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Abstract

A vertex subset S of a graph G is a 2-dominating set of G if every vertex not in
S is adjacent to two vertices of S. The 2-domination number γ2(G) is the minimum
cardinality of a 2-dominating set of G. The 2-reinforcement number r2(G) is the
smallest number of extra edges whose addition to G results in a graph G′ with
γ2(G′) < γ2(G). Let T be a tree. It is showed by Lu, Hu and Xu that r2(T ) ≤ 3.
In this paper, we will show that r2(T ) = 3 if and only if there is a 2-dominating set
S of T such that T contains neither S-vulnerable vertices nor S-vulnerable paths.
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1 Introduction

For terminology and notation not defined here we refer the reader to [6, 13, 14]. Let
G = (V (G), E(G)) be a simple graph and x ∈ V (G). The open neighborhood, the closed
neighborhood and the degree of x are denoted by NG(x) = {y | xy ∈ E(G)}, NG[x] =
NG(x)∪{x} and dT (x) = |NG(x)|, respectively. A vertex of degree one is called a leaf and
its neighbor is called a stem. Let S be a subset of V (G) with x ∈ S. A vertex y ∈ NG(x)
is called a 2-private neighbor of x with respect to S if y /∈ S and |NG(y) ∩ S| = 2. The
2-private neighborhood of x with respect to S, denoted by N2(x, S,G), is defined as the
set of 2-private neighbors of x with respect to S in G.

For any S ⊆ V (G), the subgraph induced by V (G) − S is denoted by G − S. For
B ⊆ E(G), we use G − B to denote the subgraph with vertex set V (G) and edge set
E(G) − B. To simplify notation, if S = {v} and B = {xy}, we write G − v and G − xy
for G− {v} and G− {xy}, respectively.

∗The work was supported by NNSF of China (No. 11201374) and the Fundamental Research Fund of
NPU (No. JC201150).
†Corresponding author. E-mail address: luyou@nwpu.edu.cn (Y. Lu).
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Let p be a positive integer. In 1985, Fink and Jacobson [11] introduced the concept of
p-domination. A set S of V (G) is a p-dominating set of G if for each vertex x ∈ V (G)\S,
|NG(x) ∩ S| ≥ p. The p-domination number γp(G) is the minimum cardinality of a p-
dominating set of G. A p-dominating set with cardinality γp(G) is called a γp(G)-set. Note
that the γ1(G)-set is the well-known minimum dominating set of G, and so γ1(G) = γ(G).
For S, T ⊆ V (G), S p-dominates T if |NG(x) ∩ S| ≥ p for each x ∈ T \ S. Up to the
present, p-domination have been studied by a number of researchers (see, for example,
[1, 2, 3, 4, 7, 8, 9, 10, 12, 18, 22, 24]).

In order to investigate the vulnerability of p-domination, Lu, Hu and Xu [20] recently
introduce the p-reinforcement number rp(G) of a graph G, which is the smallest number of
extra edges whose addition to G results in a graph G′ with γp(G′) < γp(G). If γp(G) ≤ p,
they define rp(G) = 0. Clearly, the p-reinforcement number is a generalization of the
classical reinforcement number which was introduced by Kok and Mynhardt [19] and
studied by some authors [5, 15, 16, 17, 25]. In [20], the authors presented an equivalent
parameter for calculating rp(G). As applications of this parameter, they showed that the
decision problem on rp(G) is NP-hard and established some upper bounds of rp(G). In
particular, they obtained the following result.

Theorem 1.1 ([20]) rp(T ) ≤ p+ 1 for any tree T and p ≥ 2.

In [23], Lu and Xu gave a constructive characterization of the trees attaining the upper
bound in Theorem 1.1 when p ≥ 3. However, for p = 2, the characterization is invalid
because a key conclusion is not true. In this paper, we will present an equivalent condition
for all trees with 2-reinforcement number 3. For this purpose, we introduce two additional
notations.

Let S be a vertex subset of a graph G. A vertex x ∈ S is S-vulnerable in G if

|N2(x, S,G)| ≤ min{2, |NG(x) ∩ S|}. (1.1)

Let ` be a positive integer. A path P = x0x1 . . . x` is S-vulnerable in G if
(1) S ∩ V (P ) is a 2-dominating set of P , and
(2) for every x ∈ S ∩ V (P ),

|N2(x, S,G) \ V (P )| ≤
{

min{1, |NG(x) ∩ S|} if x ∈ {x0, x`};
0 if x /∈ {x0, x`}.

(1.2)

We now state our main result as follows.

Theorem 1.2 Let T be a tree. Then r2(T ) = 3 if and only if there exists a 2-dominating
set S of T such that T contains neither S-vulnerable vertices nor S-vulnerable paths.

In Section 2, we will give some lemmas which will be used later. The proof of Theorem
1.2 is postponed to Sections 3.

2 Lemmas

Let G be a graph and X ⊆ V (G) with |X| ≥ 2. For any x ∈ V (G), define

η2(x,X,G) =

{
max{0, 2− |NG(x) ∩X|} if x /∈ X;
0 if x ∈ X, (2.1)
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and then there is a subset Bx ⊆ E(Gc) with |Bx| = η2(x,X,G) such that x can be 2-
dominated by X in G+Bx, where Gc is the complement of G. Hence X is a 2-dominating
set of G+ (∪x∈V (G)Bx). By the definition of r2,

r2(G) ≤ | ∪x∈V (G) Bx| =
∑

x∈V (G)

η2(x,X,G).

