Trees with 2-reinforcement number three*

You Lu ${ }^{a \dagger}$ Weijie Song ${ }^{a}$ Hai-Long Yang ${ }^{b}$
${ }^{a}$ Department of Applied Mathematics,
Northwestern Polytechnical University,
Xi'an Shaanxi 710072, P. R. China
${ }^{b}$ College of Mathematics and Information Science, Shaanxi Normal University,
Xi'an, Shaanxi 710062, P. R. China

Abstract

A vertex subset S of a graph G is a 2 -dominating set of G if every vertex not in S is adjacent to two vertices of S. The 2-domination number $\gamma_{2}(G)$ is the minimum cardinality of a 2-dominating set of G. The 2-reinforcement number $r_{2}(G)$ is the smallest number of extra edges whose addition to G results in a graph G^{\prime} with $\gamma_{2}\left(G^{\prime}\right)<\gamma_{2}(G)$. Let T be a tree. It is showed by Lu, Hu and Xu that $r_{2}(T) \leq 3$. In this paper, we will show that $r_{2}(T)=3$ if and only if there is a 2 -dominating set S of T such that T contains neither S-vulnerable vertices nor S-vulnerable paths.

Keywords: 2-domination, 2-reinforcement number, S-vulnerable, trees
Mathematics Subject Classification (2010): 05C69, 05C75

1 Introduction

For terminology and notation not defined here we refer the reader to $[6,13,14]$. Let $G=(V(G), E(G))$ be a simple graph and $x \in V(G)$. The open neighborhood, the closed neighborhood and the degree of x are denoted by $N_{G}(x)=\{y \mid x y \in E(G)\}, N_{G}[x]=$ $N_{G}(x) \cup\{x\}$ and $d_{T}(x)=\left|N_{G}(x)\right|$, respectively. A vertex of degree one is called a leaf and its neighbor is called a stem. Let S be a subset of $V(G)$ with $x \in S$. A vertex $y \in N_{G}(x)$ is called a 2-private neighbor of x with respect to S if $y \notin S$ and $\left|N_{G}(y) \cap S\right|=2$. The 2-private neighborhood of x with respect to S, denoted by $N_{2}(x, S, G)$, is defined as the set of 2-private neighbors of x with respect to S in G.

For any $S \subseteq V(G)$, the subgraph induced by $V(G)-S$ is denoted by $G-S$. For $B \subseteq E(G)$, we use $G-B$ to denote the subgraph with vertex set $V(G)$ and edge set $E(G)-B$. To simplify notation, if $S=\{v\}$ and $B=\{x y\}$, we write $G-v$ and $G-x y$ for $G-\{v\}$ and $G-\{x y\}$, respectively.

[^0]Let p be a positive integer. In 1985, Fink and Jacobson [11] introduced the concept of p-domination. A set S of $V(G)$ is a p-dominating set of G if for each vertex $x \in V(G) \backslash S$, $\left|N_{G}(x) \cap S\right| \geq p$. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality of a p dominating set of G. A p-dominating set with cardinality $\gamma_{p}(G)$ is called a $\gamma_{p}(G)$-set. Note that the $\gamma_{1}(G)$-set is the well-known minimum dominating set of G, and so $\gamma_{1}(G)=\gamma(G)$. For $S, T \subseteq V(G), S$ p-dominates T if $\left|N_{G}(x) \cap S\right| \geq p$ for each $x \in T \backslash S$. Up to the present, p-domination have been studied by a number of researchers (see, for example, $[1,2,3,4,7,8,9,10,12,18,22,24])$.

In order to investigate the vulnerability of p-domination, Lu, Hu and $\mathrm{Xu}[20]$ recently introduce the p-reinforcement number $r_{p}(G)$ of a graph G, which is the smallest number of extra edges whose addition to G results in a graph G^{\prime} with $\gamma_{p}\left(G^{\prime}\right)<\gamma_{p}(G)$. If $\gamma_{p}(G) \leq p$, they define $r_{p}(G)=0$. Clearly, the p-reinforcement number is a generalization of the classical reinforcement number which was introduced by Kok and Mynhardt [19] and studied by some authors $[5,15,16,17,25]$. In [20], the authors presented an equivalent parameter for calculating $r_{p}(G)$. As applications of this parameter, they showed that the decision problem on $r_{p}(G)$ is NP-hard and established some upper bounds of $r_{p}(G)$. In particular, they obtained the following result.

Theorem $1.1([20]) r_{p}(T) \leq p+1$ for any tree T and $p \geq 2$.
In [23], Lu and Xu gave a constructive characterization of the trees attaining the upper bound in Theorem 1.1 when $p \geq 3$. However, for $p=2$, the characterization is invalid because a key conclusion is not true. In this paper, we will present an equivalent condition for all trees with 2-reinforcement number 3. For this purpose, we introduce two additional notations.

Let S be a vertex subset of a graph G. A vertex $x \in S$ is S-vulnerable in G if

$$
\begin{equation*}
\left|N_{2}(x, S, G)\right| \leq \min \left\{2,\left|N_{G}(x) \cap S\right|\right\} \tag{1.1}
\end{equation*}
$$

Let ℓ be a positive integer. A path $P=x_{0} x_{1} \ldots x_{\ell}$ is S-vulnerable in G if
(1) $S \cap V(P)$ is a 2-dominating set of P, and
(2) for every $x \in S \cap V(P)$,

$$
\left|N_{2}(x, S, G) \backslash V(P)\right| \leq \begin{cases}\min \left\{1,\left|N_{G}(x) \cap S\right|\right\} & \text { if } x \in\left\{x_{0}, x_{\ell}\right\} \tag{1.2}\\ 0 & \text { if } x \notin\left\{x_{0}, x_{\ell}\right\}\end{cases}
$$

We now state our main result as follows.
Theorem 1.2 Let T be a tree. Then $r_{2}(T)=3$ if and only if there exists a 2-dominating set S of T such that T contains neither S-vulnerable vertices nor S-vulnerable paths.

In Section 2, we will give some lemmas which will be used later. The proof of Theorem 1.2 is postponed to Sections 3.

2 Lemmas

Let G be a graph and $X \subseteq V(G)$ with $|X| \geq 2$. For any $x \in V(G)$, define

$$
\eta_{2}(x, X, G)= \begin{cases}\max \left\{0,2-\left|N_{G}(x) \cap X\right|\right\} & \text { if } x \notin X \tag{2.1}\\ 0 & \text { if } x \in X\end{cases}
$$

and then there is a subset $B_{x} \subseteq E\left(G^{c}\right)$ with $\left|B_{x}\right|=\eta_{2}(x, X, G)$ such that x can be 2dominated by X in $G+B_{x}$, where G^{c} is the complement of G. Hence X is a 2 -dominating set of $G+\left(\cup_{x \in V(G)} B_{x}\right)$. By the definition of r_{2},

$$
r_{2}(G) \leq\left|\cup_{x \in V(G)} B_{x}\right|=\sum_{x \in V(G)} \eta_{2}(x, X, G) .
$$

Motivated by this inequality, Lu, Hu and $\mathrm{Xu}[20]$ define for any $X, S \subseteq V(G)$,

$$
\begin{equation*}
\eta_{2}(S, X, G)=\sum_{x \in S} \eta_{2}(x, X, G) \tag{2.2}
\end{equation*}
$$

and give the following two lemmas.
Lemma 2.1 ([20]). Let G be a graph with $\gamma_{2}(G) \geq 3$. Then

$$
r_{2}(G)=\min \left\{\eta_{2}(V(G), X, G): X \subseteq V(G) \text { with }|X|<\gamma_{2}(G)\right\}
$$

A set $X \subseteq V(G)$ is called an $\eta_{2}(G)$-set if $|X|<\gamma_{2}(G)$ and $r_{2}(G)=\eta_{2}(V(G), X, G)$.
Lemma 2.2 ([20]). Let G be a graph. If X is an $\eta_{2}(G)$-set, then $|X|=\gamma_{2}(G)-1$.
Lemma 2.3 Let G be a graph containing a path $P=x y_{1} y_{2} y_{3} z$ with $d_{G}\left(y_{i}\right)=2$ for $i=1,2,3$. Denote by G^{\prime} the graph obtained from G by replacing $\left\{y_{1}, y_{2}, y_{3}\right\}$ with a single vertex y adjacent to x and z. If $\gamma_{2}\left(G^{\prime}\right) \geq 3$, then $r_{2}(G) \geq \min \left\{3, r_{2}\left(G^{\prime}\right)\right\}$.

