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Abstract. The aim of this paper is to extend some results of Feng and Liu ,

Klim and Wardowski , Ćirić and others from the context of metric spaces to
cone metric spaces by using the concept of sequentially lower semicontinuous.

Examples are provided to illustrate the theory.

1. introduction and Preliminaries

Banach contraction principle is widely recognized as the source of metric fixed
point theory. This principle plays an important role in several branches of math-
ematics. A multivalued version of the Banach contraction principle was obtained
by Nadler [15] using the concept of the Hausdorff metric. Recently, Feng and Liu
[7] extended Nadler’s result without using the concept of the Hausdorff metric as
follow:

Theorem 1.1. (Feng-Liu [7], Theorem 3.1) Let (X, d) be a complete metric space
and let T be a mapping from X into Cl(X). If there exist constants b, c ∈ (0, 1), c <
b, such that for any x ∈ X there is y ∈ Tx satisfying the following two conditions:

bd(x, y) ≤ d(x, Tx)

and
d(y, Ty) ≤ cd(x, y)

Then there exists z ∈ X such that z ∈ Tz provided a function f(x) = d(x, Tx), for
each x ∈ X, is lower semicontinuous.

Moreover, Klim and Wardowski [10] generalized Theorem 1.1 of Feng and Liu
and proved the following theorem:

Theorem 1.2. (Klim and Wardowski [10], Theorem 2.1) Let (X, d) be a complete
metric space and let T be a mapping from X into Cl(X). Assume that the following
conditions hold:

(i) the map f : X → R; defined by f(x) = d(x, Tx), for each x ∈ X, is lower
semicontinuous;

(ii) there exist a constant b ∈ (0, 1) and a function φ : [0,∞)→ [0, b) such that

lim sup
r→t+

φ(r) < b, for each t ∈ [0,∞)

2000 Mathematics Subject Classification. 54H25, 54C60, 54E50.
Key words and phrases. cone metric; fixed point; multivalued map.

1



2 FAWZIA SHADDAD*, MOHD SALMI MD NOORANI AND SAUD M. ALSULAMI

and such that for any x ∈ X there is y ∈ Tx satisfying the conditions

bd(x, y) ≤ d(x, Tx)

and
d(y, Ty) ≤ φ(d(x, y))d(x, y).

Then there exists z ∈ X such that z ∈ Tz.

Recently, Ćirić [6] generalized Theorem 1.1( Theorem 3.1 of Feng and Liu) and
Theorem 1.2 ( Theorem 2.1 of Klim and Wardowski). He proved the following
theorem:

Theorem 1.3. (Ćirić [6], Theorem 2.1) Let (X, d) be a complete metric space and
let T be a mapping from X into Cl(X). Suppose that the function f : X → R;
defined by f(x) = d(x, Tx), for each x ∈ X, is lower semicontinuous and that there
exists a function φ : [0,∞)→ [a, 1), 0 < a < 1, satisfying

lim sup
r→t+

φ(r) < 1, for each t ∈ [0,∞).

Assume that for any x ∈ X there is y ∈ Tx satisfying the following two conditions:√
φ(f(x))d(x, y) ≤ f(x),

and
f(y) ≤ φ(f(x))d(x, y).

Then there exists z ∈ X such that z ∈ Tz.

In 2007, Huang and Zhang [8] generalized the concept of a metric space, replac-
ing the set of real numbers by an ordered Banach space and obtained some fixed
point theorems for mappings satisfying different contractive conditions. Whereas,
Rezapour and Hamlbarani [16] omitted the assumption of normality in cone metric
spaces, which is a milestone in developing fixed point theory in cone metric spaces.
In 2009, Wardowski [17] introduced the concept of multivalued contractions in cone
metric spaces and proved the following theorem:

Theorem 1.4. (Wardowski [17], Theorem 3.1) Let (M,d) be a complete cone met-
ric space, P be a normal cone with normal constant K, and let T : M → C(M).
Assume that a function I : M → R defined by I(x) = infy∈Tx ||d(x, y)||, x ∈ M is
lower semicontinuous. If there exist λ ∈ (0, 1), b ∈ (λ, 1] such that

∀x∈M∃y∈Tx∃v∈D(y,Ty)∀u∈D(x,Tx){[bd(x, y) � u] ∧ [v � λd(x, y)]},

then Fix(T ) 6= ∅.