Motivated by this inequality, Lu, Hu and Xu [20] define for any X,S ⊆ V (G),

η2(S,X,G) =
∑
x∈S

η2(x,X,G) (2.2)

and give the following two lemmas.

Lemma 2.1 ([20]). Let G be a graph with γ2(G) ≥ 3. Then

r2(G) = min{η2(V (G), X,G) : X ⊆ V (G) with |X| < γ2(G)}.

A set X ⊆ V (G) is called an η2(G)-set if |X| < γ2(G) and r2(G) = η2(V (G), X,G).

Lemma 2.2 ([20]). Let G be a graph. If X is an η2(G)-set, then |X| = γ2(G)− 1.

Lemma 2.3 Let G be a graph containing a path P = xy1y2y3z with dG(yi) = 2 for
i = 1, 2, 3. Denote by G′ the graph obtained from G by replacing {y1, y2, y3} with a single
vertex y adjacent to x and z. If γ2(G

′) ≥ 3, then r2(G) ≥ min{3, r2(G′)}.

Proof. Notice that NG′(y) = {x, z}. Let D be a γ2(G
′)-set. If y /∈ D, to 2-dominate y,

x ∈ D and z ∈ D, and hence D ∪ {y2} is a 2-dominating set of G, which means that

γ2(G) ≤ |D ∪ {y2}| = |D|+ 1 = γ2(G
′) + 1. (2.3)

If y ∈ D, then let S = (D \ {y}) ∪ {y1, y3}. Clearly, |NG(x) ∩ S| = |NG′(x) ∩ D| and
|NG(z) ∩ S| = |NG′(z) ∩ D|. It follows that {x, z} is 2-dominated by S. Since D \ {y}
2-dominates V (G′)\{x, y, z} (= V (G)\V (P )) and NG(y2) = {y1, y3}, S is a 2-dominating
set of G, and thus

γ2(G) ≤ |S| = |(D \ {y}) ∪ {y1, y3}| = |D|+ 1 = γ2(G
′) + 1. (2.4)

Summing up (2.3) and (2.4), we obtain that γ2(G) ≤ γ2(G
′) + 1.

In the following, we show that r2(G) ≥ min{3, r2(G′)}. Suppose, to be contrary, that
r2(G) < min{3, r2(G′)}, and let X be an η2(G)-set such that |X ∩ {y1, y2, y3}| is as small
as possible. Then Lemmas 2.1 and 2.2 yield that

η2(V (G), X,G) = r2(G) < min{3, r2(G′)} (2.5)

and |X| = γ2(G)− 1, respectively.
If X∩{y1, y2, y3} = ∅, we obtain from (2.1) that η2(y1, X,G) ≥ 1 and η2(y2, X,G) = 2.

By (2.2),
η2(V (G), X,G) ≥ η2(y1, X,G) + η2(y2, X,G) ≥ 3.

This contradicts (2.5).
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If X∩{y1, y2, y3} = {y1} or {y3}, without loss of generality, say X∩{y1, y2, y3} = {y1},
then (2.1) implies that η2(y2, X,G) = 1 and η2(y3, X,G) ≥ 1. By (2.2) and (2.5),

2 ≤ η2(y2, X,G) + η2(y3, X,G) ≤ η2(V (G), X,G) < 3,

which implies that η2(y3, X,G) = 1 (and thus z ∈ X since NG(y3) = {y2, z} and y2 /∈ X)
and η2(V (G) \ {y2, y3}, X,G) = 0. Let X ′ = X \ {y1}. Then it follows from (2.2) that

η2(x,X,G) ≤ η2(V (G) \ {y2, y3}, X,G) = 0 (2.6)

and

η2(V (G′) \ {x, y}, X ′, G′) = η2(V (G) \ {x, y1, y2, y3}, X,G)

≤ η2(V (G) \ {y2, y3}, X,G)

= 0.

By (2.1), (2.6) implies that either x ∈ X or |NG(x) ∩X| ≥ 2, and hence

η2(x,X
′, G′) ≤ 1

because y1 ∈ NG(x) ∩ X but y1 /∈ X ′. Since z ∈ X, z ∈ X ′ and so η2(y,X
′, G′) ≤ 1.

Recalling the facts that |X| = γ2(G)− 1 and γ2(G) ≤ γ2(G
′) + 1, we obtain that

|X ′| = |X| − 1 = γ2(G)− 2 ≤ γ2(G
′)− 1.

Therefore,

r2(G
′) ≤ η2(V (G′), X ′, G′) (by Lemma 2.1)

= η2(y,X
′, G′) + η2(x,X

′, G′) + η2(V (G′) \ {x, y}, X ′, G′) (by (2.2))

≤ 1 + 1 + 0

= η2(y2, X,G) + η2(y3, X,G) + η2(V (G) \ {y2, y3}, X,G)

= η2(V (G), X,G) (by (2.2))

= r2(G). (since X is an η2(G)-set)

This also contradicts (2.5).
If X ∩ {y1, y2, y3} = {y2}, let X ′ = X \ {y2}, then |X ′| = |X| − 1 = γ2(G) − 2 ≤

γ2(G
′) − 1. Since dG′(y) = 2 and dG(yi) = 2 for i ∈ {1, 2, 3}, it follows from (2.1) and

(2.2) that

η2(y,X
′, G′) = η2({y1, y2, y3}, X,G)

η2(V (G) \ {y}, X ′, G′) = η2(V (G) \ {y1, y2, y3}, X,G).