Proof. Notice that $N_{G^{\prime}}(y)=\{x, z\}$. Let D be a $\gamma_{2}\left(G^{\prime}\right)$-set. If $y \notin D$, to 2-dominate y, $x \in D$ and $z \in D$, and hence $D \cup\left\{y_{2}\right\}$ is a 2-dominating set of G, which means that

$$
\begin{equation*}
\gamma_{2}(G) \leq\left|D \cup\left\{y_{2}\right\}\right|=|D|+1=\gamma_{2}\left(G^{\prime}\right)+1 . \tag{2.3}
\end{equation*}
$$

If $y \in D$, then let $S=(D \backslash\{y\}) \cup\left\{y_{1}, y_{3}\right\}$. Clearly, $\left|N_{G}(x) \cap S\right|=\left|N_{G^{\prime}}(x) \cap D\right|$ and $\left|N_{G}(z) \cap S\right|=\left|N_{G^{\prime}}(z) \cap D\right|$. It follows that $\{x, z\}$ is 2-dominated by S. Since $D \backslash\{y\}$ 2-dominates $V\left(G^{\prime}\right) \backslash\{x, y, z\}(=V(G) \backslash V(P))$ and $N_{G}\left(y_{2}\right)=\left\{y_{1}, y_{3}\right\}, S$ is a 2-dominating set of G, and thus

$$
\begin{equation*}
\gamma_{2}(G) \leq|S|=\left|(D \backslash\{y\}) \cup\left\{y_{1}, y_{3}\right\}\right|=|D|+1=\gamma_{2}\left(G^{\prime}\right)+1 . \tag{2.4}
\end{equation*}
$$

Summing up (2.3) and (2.4), we obtain that $\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+1$.
In the following, we show that $r_{2}(G) \geq \min \left\{3, r_{2}\left(G^{\prime}\right)\right\}$. Suppose, to be contrary, that $r_{2}(G)<\min \left\{3, r_{2}\left(G^{\prime}\right)\right\}$, and let X be an $\eta_{2}(G)$-set such that $\left|X \cap\left\{y_{1}, y_{2}, y_{3}\right\}\right|$ is as small as possible. Then Lemmas 2.1 and 2.2 yield that

$$
\begin{equation*}
\eta_{2}(V(G), X, G)=r_{2}(G)<\min \left\{3, r_{2}\left(G^{\prime}\right)\right\} \tag{2.5}
\end{equation*}
$$

and $|X|=\gamma_{2}(G)-1$, respectively.
If $X \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\emptyset$, we obtain from (2.1) that $\eta_{2}\left(y_{1}, X, G\right) \geq 1$ and $\eta_{2}\left(y_{2}, X, G\right)=2$. By (2.2),

$$
\eta_{2}(V(G), X, G) \geq \eta_{2}\left(y_{1}, X, G\right)+\eta_{2}\left(y_{2}, X, G\right) \geq 3
$$

This contradicts (2.5).

If $X \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{1}\right\}$ or $\left\{y_{3}\right\}$, without loss of generality, say $X \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{1}\right\}$, then (2.1) implies that $\eta_{2}\left(y_{2}, X, G\right)=1$ and $\eta_{2}\left(y_{3}, X, G\right) \geq 1$. By (2.2) and (2.5),

$$
2 \leq \eta_{2}\left(y_{2}, X, G\right)+\eta_{2}\left(y_{3}, X, G\right) \leq \eta_{2}(V(G), X, G)<3,
$$

which implies that $\eta_{2}\left(y_{3}, X, G\right)=1$ (and thus $z \in X$ since $N_{G}\left(y_{3}\right)=\left\{y_{2}, z\right\}$ and $y_{2} \notin X$) and $\eta_{2}\left(V(G) \backslash\left\{y_{2}, y_{3}\right\}, X, G\right)=0$. Let $X^{\prime}=X \backslash\left\{y_{1}\right\}$. Then it follows from (2.2) that

$$
\begin{equation*}
\eta_{2}(x, X, G) \leq \eta_{2}\left(V(G) \backslash\left\{y_{2}, y_{3}\right\}, X, G\right)=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{aligned}
\eta_{2}\left(V\left(G^{\prime}\right) \backslash\{x, y\}, X^{\prime}, G^{\prime}\right) & =\eta_{2}\left(V(G) \backslash\left\{x, y_{1}, y_{2}, y_{3}\right\}, X, G\right) \\
& \leq \eta_{2}\left(V(G) \backslash\left\{y_{2}, y_{3}\right\}, X, G\right) \\
& =0
\end{aligned}
$$

By (2.1), (2.6) implies that either $x \in X$ or $\left|N_{G}(x) \cap X\right| \geq 2$, and hence

$$
\eta_{2}\left(x, X^{\prime}, G^{\prime}\right) \leq 1
$$

because $y_{1} \in N_{G}(x) \cap X$ but $y_{1} \notin X^{\prime}$. Since $z \in X, z \in X^{\prime}$ and so $\eta_{2}\left(y, X^{\prime}, G^{\prime}\right) \leq 1$. Recalling the facts that $|X|=\gamma_{2}(G)-1$ and $\gamma_{2}(G) \leq \gamma_{2}\left(G^{\prime}\right)+1$, we obtain that

$$
\left|X^{\prime}\right|=|X|-1=\gamma_{2}(G)-2 \leq \gamma_{2}\left(G^{\prime}\right)-1
$$

Therefore,

$$
\begin{aligned}
r_{2}\left(G^{\prime}\right) & \leq \eta_{2}\left(V\left(G^{\prime}\right), X^{\prime}, G^{\prime}\right) \quad(\text { by Lemma } 2.1) \\
& =\eta_{2}\left(y, X^{\prime}, G^{\prime}\right)+\eta_{2}\left(x, X^{\prime}, G^{\prime}\right)+\eta_{2}\left(V\left(G^{\prime}\right) \backslash\{x, y\}, X^{\prime}, G^{\prime}\right) \quad(\text { by }(2.2)) \\
& \leq 1+1+0 \\
& =\eta_{2}\left(y_{2}, X, G\right)+\eta_{2}\left(y_{3}, X, G\right)+\eta_{2}\left(V(G) \backslash\left\{y_{2}, y_{3}\right\}, X, G\right) \\
& =\eta_{2}(V(G), X, G) \quad(\text { by }(2.2)) \\
& =r_{2}(G) . \quad\left(\text { since } X \text { is an } \eta_{2}(G) \text {-set }\right)
\end{aligned}
$$

This also contradicts (2.5).
If $X \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{2}\right\}$, let $X^{\prime}=X \backslash\left\{y_{2}\right\}$, then $\left|X^{\prime}\right|=|X|-1=\gamma_{2}(G)-2 \leq$ $\gamma_{2}\left(G^{\prime}\right)-1$. Since $d_{G^{\prime}}(y)=2$ and $d_{G}\left(y_{i}\right)=2$ for $i \in\{1,2,3\}$, it follows from (2.1) and (2.2) that

$$
\begin{aligned}
\eta_{2}\left(y, X^{\prime}, G^{\prime}\right) & =\eta_{2}\left(\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right) \\
\eta_{2}\left(V(G) \backslash\{y\}, X^{\prime}, G^{\prime}\right) & =\eta_{2}\left(V(G) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right) .
\end{aligned}
$$

Hence by Lemma 2.1 and (2.2),

$$
\begin{aligned}
r_{2}\left(G^{\prime}\right) & \leq \eta_{2}\left(V\left(G^{\prime}\right), X^{\prime}, G^{\prime}\right) \\
& =\eta_{2}\left(\left\{y, X^{\prime}, G^{\prime}\right\}\right)+\eta_{2}\left(V\left(G^{\prime}\right) \backslash\{y\}, X^{\prime}, G^{\prime}\right) \\
& =\eta_{2}\left(\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right)+\eta_{2}\left(V(G) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right) \\
& =\eta_{2}(V(G), X, G) \\
& =r_{2}(G),
\end{aligned}
$$

which contradicts (2.5).
If $\left|X \cap\left\{y_{1}, y_{2}, y_{3}\right\}\right| \geq 2$, then we may assume that $X \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{1}, y_{3}\right\}$ by the choice of X. Let $X^{\prime}=\left(X \backslash\left\{y_{1}, y_{3}\right\}\right) \cup\{y\}$. Clearly, $\left|X^{\prime}\right|=|X|-1=\gamma_{2}(G)-2=\gamma_{2}\left(G^{\prime}\right)-1$ and

$$
\eta_{2}\left(V\left(G^{\prime}\right) \backslash\{x, y, z\}, X^{\prime}, G^{\prime}\right)=\eta_{2}(V(G) \backslash V(P), X, G)
$$

Since $y \in X^{\prime}$ and $\left\{y_{1}, y_{3}\right\} \subseteq X$, we obtain from (2.1) and (2.2) that $\eta_{2}\left(\{x, z\}, X^{\prime}, G^{\prime}\right)=$ $\eta_{2}(\{x, z\}, X, G)$ and $\eta_{2}\left(y, X^{\prime}, G^{\prime}\right)=0=\eta_{2}\left(\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right)$. By Lemma 2.1 and (2.2),

$$
\begin{aligned}
r_{2}\left(G^{\prime}\right) & \leq \eta_{2}\left(V\left(G^{\prime}\right), X^{\prime}, G^{\prime}\right) \\
& =\eta_{2}\left(V\left(G^{\prime}\right) \backslash\{x, y, z\}, X^{\prime}, G^{\prime}\right)+\eta_{2}\left(\{x, z\}, X^{\prime}, G^{\prime}\right)+\eta_{2}\left(y, X^{\prime}, G^{\prime}\right) \\
& =\eta_{2}(V(G) \backslash V(P), X, G)+\eta_{2}(\{x, z\}, X, G)+\eta_{2}\left(\left\{y_{1}, y_{2}, y_{3}\right\}, X, G\right) \\
& =\eta_{2}(V(G), X, G) \\
& =r_{2}(G)
\end{aligned}
$$

which contradicts (2.5) again.