Since then, numerous authors have started to generalize fixed point theorems in
many various directions. For some recent results (see, e.g., [1, 2, 3, 11, 12, 14, 18]).

Now we recall some known notions, definitions and results for cone metric spaces
which will be used in this work. Let E be a real Banach space and P be a subset
of E. P is called a cone if and only if

(1) P is closed, P 6= ∅, P 6= {0};
(2) for all x, y ∈ P ⇒ αx+ βy ∈ P , where α, β ∈ R+;
(3) P ∩ −P = {0}.
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For a given cone P ⊂ E, we define a partial ordering � with respect to P by the
following: for x, y ∈ E, we say that x � y if and only if y − x ∈ P . Also, we write
x� y for y − x ∈ intP , where intP denotes the interior of P (for details see [8]).

In this paper, we always suppose that E is a real Banach space, P is a cone in
E with intP 6= ∅, and � is a partial ordering with respect to P .

Definition 1.5. [8] Let X be a nonempty set. Suppose the mapping d : X×X → E
satisfies

(d1) 0 � d(x, y) for all x, y ∈ X, and d(x, y) = 0 if and only if x = y
(d2) d(x, y) = d(y, x) for all x, y ∈ X
(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.6. [8] Let (X, d) be a cone metric space and {xn} a sequence in X.
Then

(1) {xn} converges to x ∈ X whenever for every c ∈ E with 0 � c, there is a
natural number N such that d(xn, x)� c for all n ≥ N ; we denote this by
limn→∞ xn = x or xn → x;

(2) {xn} is a Cauchy sequence whenever for every c ∈ E with 0� c, there is a
natural number N such that d(xn, xm)� c for all n,m ≥ N ;

(3) (X, d) is said to be complete if every Cauchy sequence in X is convergent
in X;

(4) A set A ⊆ X is said to be closed if for any sequence {xn} ⊂ A converges
to x, we have x ∈ A.

(5) A map f : X → R is called lower semicontinuous if for any sequence
{xn} ⊂ X such that xn → x ∈ X, we have f(x) ≤ lim infn→∞ f(xn).

Lemma 1.7. [8] Let (X, d) be a cone metric space, and P be a normal cone with
normal constant K. Let {xn} be any sequence in X. Then

(1) {xn} converges to x ∈ X if and only if d(xn, x)→ 0, as n→∞;
(2) {xn} is a Cauchy sequence if and only if d(xn, xm)→ 0, as n,m→∞.

The following remark is often used (in particular when dealing with cone metric
spaces in which the cone need not be normal):

Remark 1.8. [9]
(1) If u � v and v � w, then u� w.
(2) If 0 � u� c for each c ∈ intP , then u = 0.
(3) If u � v + c for each c ∈ intP , then u � v.
(4) If 0 � x � y and 0 ≤ a, then 0 � ax � ay.
(5) If 0 � xn � yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then

0 � x � y.
(6) If c ∈ intP, 0 � an and an → 0, then there exists n0 such that for all

n > n0 we have an an � c.

Let (X, d) be a cone metric space. We denote 2X as a collection of nonempty
subsets of X, Cl(X) as a collection of nonempty closed subsets of X and B(X)
as a collection of nonempty bounded subsets of X. An element x ∈ X is called a
fixed point of a multivalued map T : X → 2X if x ∈ Tx. Denote Fix(T ) = {x ∈
X : x ∈ Tx}. For T : X → Cl(X), and x ∈ X we denote D(x, Tx) = {d(x, z) :
z ∈ Tx}. According to [3], we denote s(p) = {q ∈ E : p � q} for p ∈ E, and
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s(a,B) = ∪b∈Bs(d(a, b)) for a ∈ X and B ∈ 2X . For A,B ∈ B(X) we denote
s(A,B) = (∩a∈As(a,B)) ∩ (∩b∈Bs(b, A)).