Hence by Lemma 2.1 and (2.2),

r2(G
′) ≤ η2(V (G′), X ′, G′)

= η2({y,X ′, G′}) + η2(V (G′) \ {y}, X ′, G′)
= η2({y1, y2, y3}, X,G) + η2(V (G) \ {y1, y2, y3}, X,G)

= η2(V (G), X,G)

= r2(G),
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which contradicts (2.5).
If |X ∩ {y1, y2, y3}| ≥ 2, then we may assume that X ∩ {y1, y2, y3} = {y1, y3} by the

choice of X. Let X ′ = (X\{y1, y3})∪{y}. Clearly, |X ′| = |X|−1 = γ2(G)−2 = γ2(G
′)−1

and
η2(V (G′) \ {x, y, z}, X ′, G′) = η2(V (G) \ V (P ), X,G).

Since y ∈ X ′ and {y1, y3} ⊆ X, we obtain from (2.1) and (2.2) that η2({x, z}, X ′, G′) =
η2({x, z}, X,G) and η2(y,X

′, G′) = 0 = η2({y1, y2, y3}, X,G). By Lemma 2.1 and (2.2),

r2(G
′) ≤ η2(V (G′), X ′, G′)

= η2(V (G′) \ {x, y, z}, X ′, G′) + η2({x, z}, X ′, G′) + η2(y,X
′, G′)

= η2(V (G) \ V (P ), X,G) + η2({x, z}, X,G) + η2({y1, y2, y3}, X,G)

= η2(V (G), X,G)

= r2(G),

which contradicts (2.5) again.

3 Proof of Theorem 1.2

In this section we present a proof of Theorem 1.2. Recall the statement of the theorem as
follows: a tree T satisfies r2(T ) = 3 if and only if there exists a 2-dominating set S of T
such that T contains neither S-vulnerable vertices nor S-vulnerable paths. Let us begin
with two simple observations.

Observation 3.1 Every 2-dominating set of a graph G contains all leaves of G.

Observation 3.2 Let P be a path with length `. Then γ2(P ) = b(`+ 1)/2c+ 1.

Lemma 3.3 Let T be a tree with a γ2(T )-set S. If T contains S-vulnerable vertices, then
r2(T ) ≤ 2.

Proof. Let x be an S-vulnerable vertex in T . Then x ∈ S. Since S is a γ2(T )-set,
|S \ {x}| < |S| = γ2(T ) and for y ∈ NT (x) \ S, |NT (y) ∩ S| ≥ 2 with equality if and only
if y ∈ N2(x, S, T ). Thus for y ∈ NT (x), we can directly calculate by (2.1) that

η2(y, S \ {x}, T ) =

{
1 if y ∈ N2(x, S, T );
0 otherwise.

(3.1)

Hence

r2(T ) ≤ η2(V (T ), S \ {x}, T ) (by Lemma 2.1)

= η2(x, S \ {x}, T ) + η2(NT (x), S \ {x}, T ) (since S is a γ2(T )-set)

= η2(x, S \ {x}, T ) +
∑

y∈NT (x)

η2(y, S \ {x}, T ) (by (2.2))

= max{0, 2− |NT (x) ∩ (S \ {x})|}+ |N2(x, S, T )| (by (2.1) and (3.1))

≤ max{0, 2− |NT (x) ∩ S|}+ min{2, |NT (x) ∩ S|} (by (1.1))

= 2.

The proof of the lemma is completed.
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Lemma 3.4 Let T be a tree with a γ2(T )-set S. If T contains S-vulnerable paths, then
r2(T ) ≤ 2.

Proof. It is sufficient to consider the case that T has no S-vulnerable vertices by Lemma
3.3. Let P = x0x1 . . . x` be a shortest S-vulnerable path in T . From the definition of
S-vulnerable path, we know that ` ≥ 1, S ∩ V (P ) 2-dominates V (P ) and every vertex in
S ∩ V (P ) satisfies (1.2).

Suppose that there is some i ∈ {0, 1, . . . , `− 1} such that xi ∈ S and xi+1 ∈ S. Then
|NT (xi) ∩ S| ≥ |{xi+1}| = 1 and |N2(xi, S, T )| ≤ 1 by (1.2). It follows that

|N2(xi, S, T )| ≤ 1 ≤ min{2, |NT (xi) ∩ S|},

which means that xi is S-vulnerable in T . This contradicts the assumption that T has
no S-vulnerable vertices. So arbitrary two vertices in S ∩ V (P ) are nonadjacent in T .

If ` is odd, since S ∩ V (P ) 2-dominates V (P ), |S ∩ V (P )| ≥ γ2(P ) = (` + 1)/2 + 1
by Observation 3.2. This implies that there are two adjacent vertices in S ∩ V (P ), a
contradiction. Assume that ` is even below.

Because S ∩ V (P ) 2-dominates V (P ), |S ∩ V (P )| ≥ `/2 + 1 by Observation 3.2. Let

X = (S \ V (P )) ∪ {x1, x3, . . . , x`−1}.