3 Proof of Theorem 1.2

In this section we present a proof of Theorem 1.2. Recall the statement of the theorem as follows: a tree T satisfies $r_{2}(T)=3$ if and only if there exists a 2-dominating set S of T such that T contains neither S-vulnerable vertices nor S-vulnerable paths. Let us begin with two simple observations.

Observation 3.1 Every 2-dominating set of a graph G contains all leaves of G.
Observation 3.2 Let P be a path with length ℓ. Then $\gamma_{2}(P)=\lfloor(\ell+1) / 2\rfloor+1$.
Lemma 3.3 Let T be a tree with a $\gamma_{2}(T)$-set S. If T contains S-vulnerable vertices, then $r_{2}(T) \leq 2$.

Proof. Let x be an S-vulnerable vertex in T. Then $x \in S$. Since S is a $\gamma_{2}(T)$-set, $|S \backslash\{x\}|<|S|=\gamma_{2}(T)$ and for $y \in N_{T}(x) \backslash S,\left|N_{T}(y) \cap S\right| \geq 2$ with equality if and only if $y \in N_{2}(x, S, T)$. Thus for $y \in N_{T}(x)$, we can directly calculate by (2.1) that

$$
\eta_{2}(y, S \backslash\{x\}, T)= \begin{cases}1 & \text { if } y \in N_{2}(x, S, T) ; \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
\begin{aligned}
r_{2}(T) & \leq \eta_{2}(V(T), S \backslash\{x\}, T) \quad \text { (by Lemma 2.1) } \\
& =\eta_{2}(x, S \backslash\{x\}, T)+\eta_{2}\left(N_{T}(x), S \backslash\{x\}, T\right) \quad \text { (since } S \text { is a } \gamma_{2}(T) \text {-set) } \\
& =\eta_{2}(x, S \backslash\{x\}, T)+\sum_{y \in N_{T}(x)} \eta_{2}(y, S \backslash\{x\}, T) \quad(\text { by }(2.2)) \\
& =\max \left\{0,2-\left|N_{T}(x) \cap(S \backslash\{x\})\right|\right\}+\left|N_{2}(x, S, T)\right| \quad \text { (by (2.1) and (3.1)) } \\
& \leq \max \left\{0,2-\left|N_{T}(x) \cap S\right|\right\}+\min \left\{2,\left|N_{T}(x) \cap S\right|\right\} \quad \text { (by (1.1)) } \\
& =2 .
\end{aligned}
$$

The proof of the lemma is completed.

Lemma 3.4 Let T be a tree with a $\gamma_{2}(T)$-set S. If T contains S-vulnerable paths, then $r_{2}(T) \leq 2$.

Proof. It is sufficient to consider the case that T has no S-vulnerable vertices by Lemma 3.3. Let $P=x_{0} x_{1} \ldots x_{\ell}$ be a shortest S-vulnerable path in T. From the definition of S-vulnerable path, we know that $\ell \geq 1, S \cap V(P)$ 2-dominates $V(P)$ and every vertex in $S \cap V(P)$ satisfies (1.2).

Suppose that there is some $i \in\{0,1, \ldots, \ell-1\}$ such that $x_{i} \in S$ and $x_{i+1} \in S$. Then $\left|N_{T}\left(x_{i}\right) \cap S\right| \geq\left|\left\{x_{i+1}\right\}\right|=1$ and $\left|N_{2}\left(x_{i}, S, T\right)\right| \leq 1$ by (1.2). It follows that

$$
\left|N_{2}\left(x_{i}, S, T\right)\right| \leq 1 \leq \min \left\{2,\left|N_{T}\left(x_{i}\right) \cap S\right|\right\}
$$

which means that x_{i} is S-vulnerable in T. This contradicts the assumption that T has no S-vulnerable vertices. So arbitrary two vertices in $S \cap V(P)$ are nonadjacent in T.

If ℓ is odd, since $S \cap V(P)$ 2-dominates $V(P),|S \cap V(P)| \geq \gamma_{2}(P)=(\ell+1) / 2+1$ by Observation 3.2. This implies that there are two adjacent vertices in $S \cap V(P)$, a contradiction. Assume that ℓ is even below.

Because $S \cap V(P)$ 2-dominates $V(P),|S \cap V(P)| \geq \ell / 2+1$ by Observation 3.2. Let

$$
X=(S \backslash V(P)) \cup\left\{x_{1}, x_{3}, \ldots, x_{\ell-1}\right\}
$$

Since S is a $\gamma_{2}(T)$-set and every vertex in $(S \cap V(P)) \backslash\left\{x_{0}, x_{\ell}\right\}$ has no 2-private neighbor in $V(T) \backslash V(P)$ by (1.2), X has cardinality $|X|=|S|-|S \cap V(P)|+\ell / 2 \leq|S|-1<\gamma_{2}(T)$, and 2-dominates $V(T) \backslash\left(N_{T}\left[x_{0}\right] \cup N_{T}\left[x_{\ell}\right]\right)$. Hence by Lemma 2.1 and (2.2),

$$
\begin{align*}
r_{2}(T) \leq \eta_{2}(V(T), X, T) & =\eta_{2}\left(N_{T}\left[x_{0}\right] \cup N_{T}\left[x_{\ell}\right], X, T\right) \\
& \leq \eta_{2}\left(N_{T}\left[x_{0}\right], X, T\right)+\eta_{2}\left(N_{T}\left[x_{\ell}\right], X, T\right) \tag{3.2}
\end{align*}
$$

We claim that $\eta_{2}\left(N_{T}\left[x_{0}\right], X, T\right) \leq 1$. Note that $x_{0} \in S \cap V(P)$ by Observation 3.1 since $S \cap V(P)$ is a 2-dominating set of P. Because $S \cap V(P)$ has no two adjacent vertices, $x_{1} \notin S$ and thus

$$
\begin{equation*}
\left|N_{T}\left(x_{0}\right) \cap X\right|=\left|\left(N_{T}\left(x_{0}\right) \cap S\right) \cup\left\{x_{1}\right\}\right|=\left|N_{T}\left(x_{0}\right) \cap S\right|+1 \tag{3.3}
\end{equation*}
$$

Since $x_{0} \in S \backslash X, x_{1} \in X$ and S is a $\gamma_{2}(T)$-set, we can obtain from (2.1) that for any $y \in N_{T}\left(x_{0}\right)$,

$$
\eta_{2}(y, X, T)= \begin{cases}1 & \text { if } y \in N_{2}\left(x_{0}, S, T\right) \backslash\left\{x_{1}\right\} \tag{3.4}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore,

$$
\begin{aligned}
\eta_{2}\left(N_{T}\left[x_{0}\right], X, T\right) & \left.=\eta_{2}\left(x_{0}, X, T\right)+\sum_{y \in N_{T}\left(x_{0}\right)} \eta_{2}(y, X, T) \quad \text { by }(2.2)\right) \\
(\text { by }(2.1) \text { and }(3.4)) & =\max \left\{0,2-\left|N_{T}\left(x_{0}\right) \cap X\right|\right\}+\left|N_{2}\left(x_{0}, S, T\right) \backslash\left\{x_{1}\right\}\right| \\
(\text { by }(3.3) \text { and }(1.2)) & \leq \max \left\{0,1-\left|N_{T}\left(x_{0}\right) \cap S\right|\right\}+\min \left\{1,\left|N_{T}\left(x_{0}\right) \cap S\right|\right\} \\
& =1 .
\end{aligned}
$$

The claim is true.
By the symmetry, $\eta_{2}\left(N_{T}\left[x_{\ell}\right], X, T\right) \leq 1$. It follows from (3.2) that $r_{2}(T) \leq 2$. We complete the proof of the lemma.

Summing up Lemmas 3.3 and 3.4, the necessity of Theorem 1.2 follows. For the sufficiency, we need the following four lemmas.

Lemma 3.5 Let T be a tree, $x y \in E(T)$ and T_{x} the component of $T-x y$ containing x. Let $S \subseteq V(T)$ and P be a path in T_{x}. If $S \cap V\left(T_{x}\right)$ is a 2-dominating set of T_{x} and P is $S \cap V\left(T_{x}\right)$-vulnerable in T_{x} but not S-vulnerable in T, then $x \in S \cap V(P)$ and $y \in N_{2}(x, S, T)$.