In 2012, Cho at el.[4] defined sequentially lower semicontinuous as follow

Definition 1.9. Let (X, d) be a cone metric space, and let A ∈ 2X . A function h :
X → 2P −{∅} defined by h(x) = s(x,A) is called sequentially lower semicontinuous
if for any c ∈ intP, there exists n0 ∈ N such that h(xn) ⊂ h(x) − c for all n ≥ n0,
whenever limn→∞ xn = x for any sequence {xn} ⊂ X and x ∈ X.

The aim of this paper is to present more general results which unify and gener-
alize the corresponding results of Feng and Liu [7], Klim and Wardowski [10], Ćirić
[5],[6] and Wardowski [17] by using the concept of sequentially lower semicontin-
uous. We support our results by examples. In this paper we do not impose the
normality condition for the cones, the only assumption is that the cone P is solid,
that is intP 6= ∅

2. The Main Results

Theorem 2.1. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exist functions φ : P → [0, 1) and ψ : P → [γ, 1), 0 < γ < 1,
satisfying

(i) lim supn→∞ φ(rn)/ψ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ;
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

αψ(u)d(x, y) � u,

and
v � βφ(u)d(x, y),

where α, β ∈ (0, 1] with 0 < β/α ≤ 1.
Moreover, assume that a function h defined by h(x) = s(x, Tx) is sequentially lower
semicontinuous. Then T has a fixed point in X.

Proof. Let x0 ∈ X be arbitrary and fixed. Take any u0 ∈ D(x0, Tx0) then from
(ii) there exist x1 ∈ Tx0 and u1 ∈ D(x1, Tx1) such that

αψ(u0)d(x0, x1) � u0,

and
u1 � βφ(u0)d(x0, x1);

If x1 = x0, then x0 is a fixed point of T . Let x1 6= x0. Now by induction, we can
construct a sequence {xn}n≥0 such that for xn ∈ X,un ∈ D(xn, Txn) there exist
xn+1 ∈ Txn with xn+1 6= xn for n ∈ N∪{0} and un+1 ∈ D(xn+1, Txn+1) such that

(2.1) αψ(un)d(xn, xn+1) � un,

and

(2.2) un+1 � βφ(un)d(xn, xn+1),

from (2.1) and (2.2) we get that

(2.3) un+1 � (β/α)
φ(un)
ψ(un)

un.
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From (2.3) it is not difficult to show that {un}n≥0 is a decreasing sequence. From
(i) there exist b ∈ (0, 1) and n0 ∈ N ∪ {0} such that

φ(un)
ψ(un)

< b, for all n ≥ n0.

Without loss of generality, we assume n0 = 0. Then, by (2.3) we get the following

un �
φ(un−1)
ψ(un−1)

un−1 �
φ(un−1)
ψ(un−1)

φ(un−2)
ψ(un−2)

un−2 � u0

n−1∏
i=0

φ(ui)
ψ(ui)

.

Hence,

(2.4) un � bnu0.

Now, since γ ≤ ψ(un) for all n ≥ 0, we obtain from (2.1) that d(xn, xn+1) �
(1/αγ)un. By (2.4) we get

(2.5) d(xn, xn+1) � bn

αγ
u0 for all n ≥ n0.

For n > m we have

d(xm, xn) �
n−1∑
i=m

d(xi, xi+1)

� 1
αγ

u0

n−1∑
i=m

bi

=
bm

αγ
u0

n−m−1∑
i=0

bi

� bm

αγ(1− b)
u0.

For c ∈ intP and by remark 1.8(1) and (6), we deduce that d(xm, xn) � c for
n > m ≥ N1 which means {xn}n≥0 is a Cauchy sequence in (X, d). Thus, there
exists x∗ ∈ X such that limn→∞ xn = x∗.

Now, we want to show that x∗ ∈ Tx∗. h is sequentially lower semicontinuous,
so for any c ∈ intP, there exists N2 ∈ N such that s(xn, Txn) ⊂ s(x∗, Tx∗) − c/2
and d(xn, xn+1) � c/2 for each n ≥ N2. Thus, there exists zn ∈ Tx∗ such that
d(x∗, zn)− c/2 � d(xn, xn+1). By Remark 1.8 (1) we obtain that d(x∗, zn)− c/2�
c/2 which implies d(x∗, zn)� c. Then zn → x∗. As Tx∗ is closed, then x∗ ∈ Tx∗,
hence x is a fixed point of T . �

If α = β = 1, we get the following theorem which is a generalization of Theorem
3.1 of Feng and Liu [7], Theorem 2.1 of Klim and Wardowski [10] and Theorem 6
of Ćirić [5] from metric space to cone metric space. Moreover, it is an extension of
Theorem 3.1 of Wardowski [17] without using the normality of P .

