Taking z = x+1
2 , A = 2A+ (n+ 1)I, B = −nI, and C = A+ I,

2F1(2A+ (n+ 1)I,−nI;A+ I;
1 + x

2
) = (−1)nn!

[
(A+ nI)n

]−1
PAn (x)

from (3.14). Introduce the notation

W (
1 + x

2
) = 2F1(−nI, 2A+ (n+ 1)I;A+ I;

x+ 1
2

). (4.20)
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Applying the chain rule in (4.20),

W ′(
1 + x

2
) = 2(−1)nn!

[
(A+ nI)n

]−1 d

dx

(
PAn (x)

)
, and

W ′′(
1 + x

2
) = 4(−1)nn!

[
(A+ nI)n

]−1 d2

dx2

(
PAn (x)

)
.

(4.21)

Taking into account that

A+ I −
(

1 + x

2

)
(1− n)I =

1
2

(2A+ (1 + n− x− xn)I)

and substituting (4.20),(4.21) in (1.8) and postmultiplying (−1)n

n! (A+ nI)n yields

(1− x2)
d2

dx2

(
PAn (x)

)
− 2(A+ x(A+ I))

d

dx

(
PAn (x)

)
+ 2A

d

dx

(
PAn (x)

)
+n(2A+ (n+ 1)I)PAn (x) = 0.

(4.22)

Thus, PAn (x), as given by (3.11), satisfies (4.19) in |x| < 1 and the proof of Theorem 4.1 is completed.
We have the following corollary.

Corollary 4.2. For n ≥ 0 and |x| < 1, PAn (x) is a solution of the matrix differential equation

d

dx

[
(1 + x)(1− x)2A+IY ′(x)

(
1 + x

1− x

)A]
+n(2A+ (n+ 1)I)(1− x)2AY (x)

(
1 + x

1− x

)A
= 0.

(4.23)

Proof: Premultiplying (4.19) by (1 − x)2A and postmultiplying by ( 1+x
1−x )A, then rearranging

yields (4.23) for |x| < 1.

5 Rodrigues’s formula for Ultraspherical matrix polynomials

In this section, we provide Rodrigues’s formula for the Ultraspherical matrix polynomials and prove
the following theorem.

Theorem 5.1. Let A be a matrix satisfying (2.1) and let PAn (x) be the Ultraspherical matrix poly-
nomial. Then the following Rodrigues’s formula holds for n ≥ 0 and |x| < 1

PAn (x) =
(x2 − 1)−A

n!2n
Dn

[
(x2 − 1)A+nI

]
. (5.1)

Proof: Equation (2.3), we can be written

PAn (x) =
n∑
k=0

(A+ I)n(A+ I)n[(A+ I)k]−1[(A+ I)n−k]−1(x− 1)k(x+ 1)n−k

k!2n(n− k)!
. (5.2)

The differential operator is denoted by D, with Dk(f(x)) = dkf(x)
dxk . It is easy to show from (1.3)

that for an arbitrary matrix CN×N [2], then for non-negative integral s and m, one gets

DsxA+mI =(A+mI)(A+ (m− 1)I)(A+ (m− 2)I)...(A+ (m− s+ 1)I)xA+(m−s)I

; s = 0, 1, 2, ...

or

DsxA+mI = (A+ I)m[(A+ I)m−s]−1xA+(m−s)I . (5.3)

From (5.3) we obtain

Dk(x+ 1)A+nI = (A+ I)n[(A+ I)n−k]−1(x+ 1)A+(n−k)I (5.4)
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and

Dn−k(x− 1)A+nI = (A+ I)n[(A+ I)k]−1(x− 1)A+kI . (5.5)

Therefore (5.2) can be put in the form

PAn (x) =
(x− 1)−A(x+ 1)−A

n!2n

n∑
k=0

n!
k!(n− k)!

[
Dn−k(x− 1)A+nI

][
Dk(x+ 1)A+nI

]
. (5.6)

By Leibnitz’ rule for the n-derivative of a product, equation (5.6) yields the Rodrigues’s formula one
gets

PAn (x) =
(x2 − 1)−A

n!2n
Dn

[
(x2 − 1)A+nI

]
or we now give another representation of the Rodrigues’s formula for the Ultraspherical matrix
polynomials

PAn (x) =
(−1)n(1− x2)−A

n!2n
Dn(1− x2)A+nI . (5.7)

Equation (5.7) is more desirable than (5.1) when we work in the interval |x| < 1. Thus the result is
established.