Proof. Because P is $S \cap V\left(T_{x}\right)$-vulnerable in T_{x} but not S-vulnerable in T, (1.2) implies that there is a vertex $z \in S \cap V(P)$ such that

$$
\begin{equation*}
\left|N_{2}(z, S, G) \backslash V(P)\right|>\left|N_{2}\left(z, S \cap V\left(T_{x}\right), T_{x}\right) \backslash V(P)\right| \tag{3.5}
\end{equation*}
$$

In order to prove $x \in S \cap V(P)$ and $y \in N_{2}(x, S, T)$, it suffices to show that $z=x$.
Assume, to be contrary, that $z \neq x$. Then $N_{T}(z) \subseteq V\left(T_{x}\right)$ and so it follows from (3.5) that $x \in N_{2}(z, S, T) \backslash V(P)$ but $x \notin N_{2}\left(z, S \cap V\left(T_{x}\right), T_{x}\right) \backslash V(P)$. By the definition of 2-private neighbor, we obtain that $x \notin S,\left|N_{T}(x) \cap S\right|=2$ and $\left|N_{T_{x}}(x) \cap\left(S \cap V\left(T_{x}\right)\right)\right| \neq 2$. Furthermore, $\left|N_{T_{x}}(x) \cap\left(S \cap V\left(T_{x}\right)\right)\right| \geq 3$ since $S \cap V\left(T_{x}\right)$ is a 2-dominating set of T_{x}. Hence we obtain a contradiction that

$$
2=\left|N_{T}(x) \cap S\right| \geq \mid N_{T}(x) \cap\left(S \cap V (T _ { x }) \left|=\left|N_{T_{x}}(x) \cap\left(S \cap V\left(T_{x}\right)\right)\right| \geq 3\right.\right.
$$

Lemma 3.6 ([21]) Let S be a 2-dominating set of a tree T. Then S is the unique $\gamma_{2}(T)$ set if and only if, for each $x \in S$ with $d_{T}(x) \geq 2, N_{T}(x) \cap S=\emptyset$ or $\left|N_{2}(x, S, T)\right| \geq 2$.

Lemma 3.7 ([23]) Let T be a tree with $r_{2}(T)=3$ and S the unique $\gamma_{2}(T)$-set. For $x \in S$ and $y \in N_{2}(x, S, T)$, denote by T_{y} the component of $T-x$ containing y. If T_{y} is not the complete graph K_{2}, then $r_{2}\left(T_{y}\right)=1$ and $S \cap V\left(T_{y}\right)$ is an $\eta_{2}\left(T_{y}\right)$-set.

For $t \geq 2$, a spider S_{t} is a tree obtained from a star $K_{1, t}$ by attaching one leaf at each leaf of $K_{1, t}$.

Lemma 3.8 Let S be a 2-dominating set of a tree T. If T contains neither S-vulnerable vertices nor S-vulnerable paths, then we have the following statements.
(a) S is the unique $\gamma_{2}(T)$-set.
(b) $|V(T)| \geq 7$ with equality if and only if $T=S_{3}$.
(c) $r_{2}(T) \geq 3$.

Proof. (a) Let S^{\prime} be the set of vertices in T with degree at least 2. If $S^{\prime}=\emptyset$, then S is the unique $\gamma_{p}(T)$-set by Observation 3.1, and so the conclusion (a) follows. Assume now that $S^{\prime} \neq \emptyset$, and let $x \in S^{\prime}$. If x doesn't satisfy the second condition in Lemma 3.6, that is, $\left|N_{2}(x, S, T)\right| \leq 1$, since x is not S-vulnerable in T, it follows from (1.1) that

$$
\left|N_{T}(x) \cap S\right|<\left|N_{2}(x, S, T)\right| \leq 1
$$

This fact implies that x satisfies the first condition in Lemma 3.6. By Lemma 3.6, S is the unique $\gamma_{p}(T)$-set. The conclusion (a) is true.
(b) Since T is a tree without S-vulnerable vertices or paths, we can directly check the validity of the conclusion (b), and omit the proof.
(c) Let $|V(T)|=n$. Then $n \geq 7$ by (b). We prove $r_{2}(T) \geq 3$ by induction on n.

If $n=7$, then (b) implies that T is the spider S_{3}. It is not hard to determine that $r_{2}(T)=3$ by (2.1) and (2.2). This establishes the base case.

Let $n \geq 8$. For any tree T^{\prime} with order $n^{\prime}<n$, assume that $r_{2}\left(T^{\prime}\right) \geq 3$ if there exists a 2-dominating set S^{\prime} of T^{\prime} such that T^{\prime} has neither S^{\prime}-vulnerable vertices nor S^{\prime}-vulnerable paths.

We will now prove the following claims.
Claim 1 If T has a path $x y_{1} y_{2} y_{3} z$ with $d_{T}\left(y_{i}\right)=2$ for $i \in\{1,2,3\}$, then $r_{2}(T) \geq 3$.
Proof. Replacing the path $x y_{1} y_{2} y_{3} z$ by a path $x y z$, we obtain a tree T^{\prime} with order less than n. Note that S is the unique $\gamma_{2}(T)$-set by (a). Since $d_{T}\left(y_{i}\right)=2$ for $i \in\{1,2,3\}$, $S \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{2}\right\}$ or $\left\{y_{1}, y_{3}\right\}$, and thus let

$$
S^{\prime}= \begin{cases}S \backslash\left\{y_{2}\right\} & \text { if } S \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{2}\right\} \\ \left(S \backslash\left\{y_{1}, y_{3}\right\}\right) \cup\{y\} & \text { if } S \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{1}, y_{3}\right\} .\end{cases}
$$

It is clear that S^{\prime} is a 2 -dominating set of T^{\prime} because S is a $\gamma_{2}(T)$-set by (a). Moreover, for each $v \in V\left(T^{\prime}\right) \backslash\{y\}\left(=V(T) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}\right)$,

$$
\begin{align*}
\left|N_{T^{\prime}}(v) \cap S^{\prime}\right| & =\left|N_{T}(v) \cap S\right|, \text { and } \tag{3.6}\\
\left|N_{2}\left(v, S^{\prime}, T^{\prime}\right)\right| & =\left|N_{2}(v, S, T)\right| \text { if } v \in S^{\prime} . \tag{3.7}
\end{align*}
$$

Using the condition of Lemma 3.8, we deduce from (1.1), (1.2), (3.6) and (3.7) that T^{\prime} has neither S^{\prime}-vulnerable vertices nor S^{\prime}-vulnerable paths. By induction, $r_{2}\left(T^{\prime}\right) \geq 3$. It follows from Lemma 2.3 that $r_{2}(T) \geq \min \left\{3, r_{2}\left(T^{\prime}\right)\right\}=3$.

Claim 2 If T has an edge $x y$ satisfying $x \notin S$ and $y \notin S$, then $r_{2}(T) \geq 3$.
Proof. Let T_{x} and T_{y} to denote the two components of $T-x y$ containing x and y, respectively. Since $S \cap\{x, y\}=\emptyset$, Lemma 3.5 yields that T_{x} (resp. T_{y}) contains no $S \cap V\left(T_{x}\right)$-vulnerable (resp. $S \cap V\left(T_{y}\right)$-vulnerable) vertices or paths. Using (a), we obtain that $S \cap V\left(T_{x}\right)$ and $S \cap V\left(T_{y}\right)$ are respectively the unique $\gamma_{2}\left(T_{x}\right)$-set and $\gamma_{2}\left(T_{y}\right)$-set, and so

$$
\begin{equation*}
\gamma_{2}\left(T_{x}\right)+\gamma_{2}\left(T_{y}\right)=\left|S \cap V\left(T_{x}\right)\right|+\left|S \cap V\left(T_{y}\right)\right|=|S|=\gamma_{2}(T) . \tag{3.8}
\end{equation*}
$$

Moreover, $r_{2}\left(T_{x}\right) \geq 3$ and $r_{2}\left(T_{y}\right) \geq 3$ by induction.
Let X be an $\eta_{2}(T)$-set. By Lemma 2.2 and (3.8), $|X|=\gamma_{2}(T)-1=\gamma_{2}\left(T_{x}\right)+\gamma_{2}\left(T_{y}\right)-1$. Thus we may assume that

$$
\left|X \cap V\left(T_{x}\right)\right| \leq \gamma_{2}\left(T_{x}\right)-1
$$

Noting that $x y$ is the unique edge of T between $V\left(T_{x}\right)$ and $V\left(T_{y}\right)$, we obtain from (2.1) and (2.2) that

$$
\begin{equation*}
\eta_{2}\left(V\left(T_{x}\right), X, T\right) \geq \eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-1 \tag{3.9}
\end{equation*}
$$

with equality if and only if $X \cap\{x, y\}=\{y\}$ and $\left|N_{T_{x}}(x) \cap X\right|<2$. Therefore,

$$
\begin{aligned}
r_{2}(T) & =\eta_{2}(V(T), X, T) \quad(\text { by Lemma 2.1) } \\
& =\eta_{2}\left(V\left(T_{x}\right), X, T\right)+\eta_{2}\left(V\left(T_{y}\right), X, T\right) \quad(\text { by }(2.2)) \\
& \geq \eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-1 \quad(\text { by }(3.9)) \\
& \geq r_{2}\left(T_{x}\right)-1 \quad\left(\text { by Lemma 2.1, since }\left|X \cap V\left(T_{x}\right)\right| \leq \gamma_{2}\left(T_{x}\right)-1\right) \\
& \geq 2 .
\end{aligned}
$$

Suppose that $r_{2}(T)=2$. Then the above equalities all hold. In particular,

$$
\begin{align*}
& \eta_{2}\left(V\left(T_{x}\right), X, T\right)=\eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-1=r_{2}\left(T_{x}\right)-1=2, \tag{3.10}\\
& \eta_{2}\left(V\left(T_{y}\right), X, T\right)=0 \tag{3.11}
\end{align*}
$$

(3.10) yields that $X \cap\{x, y\}=\{y\}$ and $r_{2}\left(T_{x}\right)=\eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)$, which means that $X \cap V\left(T_{x}\right)$ is an $\eta_{2}\left(T_{x}\right)$-set. By Lemma 2.2, $\left|X \cap V\left(T_{x}\right)\right|=\gamma_{2}\left(T_{x}\right)-1$, and so

$$
\begin{equation*}
\left|X \cap V\left(T_{y}\right)\right|=|X|-\left|X \cap V\left(T_{x}\right)\right|=\gamma_{2}\left(T_{y}\right) . \tag{3.12}
\end{equation*}
$$

Since $X \cap\{x, y\}=\{y\}$, by (2.1), (2.2) and (3.11),

$$
\eta_{2}\left(V\left(T_{y}\right), X \cap V\left(T_{y}\right), T_{y}\right)=\eta_{2}\left(V\left(T_{y}\right), X, T\right)=0
$$

which implies that $X \cap V\left(T_{y}\right)$ is a 2-dominating set of T_{y}, furthermore, $X \cap V\left(T_{y}\right)$ is a $\gamma_{2}\left(T_{y}\right)$-set by (3.12). Since $S \cap V\left(T_{y}\right)$ is the unique $\gamma_{2}\left(T_{y}\right)$-set, $X \cap V\left(T_{y}\right)=S \cap V\left(T_{y}\right)$, and so $y \in S$. This contradicts that $y \notin S$, and hence $r_{2}(T) \geq 3$.