Theorem 2.2. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exist functions φ : P → [0, 1) and ψ : P → [γ, 1), 0 < γ < 1,
satisfying

(i) φ(t) ≤ ψ(t) for each t ∈ P and lim supn→∞ φ(rn)/ψ(rn) < 1, for any decreas-
ing sequence {rn}n≥0 in P ;
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(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

ψ(u)d(x, y) � u,
and

v � φ(u)d(x, y).
Furthermore, assume that a function h defined by h(x) = s(x, Tx) is sequentially
lower semicontinuous. Then T has a fixed point in X.

Proof. As in the proof of Theorem 2.1, we have a sequence {xn}n≥0 in X with
xn+1 6= xn, un ∈ D(xn, Txn) and xn+1 ∈ Txn for all n ≥ 0 such that

(2.6) ψ(un)d(xn, xn+1) � un,

and

(2.7) un+1 � φ(un)d(xn, xn+1).

Since φ(un) ≤ ψ(un) for each n ≥ 0, we get that {un}n≥0 is a decreasing sequence.
From (2.6) and (2.7) we obtain that

un+1 �
φ(un)
ψ(un)

un.

Then we use a similar argument to that given in the proof of Theorem 2.1 to
complete the proof. �

The following result is a generalization of Theorem 2.1 of Ćirić [6] to the setting
of cone metric spaces.

Corollary 2.3. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exists a function φ : P → [γ, 1), 0 < γ < 1, satisfying

(i) lim supn→∞ φ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ,
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

α
√
φ(u)d(x, y) � u,

and
v � βφ(u)d(x, y),

where 0 < β ≤ α ≤ 1.
Moreover, assume that a function h defined by h(x) = s(x, Tx) is sequentially lower
semicontinuous. Then T has a fixed point in X.

Proof. Let ψ : P → [
√
γ, 1) be defined as ψ(t) =

√
φ(t) for each t ∈ P. Then by

applying Theorem 2.1 we get the desired result. �

Theorem 2.4. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exist functions φ : P → [0, 1) and ψ : P → [γ, 1), 0 < γ < 1,
satisfying

(i) lim supn→∞ φ(rn)/ψ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ,
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

αψ(d(x, y))d(x, y) � u,
and

v � βφ(d(x, y))d(x, y),
where 0 < β/α ≤ γ.
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Furthermore, assume that a function h defined by h(x) = s(x, Tx) is sequentially
lower semicontinuous. Then T has a fixed point in X.

Proof. Let x0 ∈ X be arbitrary and fixed. Take any u0 ∈ D(x0, Tx0) then from
(ii) there exist x1 ∈ Tx0 and u1 ∈ D(x1, Tx1) such that

(2.8) αψ(d(x0, x1))d(x0, x1) � u0,

and

(2.9) u1 � βφ(d(x0, x1))d(x0, x1);

If x1 = x0, then x0 is a fixed point of T . Let x1 6= x0. From (2.8) and (2.9) we get
that

u1 � (β/α)
φ(d(x0, x1))
ψ(d(x0, x1))

u0.

Now, we choose x2 ∈ Tx1 and u2 ∈ D(x2, Tx2) such that

(2.10) αψ(d(x1, x2))d(x1, x2) � u1,

and
u2 � βφ(d(x1, x2))d(x1, x2),

from (2.9) and (2.10) we obtain

αψ(d(x1, x2))d(x1, x2) � βφ(d(x0, x1))d(x0, x1).

Since γ ≤ ψ(d(x1, x2)) and φ(d(x0, x1)) < 1 we have

αγd(x1, x2) � βd(x0, x1).