Since S is a γ2(T )-set and every vertex in (S ∩V (P )) \ {x0, x`} has no 2-private neighbor
in V (T )\V (P ) by (1.2), X has cardinality |X| = |S|−|S∩V (P )|+`/2 ≤ |S|−1 < γ2(T ),
and 2-dominates V (T ) \ (NT [x0] ∪NT [x`]). Hence by Lemma 2.1 and (2.2),

r2(T ) ≤ η2(V (T ), X, T ) = η2(NT [x0] ∪NT [x`], X, T )

≤ η2(NT [x0], X, T ) + η2(NT [x`], X, T ). (3.2)

We claim that η2(NT [x0], X, T ) ≤ 1. Note that x0 ∈ S ∩ V (P ) by Observation 3.1
since S∩V (P ) is a 2-dominating set of P . Because S∩V (P ) has no two adjacent vertices,
x1 /∈ S and thus

|NT (x0) ∩X| = |(NT (x0) ∩ S) ∪ {x1}| = |NT (x0) ∩ S|+ 1. (3.3)

Since x0 ∈ S \ X, x1 ∈ X and S is a γ2(T )-set, we can obtain from (2.1) that for any
y ∈ NT (x0),

η2(y,X, T ) =

{
1 if y ∈ N2(x0, S, T ) \ {x1};
0 otherwise.

(3.4)

Therefore,

η2(NT [x0], X, T ) = η2(x0, X, T ) +
∑

y∈NT (x0)

η2(y,X, T ) (by (2.2))

(by (2.1) and (3.4)) = max{0, 2− |NT (x0) ∩X|}+ |N2(x0, S, T ) \ {x1}|
(by (3.3) and (1.2)) ≤ max{0, 1− |NT (x0) ∩ S|}+ min{1, |NT (x0) ∩ S|}

= 1.

The claim is true.
By the symmetry, η2(NT [x`], X, T ) ≤ 1. It follows from (3.2) that r2(T ) ≤ 2. We

complete the proof of the lemma.
Summing up Lemmas 3.3 and 3.4, the necessity of Theorem 1.2 follows. For the

sufficiency, we need the following four lemmas.
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Lemma 3.5 Let T be a tree, xy ∈ E(T ) and Tx the component of T − xy containing
x. Let S ⊆ V (T ) and P be a path in Tx. If S ∩ V (Tx) is a 2-dominating set of Tx

and P is S ∩ V (Tx)-vulnerable in Tx but not S-vulnerable in T , then x ∈ S ∩ V (P ) and
y ∈ N2(x, S, T ).

Proof. Because P is S ∩ V (Tx)-vulnerable in Tx but not S-vulnerable in T , (1.2) implies
that there is a vertex z ∈ S ∩ V (P ) such that

|N2(z, S,G) \ V (P )| > |N2(z, S ∩ V (Tx), Tx) \ V (P )|. (3.5)

In order to prove x ∈ S ∩ V (P ) and y ∈ N2(x, S, T ), it suffices to show that z = x.
Assume, to be contrary, that z 6= x. Then NT (z) ⊆ V (Tx) and so it follows from (3.5)

that x ∈ N2(z, S, T ) \ V (P ) but x /∈ N2(z, S ∩ V (Tx), Tx) \ V (P ). By the definition of
2-private neighbor, we obtain that x /∈ S, |NT (x)∩S| = 2 and |NTx(x)∩ (S∩V (Tx))| 6= 2.
Furthermore, |NTx(x) ∩ (S ∩ V (Tx))| ≥ 3 since S ∩ V (Tx) is a 2-dominating set of Tx.
Hence we obtain a contradiction that

2 = |NT (x) ∩ S| ≥ |NT (x) ∩ (S ∩ V (Tx)| = |NTx(x) ∩ (S ∩ V (Tx))| ≥ 3.

Lemma 3.6 ([21]) Let S be a 2-dominating set of a tree T . Then S is the unique γ2(T )-
set if and only if, for each x ∈ S with dT (x) ≥ 2, NT (x) ∩ S = ∅ or |N2(x, S, T )| ≥ 2.

Lemma 3.7 ([23]) Let T be a tree with r2(T ) = 3 and S the unique γ2(T )-set. For x ∈ S
and y ∈ N2(x, S, T ), denote by Ty the component of T − x containing y. If Ty is not the
complete graph K2, then r2(Ty) = 1 and S ∩ V (Ty) is an η2(Ty)-set.

For t ≥ 2, a spider St is a tree obtained from a star K1,t by attaching one leaf at each
leaf of K1,t.

Lemma 3.8 Let S be a 2-dominating set of a tree T . If T contains neither S-vulnerable
vertices nor S-vulnerable paths, then we have the following statements.

(a) S is the unique γ2(T )-set.
(b) |V (T )| ≥ 7 with equality if and only if T = S3.
(c) r2(T ) ≥ 3.

Proof. (a) Let S ′ be the set of vertices in T with degree at least 2. If S ′ = ∅, then S is
the unique γp(T )-set by Observation 3.1, and so the conclusion (a) follows. Assume now
that S ′ 6= ∅, and let x ∈ S ′. If x doesn’t satisfy the second condition in Lemma 3.6, that
is, |N2(x, S, T )| ≤ 1, since x is not S-vulnerable in T , it follows from (1.1) that

|NT (x) ∩ S| < |N2(x, S, T )| ≤ 1.

This fact implies that x satisfies the first condition in Lemma 3.6. By Lemma 3.6, S is
the unique γp(T )-set. The conclusion (a) is true.

(b) Since T is a tree without S-vulnerable vertices or paths, we can directly check
the validity of the conclusion (b), and omit the proof.

(c) Let |V (T )| = n. Then n ≥ 7 by (b). We prove r2(T ) ≥ 3 by induction on n.
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If n = 7, then (b) implies that T is the spider S3. It is not hard to determine that
r2(T ) = 3 by (2.1) and (2.2). This establishes the base case.