In the following, we obtain the orthogonality for Ultraspherical matrix polynomials which satisfy
(2.1).

6 Orthogonality for Ultraspherical matrix polynomials

Since −2x(A+ I) = (1− x)(I +A)− (1 + x)(I +A), we may put (4.14) in the form

(1− x2)A+ID2PAn (x) + [(1− x)(I +A)− (1 + x)(I +A)](1− x2)ADPAn (x)

+n(2A+ (n+ 1)I)(1− x2)APAn (x) = 0

this yield

D[(1− x2)A+IDPAn (x)] + n(2A+ (n+ 1)I)(1− x2)APAn (x) = 0. (6.1)

From (6.1) and the same equation with n replaced by m, that PAn and PAm(x) commute, it follows
that

[n(2A+ (n+ 1)I)−m(2A+ (m+ 1)I)](1− x2)APAn (x)PAm(x)

= D

[
(1− x2)A+I

(
PAn (x)DPAm(x)− PAm(x)DPAn (x)

)]
.

Therefore, we may conclude that

(n−m)(2A+ (n+m+ 1)I)
∫ 1

−1

(1− x2)APAn (x)PAm(x)

=
[
(1− x2)A+I

(
PAn (x)DPAm(x)− PAm(x)DPAn (x)

)]1

−1

.

(6.2)

The condition of commutativity, PAn (x)PAm(x) = PAm(x)PAn (x), then (6.2) leads us to the orthogo-
nality property ∫ 1

−1

(1− x2)APAn (x)PAm(x)dx = 0, m 6= n. (6.3)

That is, the Ultraspherical matrix polynomials form an orthogonal set over (−1, 1) with respect to
the weight function (1− x2)A.
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In order to evaluate

gn(A) =
∫ 1

−1

(1− x2)A[PAn (x)]2dx (6.4)

we employ the Rodrigues’s formula and integration by parts. This method incidentally furnishes a
second derivation of the orthogonality property (6.3).

From (5.7), we obtain

(1− x2)APAn (x) =
(−1)n

2nn!
Dn(1− x2)A+nI . (6.5)

Therefore, if Re(λ) > − 1
2 , for all λ ∈ σ(A),∫ 1

−1

(1− x2)APAn (x)PAm(x)dx =
(−1)n

2nn!

∫ 1

−1

{Dn(1− x2)A+nI}PAm(x)dx. (6.6)

On the right in (6.6), integrate by parts n times, each time differentiating PAn (x) and integrating
the quantity in curly brackets. At the kth stage the integrated part

{Dn−k(1− x2)A+nI}Dk−1PAn (x)

is zero at both limits because of factors (1 − x2)A+kI with satisfying the spectral condition (2.1).
After n such integrations by parts, we have∫ 1

−1

(1− x2)APAn (x)PAm(x)dx =
(−1)2n

2nn!

∫ 1

−1

(1− x2)A+nIDnPAm(x)dx. (6.7)

If n 6= m we may choose n to the larger and therefore conclude that∫ 1

−1

(1− x2)APAn (x)PAm(x)dx = 0, n 6= m. (6.8)

In (6.7), we have a tool for the evaluation of the gn(A) of (6.4), but we need DnPAn (x). From

PAn (x) =
(A+ I)n

n! 2F1(−nI, 2A+ (n+ 1)I;A+ I;
1− x

2
)

and repeated application of the formula for the derivative of hypergeometric matrix functions, we
obtain

DnPAn (x) =
(− 1

2 )n(−nI)n(2A+ (n+ 1)I)n
n! 2F1(0, 2A+ (2n+ 1)I;A+ (n+ 1)I;

1− x
2

)

from which

DnPAn (x) =
(2A+ I)2n[(2A+ I)n]−1

2n
. (6.9)

Now (6.7) with n = m yields

gn(A) =
∫ 1

−1

(1− x2)A[PAn (x)]2dx =
(2A+ I)2n[(2A+ I)n]−1

22nn!

∫ 1

−1

(1− x2)A+nIdx.