Thus,

(2.11) d(x1, x2) � (β/αγ)d(x0, x1)

but β/α ≤ γ, so that d(x1, x2) � d(x0, x1). By continuing this process, there exists
an iterative sequence {xn}n≥0 such that for xn ∈ X,un ∈ D(xn, Txn) there exist
xn+1 ∈ Txn with xn+1 6= xn for n ∈ N∪{0} and un+1 ∈ D(xn+1, Txn+1) such that

(2.12) αψ(d(xn, xn+1))d(xn, xn+1) � un,

and

(2.13) un+1 � βφ(d(xn, xn+1))d(xn, xn+1),

from (2.12) and (2.13) we get that

(2.14) un+1 � (β/α)
φ(d(xn, xn+1))
ψ(d(xn, xn+1))

un.

From (2.13), we have

(2.15) un � βφ(d(xn−1, xn))d(xn−1, xn).

From (2.12), (2.15) and ψ(d(xn, xn+1)) ≥ γ we conclude that {d(xn, xn+1)}n≥0 is
decreasing. Now, from (i) there exist b ∈ (0, 1) and n0 ∈ N ∪ {0} such that

(2.16)
φ(d(xn, xn+1))
ψ(d(xn, xn+1))

< b, for all n ≥ n0.

Then by using a similar argument to that given in the proof of Theorem 2.1, we
have that x∗ ∈ Tx∗. �
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Remark 2.5. In Theorem 2.4, if α = β = 1 then the condition φ(t) ≤ ψ(t) for each
t ∈ P will be essentially. Moreover, if φ(t) and ψ(t) are constant functions in both
Theorem 2.4 and Theorem 2.1, then these theorems will be the same.

Remark 2.6. If we take φ(t) ≤ (ψ(t))2 for each t ∈ P in Theorem 2.4, we will get
the following corollary which is analogue of Theorem 3.2 of Lin and Chuang [13].

Corollary 2.7. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exist functions φ : P → [0, 1) and ψ : P → [γ, 1), 0 < γ < 1,
satisfying

(i) lim supn→∞ ψ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ;
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

αψ(d(x, y))d(x, y) � u,
and

v � βφ(d(x, y))d(x, y),
where α, β ∈ (0, 1] with 0 < β/α ≤ 1 and φ(t) ≤ (ψ(t))2 for each t ∈ P .

Moreover, assume that a function h defined by h(x) = s(x, Tx) is sequentially lower
semicontinuous. Then T has a fixed point in X.

The following corollary is a generalization of Theorem 2.2 of Ćirić [6].

Corollary 2.8. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exists a function φ : P → [γ, 1), 0 < γ < 1, satisfying

(i) lim supn→∞ φ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ,
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

α
√
φ(d(x, y))d(x, y) � u,

and
v � βφ(d(x, y))d(x, y),

where 0 < β/α ≤ √γ.
Furthermore, assume that a function h defined by h(x) = s(x, Tx) is sequentially
lower semicontinuous. Then T has a fixed point in X.

The following example illustrates Theorem 2.2

Example 2.9. Let X = [0, 1], E = R2 be a Banach space with the maximum
norm and P = {(x, 0) ∈ E : x ≥ 0}. Let d : X × X −→ E be of the form
d(x, y) = (|x− y|, 0) and let T : X → Cl(X) be such that

Tx =

 {x/3}, if x ∈ [0, 1),

{0, 1/2, 2/7}, if x = 1.

Let φ and ψ be constant functions defined as φ(u) = 2/3 and ψ(u) = 3/4. Note
that

h(x) =

 ∪x∈[0,1){q ∈ R2 : ( 2x
3 , 0) ≤ q},

{q ∈ R2 : ( 1
2 , 0) ≤ q} if x = 1.

Then h is sequentially lower semicontinuous. Further, for any x ∈ [0, 1), we have

Tx = {x/3} and D(x, Tx) = {(2x/3, 0)},
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and there exists y = x/3 ∈ Tx with

Ty = {x/9} and D(y, Ty) = {(2x/9, 0)}.