Let n ≥ 8. For any tree T ′ with order n′ < n, assume that r2(T
′) ≥ 3 if there exists a

2-dominating set S ′ of T ′ such that T ′ has neither S ′-vulnerable vertices nor S ′-vulnerable
paths.

We will now prove the following claims.

Claim 1 If T has a path xy1y2y3z with dT (yi) = 2 for i ∈ {1, 2, 3}, then r2(T ) ≥ 3.

Proof. Replacing the path xy1y2y3z by a path xyz, we obtain a tree T ′ with order less
than n. Note that S is the unique γ2(T )-set by (a). Since dT (yi) = 2 for i ∈ {1, 2, 3},
S ∩ {y1, y2, y3} = {y2} or {y1, y3}, and thus let

S ′ =

{
S \ {y2} if S ∩ {y1, y2, y3} = {y2};
(S \ {y1, y3}) ∪ {y} if S ∩ {y1, y2, y3} = {y1, y3}.

It is clear that S ′ is a 2-dominating set of T ′ because S is a γ2(T )-set by (a). Moreover,
for each v ∈ V (T ′) \ {y} (= V (T ) \ {y1, y2, y3}),

|NT ′(v) ∩ S ′| = |NT (v) ∩ S|, and (3.6)

|N2(v, S
′, T ′)| = |N2(v, S, T )| if v ∈ S ′. (3.7)

Using the condition of Lemma 3.8, we deduce from (1.1), (1.2), (3.6) and (3.7) that T ′

has neither S ′-vulnerable vertices nor S ′-vulnerable paths. By induction, r2(T
′) ≥ 3. It

follows from Lemma 2.3 that r2(T ) ≥ min{3, r2(T ′)} = 3. 2

Claim 2 If T has an edge xy satisfying x /∈ S and y /∈ S, then r2(T ) ≥ 3.

Proof. Let Tx and Ty to denote the two components of T − xy containing x and y,
respectively. Since S ∩ {x, y} = ∅, Lemma 3.5 yields that Tx (resp. Ty) contains no
S∩V (Tx)-vulnerable (resp. S∩V (Ty)-vulnerable) vertices or paths. Using (a), we obtain
that S ∩ V (Tx) and S ∩ V (Ty) are respectively the unique γ2(Tx)-set and γ2(Ty)-set, and
so

γ2(Tx) + γ2(Ty) = |S ∩ V (Tx)|+ |S ∩ V (Ty)| = |S| = γ2(T ). (3.8)

Moreover, r2(Tx) ≥ 3 and r2(Ty) ≥ 3 by induction.
Let X be an η2(T )-set. By Lemma 2.2 and (3.8), |X| = γ2(T )−1 = γ2(Tx)+γ2(Ty)−1.

Thus we may assume that
|X ∩ V (Tx)| ≤ γ2(Tx)− 1.

Noting that xy is the unique edge of T between V (Tx) and V (Ty), we obtain from (2.1)
and (2.2) that

η2(V (Tx), X, T ) ≥ η2(V (Tx), X ∩ V (Tx), Tx)− 1, (3.9)

with equality if and only if X ∩ {x, y} = {y} and |NTx(x) ∩X| < 2. Therefore,

r2(T ) = η2(V (T ), X, T ) (by Lemma 2.1)

= η2(V (Tx), X, T ) + η2(V (Ty), X, T ) (by (2.2))

≥ η2(V (Tx), X ∩ V (Tx), Tx)− 1 (by (3.9))

≥ r2(Tx)− 1 (by Lemma 2.1, since |X ∩ V (Tx)| ≤ γ2(Tx)− 1)

≥ 2.
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Suppose that r2(T ) = 2. Then the above equalities all hold. In particular,

η2(V (Tx), X, T ) = η2(V (Tx), X ∩ V (Tx), Tx)− 1 = r2(Tx)− 1 = 2, (3.10)

η2(V (Ty), X, T ) = 0. (3.11)

(3.10) yields that X ∩ {x, y} = {y} and r2(Tx) = η2(V (Tx), X ∩ V (Tx), Tx), which means
that X ∩ V (Tx) is an η2(Tx)-set. By Lemma 2.2, |X ∩ V (Tx)| = γ2(Tx)− 1, and so

|X ∩ V (Ty)| = |X| − |X ∩ V (Tx)| = γ2(Ty). (3.12)

Since X ∩ {x, y} = {y}, by (2.1), (2.2) and (3.11),

η2(V (Ty), X ∩ V (Ty), Ty) = η2(V (Ty), X, T ) = 0,

which implies that X ∩ V (Ty) is a 2-dominating set of Ty, furthermore, X ∩ V (Ty) is a
γ2(Ty)-set by (3.12). Since S ∩ V (Ty) is the unique γ2(Ty)-set, X ∩ V (Ty) = S ∩ V (Ty),
and so y ∈ S. This contradicts that y /∈ S, and hence r2(T ) ≥ 3. 2

Claim 3 If T contains a vertex x not in S with dT (x) ≥ 3, then r2(T ) ≥ 3.

Proof. By Claim 2, we may assume that NT (x) ⊆ S since x /∈ S. Let NT (x) =
{y1, y2, . . . , yd} and I = {1, 2, . . . , d}, where d = dT (x) ≥ 3. For i ∈ I, denote by Ti

the component of T − x containing yi, and then the order of Ti is less than n.
Let i ∈ I. Since NT (x) ⊆ S and d ≥ 3, x /∈ N2(yi, S, T ), and hence Ti contains

no S ∩ V (Ti)-vulnerable vertices or paths by Lemma 3.5. Noting that S ∩ V (Ti) is a 2-
dominating set of Ti because x /∈ S and S 2-dominates V (T ), we obtain by the induction
on Ti that

r2(Ti) ≥ 3,

and know from (a) that S ∩V (Ti) is the unique γ2(Ti)-set. Therefore by the arbitrariness
of i, ∑

i∈I

γ2(Ti) =
∑
i∈I

|S ∩ V (Ti)| = |S| = γ2(T ).