Using Lemma 1.1, we get∫ 1

−1

(1− x)A+nI(1 + x)A+nIdx = 22A+(2n+1)IB(A+ (n+ 1)I, A+ (n+ 1)I)

= 22A+(2n+1)IΓ(A+ (n+ 1)I)Γ(A+ (n+ 1)I)Γ−1(2A+ 2(n+ 1)I).

Hence

gn(A) =
22A+(2n+1)I(2A+ I)2n(2A+ I)2nΓ(A+ (n+ 1)I)Γ(A+ (n+ 1)I)

22nn!
[(2A+ I)n]−1Γ−1(2A+ 2(n+ 1)I)
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or

gn(A) =
22A+IΓ(A+ (n+ 1)I)Γ(A+ (n+ 1)I)

n!
[(2A+ (2n+ 1)I)]−1Γ−1(2A+ (n+ 1)I).

(6.10)

From (6.9), we conclude that

PAn (x) =
(2A+ I)2nx

n[(2A+ I)n]−1

n!2n
+ Πn−1(x) (6.11)

in which Πn−1(x) is a matrix polynomial of degree n−1. In summary, we have obtained the following
important result, orthogonality of the Ultraspherical matrix polynomials, PAn (x), that are defined
by (2.2).

Theorem 6.1. Let A be a matrix in CN×N satisfy the spectral conditions (2.1) and PAn (x)PAm(x) =
PAm(x)PAn (x). Then for any nonnegative integers n and m,∫ 1

−1

(1− x2)APAn (x)PAm(x)dx

=


0, n 6= m;
22A+I

n! Γ(2A+ (2n+ 1)I)Γ−1(2A+ (n+ 1)I)
Γ(A+ (n+ 1)I)Γ(A+ (n+ 1)I)Γ−1(2A+ 2(n+ 1)I), n = m.

(6.12)

Making use of the hypergeometric representation (2.2) in the familiar orthogonality property
(6.12), and setting

x = 1− 2t, 0 < t < 1

we obtain∫ 1

0

tA(1− t)A 2F1(−mI, 2A+ (m+ 1)I;A+ I; t)

2F1(−nI, 2A+ (n+ 1)I;A+ I; t)dt = n!Γ(A+ I)Γ(A+ I)Γ(A+ (n+ 1)I)

[(2A+ (2n+ 1)I)]−1[Γ(A+ (n+ 1)I)]−1[Γ(2A+ (n+ 1)I)]−1δmn

(6.13)

where

δmn =
{

0, n 6= m;
1, n = m.

In view of the hypergeometric matrix function representation (2.4), we find from the orthogonality
property (6.12) with

x = 1− 2
t
, 1 < t <∞

that ∫ ∞
1

t−2A−(m+n+2)I(t− 1)A 2F1(−mI,−A−mI;−2A− 2mI; t)

2F1(−nI,−A− nI;−2A− 2nI; t)dt = n!Γ(A+ (n+ 1)I)Γ(A+ (n+ 1)I)

Γ(2A+ (n+ 1)I)[Γ(2A+ (2n+ 1)I)]−1[Γ(2A+ (2n+ 2)I)]−1δmn.

(6.14)

Thus, if we employ the hypergeometric representation (2.3) on the left-hand side of the orthogonality
property (6.12) and set

x =
1− t
1 + t

, 0 < t <∞

13



we get ∫ ∞
0

tA(1 + t)−2A−(m+n+2)I
2F1(−mI,−A−mI;A+ I;−t)

2F1(−nI,−A− nI;A+ I;−t)dt = n!Γ(A+ I)Γ(A+ I)Γ(A+ (n+ 1)I)

[(2A+ (2n+ 1)I)]−1[Γ(A+ (n+ 1)I)]−1[Γ(2A+ (n+ 1)I)]−1δmn.

(6.15)

Finally, the Ultraspherical matrix polynomials are expanded in series of Hermite and Laguerre matrix
polynomials.

7 Expanding of Ultraspherical matrix polynomials in series
of Hermite and Laguerre matrix polynomials

If A is a positive stable matrix in CN×N , then the nth Hermite matrix polynomials [1, 19] was
defined by

Hn(x,A) = n!
[ 12n]∑
k=0

(−1)k

k!(n− 2k)!
(x
√

2A)n−2k (7.1)

and the expansion of xnI in a series of Hermite matrix polynomials have been given in [1, 19]

(x
√

2A)n = n!
[ 12n]∑
k=0

1
k!(n− 2k)!