Claim 3 If T contains a vertex x not in S with $d_{T}(x) \geq 3$, then $r_{2}(T) \geq 3$.
Proof. By Claim 2, we may assume that $N_{T}(x) \subseteq S$ since $x \notin S$. Let $N_{T}(x)=$ $\left\{y_{1}, y_{2}, \ldots, y_{d}\right\}$ and $I=\{1,2, \ldots, d\}$, where $d=d_{T}(x) \geq 3$. For $i \in I$, denote by T_{i} the component of $T-x$ containing y_{i}, and then the order of T_{i} is less than n.

Let $i \in I$. Since $N_{T}(x) \subseteq S$ and $d \geq 3, x \notin N_{2}\left(y_{i}, S, T\right)$, and hence T_{i} contains no $S \cap V\left(T_{i}\right)$-vulnerable vertices or paths by Lemma 3.5. Noting that $S \cap V\left(T_{i}\right)$ is a 2 dominating set of T_{i} because $x \notin S$ and S 2-dominates $V(T)$, we obtain by the induction on T_{i} that

$$
r_{2}\left(T_{i}\right) \geq 3
$$

and know from (a) that $S \cap V\left(T_{i}\right)$ is the unique $\gamma_{2}\left(T_{i}\right)$-set. Therefore by the arbitrariness of i,

$$
\sum_{i \in I} \gamma_{2}\left(T_{i}\right)=\sum_{i \in I}\left|S \cap V\left(T_{i}\right)\right|=|S|=\gamma_{2}(T)
$$

We now show that $r_{2}(T) \geq 3$. Assume, to be contrary, that $r_{2}(T) \leq 2$. Let X be an $\eta_{2}(T)$-set. Then Lemma 2.1 implies that

$$
\begin{equation*}
|X \cap\{x\}|+\sum_{i \in I}\left|X \cap V\left(T_{i}\right)\right|=|X|=\gamma_{2}(T)-1=\sum_{i \in I} \gamma_{2}\left(T_{i}\right)-1, \tag{3.13}
\end{equation*}
$$

and it follows from (2.2) and Lemma 2.1 that

$$
\begin{equation*}
\eta_{2}(x, X, T)+\sum_{i \in I} \eta_{2}\left(V\left(T_{i}\right), X, T\right)=\eta_{2}(V(T), X, T)=r_{2}(T) \leq 2 \tag{3.14}
\end{equation*}
$$

By (3.13), there is some $i \in I$, without loss of generality, say $i=1$, such that $\left|X \cap V\left(T_{1}\right)\right| \leq$ $\gamma_{2}\left(T_{1}\right)-1$. Note the fact that, for all $i \in I$, if $\left|X \cap V\left(T_{i}\right)\right| \leq \gamma_{2}\left(T_{i}\right)-1$ then

$$
\eta_{2}\left(V\left(T_{i}\right), X, T\right) \geq \eta_{2}\left(V\left(T_{i}\right), X \cap V\left(T_{i}\right), T_{i}\right)-1 \geq r_{2}\left(T_{i}\right)-1 \geq 2
$$

in which $\eta_{2}\left(V\left(T_{i}\right), X, T\right)=2$ if and only if $X \cap\left\{x, y_{i}\right\}=\{x\},\left|N_{T_{i}}\left(y_{i}\right) \cap X\right|<2$ and $X \cap V\left(T_{i}\right)$ is an $\eta_{2}\left(T_{i}\right)$-set. From this fact and (3.14), we deduce that for any $i \in I$,

$$
\eta_{2}\left(V\left(T_{i}\right), X, T\right)= \begin{cases}2 & \text { if } i=1 \\ 0 & \text { if } i \neq 1\end{cases}
$$

It follows that

$$
\begin{aligned}
& \left|X \cap V\left(T_{1}\right)\right|=\gamma_{2}\left(T_{1}\right)-1, \\
& |X \cap\{x\}|=1, \text { and } \\
& \left|X \cap V\left(T_{i}\right)\right|=\gamma_{2}\left(T_{i}\right) \text { for } i \in I \backslash\{1\} .
\end{aligned}
$$

This contradicts (3.13). Hence $r_{2}(T) \geq 3$.
Claim 4 If T has an edge $x y$ such that $x \in S$ and $y \in S$, then $r_{2}(T) \geq 3$.
Proof. It is sufficient to show that $r_{2}(T) \geq 3$ for a tree T not satisfying the conditions of Claims 1~3. We claim that for $v \in V(T)$,

$$
d_{T}(v) \begin{cases}=2 & \text { if } v \notin S \tag{3.15}\\ \neq 2 & \text { if } v \in S\end{cases}
$$

In fact, it is clear that $d_{T}(x)=2$ for all $x \notin S$ since T doesn't satisfy the condition of Claim 3. Then $d_{T}(v)=2$ if $v \notin S$. On the other hand, if $v \in S$ then assume, to be contrary, that $d_{T}(v)=2$ and let $N_{T}(v)=\left\{u_{1}, u_{2}\right\}$. If $S \cap\left\{u_{1}, u_{2}\right\}=\emptyset$, then both u_{1} and u_{2} have degree 2 , which contradicts that T doesn't satisfy the condition of Claim 1 . If $S \cap\left\{u_{1}, u_{2}\right\} \neq \emptyset$, then v is S-vulnerable in T, a contradiction. The claim holds.

Since S is a 2-dominating set of T, we obtain from (3.15) that all vertices of T not in S are 2-private neighbors with respect to S.

Let T_{x} and T_{y} denote the components of $T-x y$ containing x and y, respectively. Recall that S is a 2-dominating set of T and T has neither S-vulnerable vertices nor S-vulnerable paths. Since $x \in S$ and $y \in S, S \cap V\left(T_{x}\right)$ is a 2-dominating set of T_{x}, and Lemma 3.2 yields that T_{x} has no $S \cap V\left(T_{x}\right)$-vulnerable vertices or paths. By induction, $r_{2}\left(T_{x}\right) \geq 3$. Moreover, $S \cap V\left(T_{x}\right)$ is the unique $\gamma_{2}\left(T_{x}\right)$-set by (a). By the symmetry between x and y, we also have that $r_{2}\left(T_{y}\right) \geq 3$ and $S \cap V\left(T_{y}\right)$ is the unique $\gamma_{2}\left(T_{y}\right)$-set. Therefore,

$$
\begin{equation*}
\gamma_{2}(T)=|S|=\left|S \cap V\left(T_{x}\right)\right|+\left|S \cap V\left(T_{y}\right)\right|=\gamma_{2}\left(T_{x}\right)+\gamma_{2}\left(T_{y}\right) . \tag{3.16}
\end{equation*}
$$

We now show that $r_{2}(T) \geq 3$. Assume, to be contrary, that $r_{2}(T) \leq 2$. Let X be an $\eta_{2}(T)$-set. By Lemma 2.2 and (3.16),

$$
\left|X \cap V\left(T_{x}\right)\right|+\left|X \cap V\left(T_{y}\right)\right|=|X|=\gamma_{2}(T)-1=\gamma_{2}\left(T_{x}\right)+\gamma_{2}\left(T_{y}\right)-1
$$

from which, we may assume that $\left|X \cap V\left(T_{x}\right)\right| \leq \gamma_{2}\left(T_{x}\right)-1$, and thus $\left|X \cap V\left(T_{y}\right)\right| \geq \gamma_{2}\left(T_{y}\right)$. Noting that $x y$ is the unique edge in T joining $V\left(T_{x}\right)$ and $V\left(T_{y}\right)$, we obtain that

$$
\eta_{2}\left(V\left(T_{x}\right), X, T\right) \geq \eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-1
$$

with equality if and only if $X \cap\{x, y\}=\{y\}$ and $\left|N_{T_{x}}(x) \cap X\right| \leq 1$. Hence

$$
\begin{aligned}
2 \geq r_{2}(T) & =\eta_{2}(V(T), X, T) \quad\left(\text { since } X \text { is an } \eta_{2}(T) \text {-set }\right) \\
& =\eta_{2}\left(V\left(T_{x}\right), X, T\right)+\eta_{2}\left(V\left(T_{y}\right), X, T\right) \quad(\text { by }(2.2)) \\
& \geq \eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-1 \\
& \geq r_{2}\left(T_{x}\right)-1 \quad\left(\text { by Lemma 2.1, since }\left|X \cap V\left(T_{x}\right)\right| \leq \gamma_{2}\left(T_{x}\right)-1\right) \\
& \geq 2,
\end{aligned}
$$

which yields the following results:

$$
\begin{align*}
& X \cap\{x, y\}=\{y\} \tag{3.17}\\
& \left|N_{T_{x}}(x) \cap X\right| \leq 1 \tag{3.18}\\
& r_{2}\left(T_{x}\right)=3 \text { and } X \cap V\left(T_{x}\right) \text { is an } \eta_{2}\left(T_{x}\right) \text {-set. } \tag{3.19}
\end{align*}
$$