We now show that r2(T ) ≥ 3. Assume, to be contrary, that r2(T ) ≤ 2. Let X be an
η2(T )-set. Then Lemma 2.1 implies that

|X ∩ {x}|+
∑
i∈I

|X ∩ V (Ti)| = |X| = γ2(T )− 1 =
∑
i∈I

γ2(Ti)− 1, (3.13)

and it follows from (2.2) and Lemma 2.1 that

η2(x,X, T ) +
∑
i∈I

η2(V (Ti), X, T ) = η2(V (T ), X, T ) = r2(T ) ≤ 2. (3.14)

By (3.13), there is some i ∈ I, without loss of generality, say i = 1, such that |X∩V (T1)| ≤
γ2(T1)− 1. Note the fact that, for all i ∈ I, if |X ∩ V (Ti)| ≤ γ2(Ti)− 1 then

η2(V (Ti), X, T ) ≥ η2(V (Ti), X ∩ V (Ti), Ti)− 1 ≥ r2(Ti)− 1 ≥ 2,
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in which η2(V (Ti), X, T ) = 2 if and only if X ∩ {x, yi} = {x}, |NTi
(yi) ∩ X| < 2 and

X ∩ V (Ti) is an η2(Ti)-set. From this fact and (3.14), we deduce that for any i ∈ I,

η2(V (Ti), X, T ) =

{
2 if i = 1;
0 if i 6= 1.

It follows that

|X ∩ V (T1)| = γ2(T1)− 1,

|X ∩ {x}| = 1, and

|X ∩ V (Ti)| = γ2(Ti) for i ∈ I \ {1}.

This contradicts (3.13). Hence r2(T ) ≥ 3. 2

Claim 4 If T has an edge xy such that x ∈ S and y ∈ S, then r2(T ) ≥ 3.

Proof. It is sufficient to show that r2(T ) ≥ 3 for a tree T not satisfying the conditions of
Claims 1∼3. We claim that for v ∈ V (T ),

dT (v)

{
= 2 if v /∈ S;
6= 2 if v ∈ S. (3.15)

In fact, it is clear that dT (x) = 2 for all x /∈ S since T doesn’t satisfy the condition of
Claim 3. Then dT (v) = 2 if v /∈ S. On the other hand, if v ∈ S then assume, to be
contrary, that dT (v) = 2 and let NT (v) = {u1, u2}. If S ∩ {u1, u2} = ∅, then both u1 and
u2 have degree 2, which contradicts that T doesn’t satisfy the condition of Claim 1. If
S ∩ {u1, u2} 6= ∅, then v is S-vulnerable in T , a contradiction. The claim holds.

Since S is a 2-dominating set of T , we obtain from (3.15) that all vertices of T not in
S are 2-private neighbors with respect to S.

Let Tx and Ty denote the components of T−xy containing x and y, respectively. Recall
that S is a 2-dominating set of T and T has neither S-vulnerable vertices nor S-vulnerable
paths. Since x ∈ S and y ∈ S, S ∩ V (Tx) is a 2-dominating set of Tx, and Lemma 3.2
yields that Tx has no S ∩ V (Tx)-vulnerable vertices or paths. By induction, r2(Tx) ≥ 3.
Moreover, S ∩ V (Tx) is the unique γ2(Tx)-set by (a). By the symmetry between x and y,
we also have that r2(Ty) ≥ 3 and S ∩ V (Ty) is the unique γ2(Ty)-set. Therefore,

γ2(T ) = |S| = |S ∩ V (Tx)|+ |S ∩ V (Ty)| = γ2(Tx) + γ2(Ty). (3.16)

We now show that r2(T ) ≥ 3. Assume, to be contrary, that r2(T ) ≤ 2. Let X be an
η2(T )-set. By Lemma 2.2 and (3.16),

|X ∩ V (Tx)|+ |X ∩ V (Ty)| = |X| = γ2(T )− 1 = γ2(Tx) + γ2(Ty)− 1,

from which, we may assume that |X∩V (Tx)| ≤ γ2(Tx)−1, and thus |X∩V (Ty)| ≥ γ2(Ty).
Noting that xy is the unique edge in T joining V (Tx) and V (Ty), we obtain that

η2(V (Tx), X, T ) ≥ η2(V (Tx), X ∩ V (Tx), Tx)− 1
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with equality if and only if X ∩ {x, y} = {y} and |NTx(x) ∩X| ≤ 1. Hence

2 ≥ r2(T ) = η2(V (T ), X, T ) (since X is an η2(T )-set)

= η2(V (Tx), X, T ) + η2(V (Ty), X, T ) (by (2.2))

≥ η2(V (Tx), X ∩ V (Tx), Tx)− 1

≥ r2(Tx)− 1 (by Lemma 2.1, since |X ∩ V (Tx)| ≤ γ2(Tx)− 1)

≥ 2,

which yields the following results:

X ∩ {x, y} = {y}; (3.17)

|NTx(x) ∩X| ≤ 1; (3.18)

r2(Tx) = 3 and X ∩ V (Tx) is an η2(Tx)-set. (3.19)