Hn−2k(x,A). (7.2)

Now, let us expand the Ultraspherical matrix polynomials in series of Hermite matrix polynomials.
Employing (3.7) and (1.6) with the aid of (7.2) and taking into account that each matrix commutes
with itself, one gets

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

[ 12n]∑
k=0

(−1)k(A+ 1
2I)n−k(2x)n−2k

k!(n− 2k)!
tn

=
∞∑
n=0

∞∑
k=0

(−1)k(A+ 1
2I)n+k(2x)n

k!n!
tn+2k

=
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k2n(A+ 1
2I)n+k(

√
2A)−n

k!s!(n− 2s)!
Hn−2s(x,A)tn+2k.

(7.3)

Since the matrix A commutes with itself, then we can write (7.3) in the form
∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k2n(A+ 1
2I)n+k(

√
2A)−n

k!s!(n− 2s)!
Hn−2s(x,A)tn+2k.

Thus
∞∑
n=0

2−n(
√

2A)n(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k(A+ 1
2I)n+k

k!s!(n− 2s)!
Hn−2s(x,A)tn+2k.

(7.4)

Using (1.6) the expression (7.4) becomes
∞∑
n=0

2−n(
√

2A)n(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

∞∑
s=0

(−1)k(A+ 1
2I)n+k+2s

k!s!n!
Hn(x,A)tn+2k+2s
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this, by using (1.5), yields,

∞∑
n=0

2−n(
√

2A)n(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

k∑
s=0

(−1)k−s(A+ 1
2I)n+k+s

(k − s)!s!n!
Hn(x,A)tn+2k.

Since

(A+
1
2
I)n+k+s = (A+

1
2
I + (n+ k)I)s(A+

1
2
I)n+k.

Using (1.4) and (1.5), it follows

∞∑
n=0

2−n(
√

2A)n(2A+ I)n[(A+ I)n]−1PAn (x)tn

=
∞∑
n=0

∞∑
k=0

k∑
s=0

(−1)k(−kI)s(A+ 1
2I + (n+ k)I)s(A+ 1

2I)n+k

k!s!n!
Hn(x,A)tn+2k

=
∞∑
n=0

∞∑
k=0

(−1)k

k!n! 2F0(−kI,A+
1
2
I + (n+ k)I;−; 1)(A+

1
2
I)n+kHn(x,A)tn+2k

=
∞∑
n=0

[ 12n]∑
k=0

(−1)k

k!(n− 2k)! 2F0(−kI,A+
1
2
I + (n+ k)I;−; 1)(A+

1
2
I)n−kHn−2k(x,A)tn

where the hypergeometric matrix functions 2F0(..., ...;−; ...) are given as

2F0(−kI,A+
1
2
I + (n+ k)I;−; 1) =

∞∑
s=0

(−kI)s(A+ 1
2I + (n+ k)I)s
s!

.

Therefore, by identification of coefficient of tn, we obtain an expansion of Ultraspherical matrix
polynomials as a series of Hermite matrix polynomials in the form

PAn (x) =
[ 12n]∑
k=0

(−1)k(A+ 1
2I)n−k

k!(n− 2k)! 2F0(−kI,A+
1
2
I + (n+ k)I;−; 1)

2n(A+ I)n[(2A+ I)n]−1(
√

2A)−nHn−2k(x,A).

Furthermore, the nth Laguerre matrix polynomials L(A,λ)
n (x) is defined by

L(A,λ)
n (x) =

n∑
k=0

(−1)kλkxk

k!(n− k)!
(A+ I)n[(A+ I)k]−1 (7.5)

where A is a matrix in CN×N such that −k is not an eigenvalue of A, for every integer k > 0 and λ
is a complex number such that Re(λ) > 0.