Let $N_{T_{x}}(x) \backslash S=\left\{w_{1}, \ldots, w_{t}\right\}$ and $N_{T_{x}}(x) \cap S=\left\{w_{t+1}, \ldots, w_{t+s}\right\}$. For $i \in\{1, \ldots, t+s\}$, denote by T_{i} the component of $T_{x}-x$ containing w_{i}. Because T contains no S-vulnerable vertices and $N_{2}(x, S, T)=N_{T_{x}}(x) \backslash S$, we obtain from (1.1) that

$$
\begin{equation*}
t \geq \min \left\{2,\left|\left(N_{T_{x}}(x) \cap S\right) \cup\{y\}\right|\right\}+1=\min \{3,2+s\} \tag{3.20}
\end{equation*}
$$

Since $\eta_{2}\left(x, X \cap V\left(T_{x}\right), T_{x}\right) \geq 1$ by (2.1), (3.17) and (3.18), it follows from (2.2) that

$$
\begin{align*}
\sum_{i=1}^{t+s} \eta_{2}\left(V\left(T_{i}\right), X \cap V\left(T_{x}\right), T_{x}\right) & =\eta_{2}\left(V\left(T_{x}\right), X \cap V\left(T_{x}\right), T_{x}\right)-\eta_{2}\left(x, X \cap V\left(T_{x}\right), T_{x}\right) \\
& \leq r_{2}\left(T_{x}\right)-1=2 \tag{3.21}
\end{align*}
$$

We claim that $\eta_{2}\left(V\left(T_{i}\right), X \cap V\left(T_{x}\right), T_{x}\right) \geq 1$ for each $i \in\{1, \ldots, t\}$. To be contrary, assume that there is some $i \in\{1, \ldots, t\}$, without loss of generality, say $i=1$, such that $\eta_{2}\left(V\left(T_{1}\right), X \cap V\left(T_{x}\right), T_{x}\right)=0$. Then $X \cap V\left(T_{1}\right)$ is a 2-dominating set of T_{1} since $x \notin X$. Recall the obtained facts that $r_{2}\left(T_{x}\right)=3$ and $S \cap V\left(T_{x}\right)$ is the unique $\gamma_{2}\left(T_{x}\right)$-set. If T_{1} is the complete graph K_{2}, then $X \cap V\left(T_{1}\right)=V\left(T_{1}\right)$ and w_{1} is a stem of T (which implies that $w_{1} \notin S$. Otherwise the unique leaf of w_{1} is S-vulnerable in T). Thus

$$
\left|X \cap V\left(T_{1}\right)\right| \geq\left|\{x\} \cup\left(S \cap V\left(T_{1}\right)\right)\right|
$$

If $T_{1} \neq K_{2}$, since $x \in S \cap V\left(T_{x}\right)$ and $w_{1} \in N_{2}(x, S, T)=N_{2}\left(x, S \cap V\left(T_{x}\right), T_{x}\right)$, Lemma 3.7 implies that $r_{2}\left(T_{1}\right)=1$ and $S \cap V\left(T_{1}\right)$ is an $\eta_{2}\left(T_{1}\right)$-set. Therefore, by Lemma 2.1, we also obtain that

$$
\left|X \cap V\left(T_{1}\right)\right| \geq \gamma_{2}\left(T_{1}\right)=1+\left(\gamma_{2}\left(T_{1}\right)-1\right)=\left|\{x\} \cup\left(S \cap V\left(T_{1}\right)\right)\right|
$$

Let $X_{1}=\left[\left(X \cap V\left(T_{x}\right)\right) \backslash\left(X \cap V\left(T_{1}\right)\right)\right] \cup\left[\{x\} \cup\left(S \cap V\left(T_{1}\right)\right)\right]$. Then $\left|X_{1}\right| \leq\left|X \cap V\left(T_{x}\right)\right|=$ $\gamma_{2}\left(T_{x}\right)-1$ by (3.19). Since $\{x\} \cup\left(S \cap V\left(T_{1}\right)\right)$ 2-dominates $V\left(T_{1}\right), \eta_{2}\left(V\left(T_{1}\right), X_{1}, T_{x}\right)=0$ and so

$$
\begin{aligned}
r_{2}\left(T_{x}\right) \leq \eta_{2}\left(V\left(T_{x}\right), X_{1}, T_{x}\right) & =\sum_{i=2}^{t+s} \eta_{2}\left(V\left(T_{i}\right), X_{1}, T_{x}\right) \quad(\text { by }(2.2)) \\
& \leq \sum_{i=2}^{t+s} \eta_{2}\left(V\left(T_{i}\right), X \cap V\left(T_{x}\right), T_{x}\right) \quad\left(\text { since } x \in X_{1}\right) \\
& \leq 2, \quad(\text { by }(3.21))
\end{aligned}
$$

which contradicts (3.19). The claim holds.
By the above claim, (3.21) and (3.20) imply that $t=2, s=0$ and

$$
\begin{align*}
& \eta_{2}\left(x, X \cap V\left(T_{x}\right), T_{x}\right)=1, \tag{3.22}\\
& \eta_{2}\left(V\left(T_{1}\right), X \cap V\left(T_{x}\right), T_{x}\right)=1 \tag{3.23}\\
& \eta_{2}\left(V\left(T_{2}\right), X \cap V\left(T_{x}\right), T_{x}\right)=1 . \tag{3.24}
\end{align*}
$$

By (3.22), exactly one of w_{1} and w_{2} belongs to X, without loss of generality, say

$$
w_{1} \in X \text { and } w_{2} \notin X
$$

Notice that $d_{T}\left(w_{1}\right)=2$ by (3.15) since $w_{1} \notin S$. Let v be the unique vertex in $N_{T}\left(w_{1}\right) \backslash\{x\}$. Since S is a 2 -dominating set of $T, v \in S$ in order to 2 -dominate w_{1}.

Furthermore, we will now show that $\left|N_{2}(v, S, T)\right| \geq 3$, which implies that v has at least three neighbors with degree 2 in T by (3.15). Assume, to be contrary, that $\left|N_{2}(v, S, T)\right| \leq$ 2. Noting that all vertices of T not in S are 2-private neighbors with respect to S, we know that v has at most two neighbors not in S. If $d_{T}(v)=1$, then the path $x w_{1} v$ is S-vulnerable in T, a contradiction. If $d_{T}(v)=2$, then let u be the unique vertex in $N_{T}(v) \backslash\left\{w_{1}\right\}$. From the assumption that T doesn't satisfy the condition of Claim 1, it follows that $d_{T}(u) \neq 2$ because $d_{T}\left(w_{1}\right)=d_{T}(v)=2$, and thus $u \in S$ by (3.15). Hence v is S-vulnerable in T, a contradiction. If $d_{T}(v) \geq 3$, then

$$
\left|N_{T}(v) \cap S\right|=\left|N_{T}(v)\right|-\left|N_{2}(v, S, T)\right|=d_{T}(v)-\left|N_{2}(v, S, T)\right| \geq 1
$$

that is, v has at least one neighbor in S, and so the path $x w_{1} v$ is also S-vulnerable in T, a contradiction.

To the end, we will show that there is a vertex subset $X_{2} \subseteq V\left(T_{x}\right)$ such that $\left|X_{2}\right|=$ $\left|X \cap V\left(T_{x}\right)\right|$ and $\eta_{2}\left(V\left(T_{x}\right), X_{2}, T_{x}\right)<3$. This contradicts (3.19), and hence $r_{2}(T) \geq 3$.