LetNTx(x)\S = {w1, . . . , wt} andNTx(x)∩S = {wt+1, . . . , wt+s}. For i ∈ {1, . . . , t+s},
denote by Ti the component of Tx−x containing wi. Because T contains no S-vulnerable
vertices and N2(x, S, T ) = NTx(x) \ S, we obtain from (1.1) that

t ≥ min{2, |(NTx(x) ∩ S) ∪ {y}|}+ 1 = min{3, 2 + s}. (3.20)

Since η2(x,X ∩ V (Tx), Tx) ≥ 1 by (2.1), (3.17) and (3.18), it follows from (2.2) that

t+s∑
i=1

η2(V (Ti), X ∩ V (Tx), Tx) = η2(V (Tx), X ∩ V (Tx), Tx)− η2(x,X ∩ V (Tx), Tx)

≤ r2(Tx)− 1 = 2. (by (3.19)) (3.21)

We claim that η2(V (Ti), X ∩ V (Tx), Tx) ≥ 1 for each i ∈ {1, . . . , t}. To be contrary,
assume that there is some i ∈ {1, . . . , t}, without loss of generality, say i = 1, such that
η2(V (T1), X ∩ V (Tx), Tx) = 0. Then X ∩ V (T1) is a 2-dominating set of T1 since x /∈ X.
Recall the obtained facts that r2(Tx) = 3 and S ∩ V (Tx) is the unique γ2(Tx)-set. If T1 is
the complete graph K2, then X ∩ V (T1) = V (T1) and w1 is a stem of T (which implies
that w1 /∈ S. Otherwise the unique leaf of w1 is S-vulnerable in T ). Thus

|X ∩ V (T1)| ≥ |{x} ∪ (S ∩ V (T1))|.

If T1 6= K2, since x ∈ S ∩ V (Tx) and w1 ∈ N2(x, S, T ) = N2(x, S ∩ V (Tx), Tx), Lemma 3.7
implies that r2(T1) = 1 and S ∩V (T1) is an η2(T1)-set. Therefore, by Lemma 2.1, we also
obtain that

|X ∩ V (T1)| ≥ γ2(T1) = 1 + (γ2(T1)− 1) = |{x} ∪ (S ∩ V (T1))|.

Let X1 = [(X ∩ V (Tx)) \ (X ∩ V (T1))]∪ [{x} ∪ (S ∩ V (T1))]. Then |X1| ≤ |X ∩ V (Tx)| =
γ2(Tx) − 1 by (3.19). Since {x} ∪ (S ∩ V (T1)) 2-dominates V (T1), η2(V (T1), X1, Tx) = 0
and so

r2(Tx) ≤ η2(V (Tx), X1, Tx) =
t+s∑
i=2

η2(V (Ti), X1, Tx) (by (2.2))

≤
t+s∑
i=2

η2(V (Ti), X ∩ V (Tx), Tx) (since x ∈ X1)

≤ 2, (by (3.21))
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which contradicts (3.19). The claim holds.
By the above claim, (3.21) and (3.20) imply that t = 2, s = 0 and

η2(x,X ∩ V (Tx), Tx) = 1, (3.22)

η2(V (T1), X ∩ V (Tx), Tx) = 1 (3.23)

η2(V (T2), X ∩ V (Tx), Tx) = 1. (3.24)

By (3.22), exactly one of w1 and w2 belongs to X, without loss of generality, say

w1 ∈ X and w2 /∈ X.

Notice that dT (w1) = 2 by (3.15) since w1 /∈ S. Let v be the unique vertex in NT (w1)\{x}.
Since S is a 2-dominating set of T , v ∈ S in order to 2-dominate w1.

Furthermore, we will now show that |N2(v, S, T )| ≥ 3, which implies that v has at least
three neighbors with degree 2 in T by (3.15). Assume, to be contrary, that |N2(v, S, T )| ≤
2. Noting that all vertices of T not in S are 2-private neighbors with respect to S, we
know that v has at most two neighbors not in S. If dT (v) = 1, then the path xw1v
is S-vulnerable in T , a contradiction. If dT (v) = 2, then let u be the unique vertex in
NT (v) \ {w1}. From the assumption that T doesn’t satisfy the condition of Claim 1, it
follows that dT (u) 6= 2 because dT (w1) = dT (v) = 2, and thus u ∈ S by (3.15). Hence v
is S-vulnerable in T , a contradiction. If dT (v) ≥ 3, then

|NT (v) ∩ S| = |NT (v)| − |N2(v, S, T )| = dT (v)− |N2(v, S, T )| ≥ 1,

that is, v has at least one neighbor in S, and so the path xw1v is also S-vulnerable in T ,
a contradiction.

To the end, we will show that there is a vertex subset X2 ⊆ V (Tx) such that |X2| =
|X ∩ V (Tx)| and η2(V (Tx), X2, Tx) < 3. This contradicts (3.19), and hence r2(T ) ≥ 3.

If v ∈ X, then let
X2 = [(X ∩ V (Tx)) \ {w1}] ∪ {x}.