In (7.5), λ = 1 gives

L(A)
n (x) =

n∑
k=0

(−1)kxk

k!(n− k)!
(A+ I)n[(A+ I)k]−1. (7.6)

The expansion of xnI in a series of Laguerre matrix polynomials [9] in the form

xnI = n!
n∑
k=0

(−1)k

k!(n− k)!
(A+ I)n[(A+ I)k]−1L

(A)
k (x). (7.7)
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We use (7.7) to expand the Ultraspherical matrix polynomials in series of Laguerre matrix polyno-
mials. We consider the series

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

[ 12n]∑
s=0

(−1)s(A+ 1
2I)n−s(2x)n−2s

s!(n− 2s)!
tn

=
∞∑
n=0

∞∑
s=0

(−1)s(A+ 1
2I)n+s(2x)n

s!n!
tn+2s

=
∞∑
n=0

∞∑
s=0

n∑
k=0

(−1)k+s2n(A+ 1
2I)n+s

s!(n− k)!
(A+

3
2
I)n[(A+

3
2
I)k]−1L

(A)
k (x)tn+2s

(7.8)

which, by using (1.6), becomes

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

∞∑
k=0

∞∑
s=0

(−1)k+s2n+k

n!s!
(A+

1
2
I)n+k+s(A+

3
2
I)n+k

[(A+
3
2
I)k]−1L

(A)
k (x)tn+k+2s.

From (1.5), we have

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k+s2n+k−2s

s!(n− 2s)!
(A+

1
2
I)n+k−s

(A+
3
2
I)n+k−2s[(A+

3
2
I)k]−1L

(A)
k (x)tn+k.

(7.9)

Form (1.2), it is easy to find that

(A+
1
2
I)2n = 22n(

1
2

(A+
3
2
I))n(

1
2

(A+
1
2
I))n

and

(A+
1
2
I)n+k = (A+

1
2
I)n(A+ (n+

1
2

)I)k.

In accordance with (1.3), one gets

(A+
1
2
I)n+k−s = (−1)s(A+

1
2
I)n+k[((1− n− k)I −A− 1

2
I)s]−1

and

(A+
3
2
I)n+k−2s = 2−2s(A+

3
2
I)n+k[(

1
2

((1− n− k)I −A− 1
2
I))s]−1

[(−1
2

((n+ k)I +A+
1
2
I))s]−1.
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Therefore

∞∑
n=0

(2A+ I)n[(A+ I)n]−1PAn (x)tn =
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

(−1)k+s2n+k−2s

s!(n− 2s)!
(−1)s(A+

1
2
I)n+k

[((1− n− k)I −A− 1
2
I)s]−12−2s(A+

3
2
I)n+k

[(
1
2

((1− n− k)I −A− 1
2
I))s]−1[(−1

2
((n+ k)I +A+

1
2
I))s]−1[(A+

3
2
I)k]−1L

(A)
k (x)tn+k

=
∞∑
n=0

∞∑
k=0

[ 12n]∑
s=0

1
s!

(−1
2
nI)s(−

1
2

(n− 1
2

)I)s

[((1− n− k)I −A− 1
2
I)s]−1[(

1
2

((1− n− k)I −A− 1
2
I))s]−1[(−1

2
((n+ k)I +A+

1
2
I))s]−1

(
1
4

)s
(−1)k2n+k

n!
(A+

1
2
I)n+k(A+

3
2
I)n+k[(A+

3
2
I)k]−1L

(A)
k (x)tn+k

=
∞∑
n=0

∞∑
k=0

2F3(−1
2
nI,−1

2
(n− 1

2
)I; (1− n− k)I −A− 1

2
I,

1
2

((1− n− k)I −A− 1
2
I)

,−1
2

((n+ k)I +A+
1
2
I);

1
4

)
(−1)k2n+k

n!
(A+

1
2
I)n+k(A+

3
2
I)n+k[(A+

3
2
I)k]−1L

(A)
k (x)tn+k

=
∞∑
n=0

n∑
k=0

2F3(−1
2

(n− k)I,−1
2

((n− k)− 1
2

)I; (1− n)I −A− 1
2
I,

1
2

((1− n)I −A− 1
2
I)

,−1
2

(A+ nI +
1
2
I);

1
4

)
(−1)k2n

(n− k)!
(A+

1
2
I)n(A+

3
2
I)n[(A+

3
2
I)k]−1L

(A)
k (x)tn

(7.10)

where the hypergeometric matrix functions 2F3(..., ...; ..., ..., ...; ...) are given as

2F3(−1
2

(n− k)I,−1
2

((n− k)− 1
2

)I; (1− n)I −A− 1
2
I,

1
2

((1− n)I −A− 1
2
I),

−1
2

(A+ nI +
1
2
I);

1
4

) =
∞∑
s=0

1
4s

(−1
2

(n− k)I)s(−
1
2

((n− k)− 1
2

)I)s

[((1− n)I −A− 1
2I)s]−1[( 1

2 ((1− n)I −A− 1
2I))s]−1[(− 1

2 (A+ nI + 1
2I))s]−1

s!
.