If $v \in X$, then let

$$
X_{2}=\left[\left(X \cap V\left(T_{x}\right)\right) \backslash\left\{w_{1}\right\}\right] \cup\{x\} .
$$

Clearly, $\left|X_{2}\right|=\left|X \cap V\left(T_{x}\right)\right|$ because $w_{1} \in X \cap V\left(T_{x}\right)$. Since $N_{T_{x}}\left(w_{1}\right)=\{x, v\} \subseteq X_{2}$, it follows from (2.1) that $\eta_{2}\left(x, X_{2}, T_{x}\right)=\eta_{2}\left(w_{1}, X_{2}, T_{x}\right)=0$. Therefore, by (2.1) and (2.2),

$$
\begin{aligned}
\eta_{2}\left(V\left(T_{x}\right), X_{2}, T_{x}\right) & =\eta_{2}\left(x, X_{2}, T\right)+\eta_{2}\left(V\left(T_{1}\right), X_{2}, T_{x}\right)+\eta_{2}\left(V\left(T_{2}\right), X_{2}, T_{x}\right) \\
& \leq \eta_{2}\left(V\left(T_{1}\right), X \cap V\left(T_{x}\right), T_{x}\right)+\eta_{2}\left(V\left(T_{2}\right), X \cap V\left(T_{x}\right), T_{x}\right) \\
& =2 . \quad(\text { by }(3.23) \text { and }(3.24))
\end{aligned}
$$

Since $\left|X_{2}\right|=\left|X \cap V\left(T_{x}\right)\right|$, by (3.19) and Lemma 2.1, we obtain a contradiction that

$$
3=r_{2}\left(T_{x}\right) \leq \eta_{2}\left(V\left(T_{x}\right), X_{2}, T_{x}\right) \leq 2 .
$$

If $v \notin X$, since $\left|N_{2}(v, S, T)\right| \geq 3$, (3.23) implies that there is a vertex $u \in N_{2}(v, S, T) \backslash$ $\left\{w_{1}\right\}$ such that

$$
\begin{equation*}
\eta_{2}\left(V\left(T_{u}\right), X \cap V\left(T_{x}\right), T_{x}\right)=0, \tag{3.25}
\end{equation*}
$$

where T_{u} is the component of $T-v$ containing u. Since $v \notin X$, (3.25) implies that $X \cap V\left(T_{u}\right)$ is a 2-dominating set of T_{u} and so $\left|X \cap V\left(T_{u}\right)\right| \geq \gamma_{2}\left(T_{u}\right)$. Let

$$
X_{2}=\left[\left(X \cap V\left(T_{x}\right)\right) \backslash\left(\left(X \cap V\left(T_{u}\right)\right) \cup\left\{w_{1}\right\}\right)\right] \cup\{x, v\} \cup\left(S \cap V\left(T_{u}\right)\right) .
$$

Recall the obtained facts that $d_{T}(u)=2$ (by (3.15) since $\left.u \notin S\right), r_{2}\left(T_{x}\right)=3$ and $S \cap V\left(T_{x}\right)$ is the unique $\gamma_{2}\left(T_{x}\right)$-set. If $T_{u}=K_{2}$, then the unique vertex in $V\left(T_{u}\right) \backslash\{u\}$ belongs to $S \cap V\left(T_{u}\right)$ by Observation 3.1, and so $\eta_{2}\left(V\left(T_{u}\right), X_{2}, T_{x}\right)=0$ and

$$
\left|X \cap V\left(T_{u}\right)\right|=\left|V\left(T_{u}\right)\right|=\left|\{v\} \cup\left(S \cap V\left(T_{u}\right)\right)\right|,
$$

from which we obtain that $\left|X_{2}\right|=\left|X \cap V\left(T_{x}\right)\right|$. If $T_{u} \neq K_{2}$, since $u \in N_{2}(v, S, T)=$ $N_{2}\left(v, S \cap V\left(T_{x}\right), T_{x}\right)$, Lemma 3.7 implies that $r_{2}\left(T_{u}\right)=1$ and $S \cap V\left(T_{u}\right)$ is an $\eta_{2}\left(T_{u}\right)$-set, and so

$$
\left|X \cap V\left(T_{u}\right)\right| \geq \gamma_{2}\left(T_{u}\right)=1+\left(\gamma_{2}\left(T_{u}\right)-1\right)=|\{v\}|+\left|S \cap V\left(T_{u}\right)\right|=\left|\{v\} \cup\left(S \cap V\left(T_{u}\right)\right)\right|
$$

and $\{v\} \cup\left(S \cap V\left(T_{u}\right)\right)$ 2-dominates $V\left(T_{u}\right)$. Therefore,

$$
\left|X_{2}\right|=\left|X \cap V\left(T_{x}\right)\right| \text { and } \eta_{2}\left(V\left(T_{u}\right), X_{2}, T_{x}\right)=0
$$

Since $N_{T_{x}}\left(w_{1}\right)=\{x, v\} \subseteq X_{2}$, it follows from (2.1) and (2.2) that $\eta_{2}\left(x, X_{2}, T_{x}\right)=$ $\eta_{2}\left(w_{1}, X_{2}, T_{x}\right)=\eta_{2}\left(v, X_{2}, T_{x}\right)=0$ and

$$
\begin{aligned}
& \eta_{2}\left(V\left(T_{x}\right), X_{2}, T_{x}\right) \\
= & \eta_{2}\left(V\left(T_{1}\right) \backslash\left(V\left(T_{u}\right) \cup\left\{w_{1}, v\right\}\right), X_{2}, T_{x}\right)+\eta_{2}\left(V\left(T_{2}\right), X_{2}, T_{x}\right) \\
\leq & \eta_{2}\left(V\left(T_{1}\right) \backslash\left(V\left(T_{u}\right) \cup\left\{w_{1}, v\right\}\right), X \cap V\left(T_{x}\right), T_{x}\right)+\eta_{2}\left(V\left(T_{2}\right), X \cap V\left(T_{x}\right), T_{x}\right) \\
\leq & \eta_{2}\left(V\left(T_{1}\right), X \cap V\left(T_{x}\right), T_{x}\right)+\eta_{2}\left(V\left(T_{2}\right), X \cap V\left(T_{x}\right), T_{x}\right) \\
= & 2 . \quad(\text { by }(3.23) \text { and }(3.24))
\end{aligned}
$$

Since $\left|X_{2}\right|=\left|X \cap V\left(T_{x}\right)\right|,(3.19)$ and Lemma 2.1 yield a contradiction that

$$
3=r_{2}\left(T_{x}\right) \leq \eta_{2}\left(V\left(T_{x}\right), X_{2}, T_{x}\right) \leq 2
$$

The proof of Claim 4 is complete.
We now return to the proof of Lemma 3.8 (c). In the following, assume that T is a tree not satisfying the conditions of Claims $1 \sim 4$. Since S is 2 -dominating set of T, for any $x \in V(T)$, we obtain from this assumption that

$$
\begin{align*}
d_{T}(x)=2, & \text { if } x \notin S \tag{3.26}\\
d_{T}(x)=\left|N_{T}(x)\right|=\left|N_{2}(x, S, T)\right| \neq 2, & \text { if } x \in S \tag{3.27}
\end{align*}
$$

Moreover, every stem in T has exact one leaf because T has neither S-vulnerable vertices nor S-vulnerable paths.

Let v be a stem and u the unique leaf of v. Since S is a 2-dominating set of $T, u \in S$ by Observation 3.1 and $v \notin S$ (otherwise, u is S-vulnerable in T). By (3.26), $d_{T}(v)=2$. Denote by w the unique vertex in $N_{T}(v) \backslash\{u\}$. Then $N_{T}(v)=\{u, w\}$. Since $v \notin S$, to 2-dominate $v,\left|S \cap N_{T}(v)\right| \geq 2$, which implies that $w \in S$.

Let $T^{\prime}=T-\{u, v\}$. Then $S \cap V\left(T^{\prime}\right)$ is a 2-dominating set of T^{\prime} because $w \in S$ and S is a 2 -dominating set of T.

We claim that T^{\prime} has neither $S \cap V\left(T^{\prime}\right)$-vulnerable vertices nor $S \cap V\left(T^{\prime}\right)$-vulnerable paths. It is clear that $d_{T}(w) \neq 1$. Since $w \in S$, it follows from (3.27) that $d_{T}(w)=$ $\left|N_{2}(w, S, T)\right| \geq 3$, and thus

$$
\begin{equation*}
d_{T}(w)-1=d_{T^{\prime}}(w)=\left|N_{2}\left(w, S \cap V\left(T^{\prime}\right), T^{\prime}\right)\right|=\left|N_{2}(w, S, T) \backslash\{v\}\right| \geq 2 \tag{3.28}
\end{equation*}
$$

By (1.1), (3.28) implies that w is not $S \cap V\left(T^{\prime}\right)$-vulnerable in T^{\prime}, furthermore, T^{\prime} contains no $S \cap V\left(T^{\prime}\right)$-vulnerable vertices. Assume that T^{\prime} has an $S \cap V\left(T^{\prime}\right)$-vulnerable path P. Then $S \cap V(P)$ 2-dominates $V(P)$ by the definition of $S \cap V\left(T^{\prime}\right)$-vulnerable path, and $w \in S \cap V(P)$ by Lemma 3.5. Noting that every vertex in $S \cap V(P)$ has at most two 2-private neighbors with respect to $S \cap V\left(T^{\prime}\right)$ by (1.2), we obtain from (3.28) that

$$
\begin{equation*}
d_{T}(w)-1=d_{T^{\prime}}(w)=\left|N_{2}\left(w, S \cap V\left(T^{\prime}\right), T^{\prime}\right)\right|=2 . \tag{3.29}
\end{equation*}
$$