Now,
ψ(u)d(x, y) = 3/4(2x/3, 0) ≤ u where u ∈ D(x, Tx)

and
v = (2x/9, 0) ≤ 2/3(2x/3, 0) = φ(u)d(x, y);

Now, for x = 1, we have Tx = {0, 1/2, 2/7} and D(x, Tx) = {(1, 0), (1/2, 0), (5/7, 0)},
so we can choose y = 1/2 and then Ty = {1/6} and v = (1/3, 0) ∈ D(y, Ty). Thus

ψ(u)d(x, y) = 3/4(1/2, 0) ≤ u for each u ∈ D(x, Tx)

and
v ≤ 2/3(1/2, 0) = φ(u)d(x, y);

Hence, all the hypotheses of Theorem 2.2 are satisfied. Therefore, 0 is a fixed points
of T .

Now we shall prove a fixed point theorem for multivalued nonlinear contractions,
which is a generalization of Theorem 5 of Ćirić [5] in the setting of cone metric space.

Theorem 2.10. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exist φ : P → [0, 1) and η : X → [0, 1] satisfy the following

(i) lim supn→∞ tnφ(rn/tn) < 1, for any decreasing sequence {rn}n≥0 in P and
for any sequence {tn} in [0, 1],

(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

d(x, y) � (2− η(x)φ(d(x, y)))u,

and
v � η(x)φ(d(x, y))d(x, y),

(iii) for any x ∈ X there exist y ∈ Tx and z ∈ Ty such that η(y)d(y, z) �
η(x)d(x, y).

Moreover, assume that a function h defined by h(x) = s(x, Tx) is sequentially lower
semicontinuous. Then T has a fixed point in X.

Proof. Let x0 ∈ X be arbitrary and fixed. Take any u0 ∈ D(x0, Tx0) then from
(ii) there exist x1 ∈ Tx0 and u1 ∈ D(x1, Tx1) such that

(2.17) d(x0, x1) � (2− η(x0)φ(d(x0, x1)))u0,

and

(2.18) u1 � η(x0)φ(d(x0, x1))d(x0, x1).

If x1 = x0, then x0 is a fixed point of T . Let x1 6= x0, from (2.17) and (2.18) we
get that

(2.19) u1 � η(x0)φ(d(x0, x1))(2− η(x0)φ(d(x0, x1)))u0.

Now, we put a function ψ from P into [0, 1) by

(2.20) ψ(η(x)d(x, y)) = η(x)φ(d(x, y))(2− η(x)φ(d(x, y))).

That is,
ψ(η(x)d(x, y)) = 1− (1− η(x)φ(d(x, y)))2.
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And ψ(η(x)d(x, y)) < 1. By (2.19) and (2.20) we obtain

u1 � ψ(η(x0)d(x0, x1))u0.

Now, we choose x2 ∈ Tx1 and u2 ∈ D(x2, Tx2) such that

(2.21) d(x1, x2) � (2− η(x1)φ(d(x1, x2)))u1

and

(2.22) u2 � η(x1)φ(d(x1, x2))d(x1, x2)

by (2.20), (2.21) and (2.22) we have

u2 � ψ(η(x1)d(x1, x2))u1,

and
η(x1)d(x1, x2) � η(x0)d(x0, x1).

Now by induction, we can construct a sequence {xn}n≥0 such that for xn ∈ X,un ∈
D(xn, Txn) there exist xn+1 ∈ Txn with xn+1 6= xn for n ∈ N ∪ {0} and un+1 ∈
D(xn+1, Txn+1) such that

(2.23) d(xn, xn+1) � (2− η(xn)φ(d(xn, xn+1)))un

and
un+1 � η(xn)φ(d(xn, xn+1))d(xn, xn+1).

By (2.20) we obtain

(2.24) un+1 � ψ(η(xn)d(xn, xn+1))un.

Furthermore,
η(xn)d(xn, xn+1) � η(xn−1)d(xn−1, xn).

Now, we have the sequence {η(xn)d(xn, xn+1)}n≥0 which is decreasing. By choosing
tn = (1, 1, 1, . . .) in (i) then there exist b ∈ (0, 1) and n0 ∈ N ∪ {0} such that

ψ(η(xn)d(xn, xn+1)) < b, for all n ≥ n0.

Without loss of generality, we can take n0 = 0. Then, by (2.24) we get the following

un � ψ(η(xn−1)d(xn−1, xn))un−1 � · · · �
n−1∏
i=0

ψ(η(xi)d(xi, xi+1))u0.

That is,

(2.25) un � bnu0.