Equation the coefficients of tn gives an expansion of as a series of Ultraspherical matrix polynomials
in the form:

PAn (x) =(A+ I)n[(2A+ I)n]−1
n∑
k=0

2F3(−1
2

(n− k)I,−1
2

((n− k)− 1
2

)I

; (1− n)I −A− 1
2
I,

1
2

((1− n)I −A− 1
2
I)

,−1
2

(A+ nI +
1
2
I);

1
4

)
(−1)k2n

(n− k)!
(A+

1
2
I)n(A+

3
2
I)n[(A+

3
2
I)k]−1L

(A)
k (x)

(7.11)

this can be written in a convenient form as follows:

PAn (x) =(A+ I)n[(2A+ I)n]−1 2n

n!
(A+

1
2
I)n(A+

3
2
I)n

n∑
k=0

2F3(−1
2

(n− k)I

,−1
2

((n− k)− 1
2

)I; (1− n)I −A− 1
2
I

,
1
2

((1− n)I −A− 1
2
I),−1

2
(A+ nI +

1
2
I);

1
4

)(−nI)k[(A+
3
2
I)k]−1L

(A)
k (x).

These results are summarized below.
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Theorem 7.1. Let A be matrix in CN×N satisfying (2.1). Expansions Ultraspherical matrix poly-
nomials in series of Hermite and Laguerre matrix polynomials relevent to our present investigation
are given by

PAn (x) =
[ 12n]∑
k=0

(−1)k(A+ 1
2I)n−k

k!(n− 2k)! 2F0(−kI,A+
1
2
I + (n+ k)I;−; 1)

2n(A+ I)n[(2A+ I)n]−1(
√

2A)−nHn−2k(x,A)

(7.12)

and

PAn (x) =(A+ I)n[(2A+ I)n]−1 2n

n!
(A+

1
2
I)n(A+

3
2
I)n

n∑
k=0

2F3(−1
2

(n− k)I

,−1
2

((n− k)− 1
2

)I; (1− n)I −A− 1
2
I

,
1
2

((1− n)I −A− 1
2
I),−1

2
(A+ nI +

1
2
I);

1
4

)(−nI)k[(A+
3
2
I)k]−1L

(A)
k (x).

(7.13)

In the next papers, we will be to present a systematic investigation of the matrix extension of
the multivariable Ultraspherical polynomials generated function by

∞∑
n=0

(2Ar + rI)n[(Ar + rI)n]−1PA1,A2,...,Ar
n (x)tn =

r∏
i=1

[
1− 2txi + t2

]−(Ai+
1
2 iI)

; |2xit− t2| < 1; i = 1, 2, ..., r.

(7.14)

where Ai be a matrix in CN×N satisfying (2.1), and x = (x1, x2, ..., xr). From (7.14) yields the
following explicit representation:

PA1,A2,...,Ar
n (x) =(Ar + rI)n[(2Ar + rI)n]−1

∑
2k1+2k2+...+2kr+n1+n2+...+nr=n

r∏
i=1

(−1)ki(2xi)ni

ki!ni!
(Ai +

1
2
iI)ni−ki

.
(7.15)

We notice that the case r = 1 in (7.14) reduces to the matrix version of the generalized Ultraspherical
polynomials introduced in equation (3.3).

The above results, though far from completing the argument, can give a notion of the usefulness
of the present method for the identification of suitable generalizations of known matrix functions.
Moreover, they represent a starting point for the development of a unified theory of orthogonal
matrix polynomials, which will be the subject of for coming works, the matrix extension of the
multivariable Ultraspherical polynomial will be introduced. Various families of linear, multilinear
and multilateral generating matrix functions of these matrix polynomial will be presented, actually
in preparation, then unfortunately distended by further studies. Miscellaneous applications will be
also discussed. The results of this paper are original, variant, significant and so it is interesting and
capable to develop its study in the future.
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