In addition, for each $x \in(S \cap V(P)) \backslash\{w\}$, (3.27) implies that

$$
\begin{align*}
& N_{T^{\prime}}(x)=N_{T}(x)=N_{2}(x, S, T)=N_{2}\left(x, S \cap V\left(T^{\prime}\right), T^{\prime}\right), \text { and } \tag{3.30}\\
& \left|N_{T^{\prime}}(x)\right|=\left|N_{T}(x)\right| \neq 2 . \tag{3.31}
\end{align*}
$$

Let y_{1} and y_{2} be two end-vertices of P. Because $S \cap V(P)$ 2-dominates $V(P)$, we have $y_{1} \in S \cap V(P)$ and $y_{2} \in S \cap V(P)$ by Observation 3.1. Noting that every vertex in $S \cap V(P)$ has at most two 2-private neighbors with respect to $S \cap V\left(T^{\prime}\right)$ by (1.2), we deduce from (3.26) and (3.30) that for each $x \in V(P) \backslash\{w\}$,

$$
d_{T}(x)=d_{T^{\prime}}(x)= \begin{cases}2 & \text { if } x \in V(P) \backslash S \\ 1 & \text { if } x \in\left\{y_{1}, y_{2}\right\} \\ 2 & \text { if } x \in(S \cap V(P)) \backslash\left\{y_{1}, y_{2}\right\}\end{cases}
$$

from which and (3.31) we obtain that $S \cap V(P)=\left\{y_{1}, w, y_{2}\right\}$ and $V(P) \backslash S=N_{T^{\prime}}(w)$. By (3.29), T is a spider S_{3} and $n=|V(T)|=\left|V\left(S_{3}\right)\right|=7$, which contradicts that $n \geq 8$. The claim holds.

By (a), $S \cap V\left(T^{\prime}\right)$ is the unique $\gamma_{2}\left(T^{\prime}\right)$-set. By induction, $r_{2}\left(T^{\prime}\right) \geq 3$. Since S is a $\gamma_{2}(T)$-set by (a),

$$
\begin{equation*}
\gamma_{2}\left(T^{\prime}\right)=\left|S \cap V\left(T^{\prime}\right)\right|=|S \backslash\{u\}|=|S|-1=\gamma_{2}(T)-1 . \tag{3.32}
\end{equation*}
$$

We now show that $r_{2}(T) \geq 3$. Let X be an $\eta_{2}(T)$-set such that $|X \cap\{u, v\}|$ is as small as possible. Then $|X \cap\{u, v\}| \leq 1$. If $|X \cap\{u, v\}|=0$, by (2.1) and (2.2), we have $\eta_{2}(\{u, v\}, X, T) \geq 3$ and it follows from Lemma 2.1 that

$$
r_{2}(T)=\eta_{2}(V(T), X, T) \geq \eta_{2}(\{u, v\}, X, T) \geq 3
$$

If $|X \cap\{u, v\}|=1$, then Lemma 2.2 and (3.32) imply that

$$
\left|X \cap V\left(T^{\prime}\right)\right|=|X|-1=\left(\gamma_{2}(T)-1\right)-1=\gamma_{2}\left(T^{\prime}\right)-1
$$

Note that the edge $v w$ is the unique edge linking $\{u, v\}$ to $V\left(T^{\prime}\right)$. When $X \cap\{u, v\}=\{u\}$, we have $\eta_{2}\left(V\left(T^{\prime}\right), X, T\right)=\eta_{2}\left(V\left(T^{\prime}\right), X \cap V\left(T^{\prime}\right), T^{\prime}\right)$, and thus obtain from Lemm 2.1 and (2.2) that

$$
\begin{aligned}
r_{2}(T)=\eta_{2}(V(T), X, T) & \geq \eta_{2}\left(V\left(T^{\prime}\right), X, T\right) \\
& =\eta_{2}\left(V\left(T^{\prime}\right), X \cap V\left(T^{\prime}\right), T^{\prime}\right) \geq r_{2}\left(T^{\prime}\right) \geq 3 .
\end{aligned}
$$

When $X \cap\{u, v\}=\{v\}$, we directly calculate by (2.1) and (2.2) that $\eta_{2}(\{u, v\}, X, T)=1$ and $\eta_{2}\left(V\left(T^{\prime}\right), X, T\right) \geq \eta_{2}\left(V\left(T^{\prime}\right), X \cap V\left(T^{\prime}\right), T^{\prime}\right)-1$. Therefore,

$$
\begin{aligned}
r_{2}(T) & =\eta_{2}(V(T), X, T) \quad \text { (by Lemma 2.1) } \\
& =\eta_{2}(\{u, v\}, X, T)+\eta_{2}\left(V\left(T^{\prime}\right), X, T\right) \quad(\text { by }(2.2)) \\
& \geq 1+\left[\eta_{2}\left(V\left(T^{\prime}\right), X \cap V\left(T^{\prime}\right), T^{\prime}\right)-1\right] \\
& \geq r_{2}\left(T^{\prime}\right) \quad\left(\text { by Lemma 2.1, since }\left|X \cap V\left(T^{\prime}\right)\right|<\gamma_{2}\left(T^{\prime}\right)\right) \\
& \geq 3
\end{aligned}
$$

This complete the proof of Lemma 3.8 (c).
Applying Theorem 1.1 and Lemma 3.8 (c), the sufficiency of Theorem 1.2 is true, and so Theorem 1.2 holds.

References

[1] H. Aram, S.M. Sheikholeslami and L. Volkmann, On the total $\{k\}$-domination and total $\{k\}$-domatic number of graphs. Bull. Malays. Math. Sci. Soc., (2) 36 (1) (2013): 39-47.
[2] H. Aram, S.M. Sheikholeslami and L. Volkmann, Signed k-domatic numbers of digraphs. Bull. Malays. Math. Sci. Soc., (2) 36 (1) (2013): 143-150.
[3] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees. Austral. J. Combin., 33 (2005): 317-327.
[4] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees. Discrete Math., 306 (2006): 2031-2037.
[5] J.R.S. Blair, W. Goddard, S.T. Hedetniemi, S. Horton, P. Jones and G. Kubicki, On domination and reinforcement numbers in trees. Discrete Math., 308 (2008): 11651175.
[6] J.A. Bondy and U.S.R. Murty, Graph Theory, in: GTM, vol. 244, Springer, 2008.
[7] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-Domination and k independence in graphs: A survey. Graphs \& Combin., 28 (1) (2012): 1-55.
[8] E. DeLaViña, W. Goddard, M.A. Henning, R. Pepper and E.R. Vaughan, Bounds on the k-domination number of a graph. Appl. Math. Lett., 24 (2011): 996-998.
[9] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence. J. Combin. Theory Ser. B, 39 (1985): 101-102.
[10] O. Favaron, A. Hansberg and L. Volkmann, On k-domination and minimum degree in graphs. J. Graph Theory, 57 (2008): 33-40.
[11] J. F. Fink and M. S. Jacobson, n-Domination in graphs. In: Graph Theorywith Applications to Algorithms and Computer Science, pp. 283-300. Wiley, New York (1985).
[12] A. Hansberg, D. Meierling and L. Volkmann, Independence and k-domination in graphs. Internat. J. Comput. Math., 88 (5) (2011): 905-915.
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, New York, Marcel Deliker, (1998).
[14] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker, (1998).
[15] M.A. Henning, N.J. Rad and J. Raczek, A note on total reinforcement in graph. Discrete Appl. Math., 159 (2011): 1443-1446.
[16] F.-T. Hu and J.-M. Xu, On the complexity of the bondage and reinforcement problems. J. Complexity, 28 (2) (2011): 192-201.
[17] J. Huang, J.W. Wang and J.-M. Xu, Reinforcement number of digraphs. Discrete Appl. Math., 157 (2009): 1938-1946.
[18] H. Karami, R. Khoeilar, S.M. Sheikholeslami and A. Khodkar, Global signed domination in graphs. Bull. Malays. Math. Sci. Soc., (2) 36 (2) (2013): 363-372.
[19] J. Kok and C.M. Mynhardt, Reinforcement in graphs. Congr. Numer., 79 (1990): 225-231.
[20] Y. Lu, F.-T. Hu and J.-M. Xu, On the p-reinforcement and the complexity. J. Comb. Optim., (2013). doi: 10.1007/s10878-013-9597-9.
[21] Y. Lu, X.-M. Hou, J.-M. Xu and N. Li, Trees with unique minimum p-dominating sets. Util. Math., 86 (2011): 193-205.
[22] H.Z. Li, X.L. Li and Y.P. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices. Bull. Malays. Math. Sci. Soc., (2), accepted.
[23] Y. Lu and J.-M. Xu, Trees with maximum p-reinforcement number. http://arxiv.org/abs/1211.5742v1.
[24] Y.J. Wu and Q.L. Yu, A characterization of graphs with equal domination number and vertex cover number. Bull. Malays. Math. Sci. Soc., (2) 35 (3) (2012): 803-806.
[25] J.H. Zhang, H.L. Liu and L. Sun, Independence bondage and reinforcement number of some graphs. Trans. Beijin Inst. Technol., 23 (2003): 140-142.

[^0]: *The work was supported by NNSF of China (No. 11201374) and the Fundamental Research Fund of NPU (No. JC201150).
 ${ }^{\dagger}$ Corresponding author. E-mail address: luyou@nwpu.edu.cn (Y. Lu).