From (2.23) we have
d(xn, xn+1) � 2un,

and by (2.25) we obtain
d(xn, xn+1) � 2bnu0.

For n > m, we have

d(xm, xn) �
n−1∑
i=m

d(xi, xi+1)

� 2bmu0

n−m−1∑
i=0

bi

� 2bm

1− b
u0
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Thus, for c ∈ intP we have (2bm/1 − b)u0 � c, for all m ≥ N1. Using Remark
1.8 (1), we deduce that d(xm, xn) � c for n > m ≥ N1. Then {xn}n≥0 is a
Cauchy sequence in a complete cone metric space X, so there exists x∗ ∈ Xsuch
that limn→∞ xn = x∗. Then using the same argument that given in the proof of
Theorem 2.1, we get that x∗ ∈ Tx∗. �

Corollary 2.11. Let (X, d) be a complete cone metric space and T : X → Cl(X).
Assume that there exists a function φ : P → [0, 1) satisfy the following

(i) lim supn→∞ φ(rn) < 1, for any decreasing sequence {rn}n≥0 in P ;
(ii) for any x ∈ X,u ∈ D(x, Tx), there exist y ∈ Tx and v ∈ D(y, Ty) such that

d(x, y) � (2− φ(d(x, y)))u,

and
v � φ(d(x, y))d(x, y),

(iii) d(y, z) � d(x, y) for x ∈ X and some y ∈ Tx and z ∈ Ty.
Furthermore, assume that a function h defined by h(x) = s(x, Tx) is sequentially
lower semicontinuous. Then T has a fixed point in X.

The following example illustrate Theorem 2.10

Example 2.12. Let X = [0, 1/2], E = R2 be a Banach space with the maximum
norm and P = {(x, y) ∈ E : x, y ≥ 0}. Let d : X × X −→ E be of the form
d(x, y) = (|x− y|, β|x− y|), where β < 1 and let T : X → Cl(X) be such that

Tx =

 {x2/2}, if x ∈ [0, 1/3) ∪ (1/3, 1/2],

{0, 1/3}, if x = 1/3.

Let φ : P → [0, 1) be defined as

φ(s, t) =

 s+ 1/2, if s and t ∈ [0, 1/2),

5/8, if s or t /∈ [0, 1/2).

and η : X → [0, 1] such that η(x) = x. Note that

h(x) =

 ∪x∈[0,1/2]−{1/3}{q ∈ R2 : (x− x2/2, β(x− x2/2)) ≤ q},

{q ∈ R2 : (0, 0) ≤ q} if x = 1
3 .

Then h is sequentially lower semicontinuous. Further, for any x ∈ [0, 1/3) ∪
(1/3, 1/2], we have

Tx = {x2/2} and D(x, Tx) = {(x− x2/2, β(x− x2/2))},

and there exists y = x2/2 ∈ Tx with

Ty = {x4/8} and D(y, Ty) = {(x2/2− x4/8, β(x2/2− x4/8))}.

Now, since φ(d(x, y)) and η(x) ≤ 1,

d(x, y) = (x− x2/2, β(x− x2/2)) ≤ (2− η(x)φ(d(x, y)))u for u ∈ D(x, Tx).

Since x ≤ 1/2, x− x2/2 and β(x− x2/2) ∈ [0, 1/2) for any x ∈ X. Therefore,

v � η(x)φ(d(x, y))d(x, y) for v ∈ D(y, Ty).
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Now, for x = 1/3, we have Tx = {0, 1/3} and D(x, Tx) = {(0, 0), (1/3, β/3)} so
we can choose y = 1/3 and v = (0, 0) ∈ D(y, Ty) = {(0, 0), (1/3, β/3)} such that

d(x, y) � (2− η(x)φ(d(x, y)))u,

and
v � η(x)φ(d(x, y))d(x, y);

Hence, the condition (ii) is satisfy for x ∈ X.
For x ∈ [0, 1/3) ∪ (1/3, 1/2] we take y = x2/2 ∈ Tx and z = x4/8 ∈ Ty, for

x = 1/3 we choose y = 1/3 and z = 1/3. Thus, η(y)d(y, z) � η(x)d(x, y) for any
x ∈ X. Thus 0 and 1/3 are fixed points of T .
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