Clearly, |X2| = |X ∩ V (Tx)| because w1 ∈ X ∩ V (Tx). Since NTx(w1) = {x, v} ⊆ X2, it
follows from (2.1) that η2(x,X2, Tx) = η2(w1, X2, Tx) = 0. Therefore, by (2.1) and (2.2),

η2(V (Tx), X2, Tx) = η2(x,X2, T ) + η2(V (T1), X2, Tx) + η2(V (T2), X2, Tx)

≤ η2(V (T1), X ∩ V (Tx), Tx) + η2(V (T2), X ∩ V (Tx), Tx)

= 2. (by (3.23) and (3.24))

Since |X2| = |X ∩ V (Tx)|, by (3.19) and Lemma 2.1, we obtain a contradiction that

3 = r2(Tx) ≤ η2(V (Tx), X2, Tx) ≤ 2.

If v /∈ X, since |N2(v, S, T )| ≥ 3, (3.23) implies that there is a vertex u ∈ N2(v, S, T ) \
{w1} such that

η2(V (Tu), X ∩ V (Tx), Tx) = 0, (3.25)

where Tu is the component of T − v containing u. Since v /∈ X, (3.25) implies that
X ∩ V (Tu) is a 2-dominating set of Tu and so |X ∩ V (Tu)| ≥ γ2(Tu). Let

X2 = [(X ∩ V (Tx)) \ ((X ∩ V (Tu)) ∪ {w1})] ∪ {x, v} ∪ (S ∩ V (Tu)).
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Recall the obtained facts that dT (u) = 2 (by (3.15) since u /∈ S), r2(Tx) = 3 and S∩V (Tx)
is the unique γ2(Tx)-set. If Tu = K2, then the unique vertex in V (Tu) \ {u} belongs to
S ∩ V (Tu) by Observation 3.1, and so η2(V (Tu), X2, Tx) = 0 and

|X ∩ V (Tu)| = |V (Tu)| = |{v} ∪ (S ∩ V (Tu))|,

from which we obtain that |X2| = |X ∩ V (Tx)|. If Tu 6= K2, since u ∈ N2(v, S, T ) =
N2(v, S ∩ V (Tx), Tx), Lemma 3.7 implies that r2(Tu) = 1 and S ∩ V (Tu) is an η2(Tu)-set,
and so

|X ∩ V (Tu)| ≥ γ2(Tu) = 1 + (γ2(Tu)− 1) = |{v}|+ |S ∩ V (Tu)| = |{v} ∪ (S ∩ V (Tu))|

and {v} ∪ (S ∩ V (Tu)) 2-dominates V (Tu). Therefore,

|X2| = |X ∩ V (Tx)| and η2(V (Tu), X2, Tx) = 0.

Since NTx(w1) = {x, v} ⊆ X2, it follows from (2.1) and (2.2) that η2(x,X2, Tx) =
η2(w1, X2, Tx) = η2(v,X2, Tx) = 0 and

η2(V (Tx), X2, Tx)

= η2(V (T1) \ (V (Tu) ∪ {w1, v}), X2, Tx) + η2(V (T2), X2, Tx)

≤ η2(V (T1) \ (V (Tu) ∪ {w1, v}), X ∩ V (Tx), Tx) + η2(V (T2), X ∩ V (Tx), Tx)

≤ η2(V (T1), X ∩ V (Tx), Tx) + η2(V (T2), X ∩ V (Tx), Tx)

= 2. (by (3.23) and (3.24))

Since |X2| = |X ∩ V (Tx)|, (3.19) and Lemma 2.1 yield a contradiction that

3 = r2(Tx) ≤ η2(V (Tx), X2, Tx) ≤ 2.

The proof of Claim 4 is complete. 2

We now return to the proof of Lemma 3.8 (c). In the following, assume that T is a
tree not satisfying the conditions of Claims 1∼4. Since S is 2-dominating set of T , for
any x ∈ V (T ), we obtain from this assumption that

dT (x) = 2, if x /∈ S, (3.26)

dT (x) = |NT (x)| = |N2(x, S, T )| 6= 2, if x ∈ S. (3.27)

Moreover, every stem in T has exact one leaf because T has neither S-vulnerable vertices
nor S-vulnerable paths.

Let v be a stem and u the unique leaf of v. Since S is a 2-dominating set of T , u ∈ S
by Observation 3.1 and v /∈ S (otherwise, u is S-vulnerable in T ). By (3.26), dT (v) = 2.
Denote by w the unique vertex in NT (v) \ {u}. Then NT (v) = {u,w}. Since v /∈ S, to
2-dominate v, |S ∩NT (v)| ≥ 2, which implies that w ∈ S.

Let T ′ = T − {u, v}. Then S ∩ V (T ′) is a 2-dominating set of T ′ because w ∈ S and
S is a 2-dominating set of T .

We claim that T ′ has neither S ∩ V (T ′)-vulnerable vertices nor S ∩ V (T ′)-vulnerable
paths. It is clear that dT (w) 6= 1. Since w ∈ S, it follows from (3.27) that dT (w) =
|N2(w, S, T )| ≥ 3, and thus

dT (w)− 1 = dT ′(w) = |N2(w, S ∩ V (T ′), T ′)| = |N2(w, S, T ) \ {v}| ≥ 2. (3.28)
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By (1.1), (3.28) implies that w is not S∩V (T ′)-vulnerable in T ′, furthermore, T ′ contains
no S ∩ V (T ′)-vulnerable vertices. Assume that T ′ has an S ∩ V (T ′)-vulnerable path P .
Then S ∩ V (P ) 2-dominates V (P ) by the definition of S ∩ V (T ′)-vulnerable path, and
w ∈ S ∩ V (P ) by Lemma 3.5. Noting that every vertex in S ∩ V (P ) has at most two
2-private neighbors with respect to S ∩ V (T ′) by (1.2), we obtain from (3.28) that

dT (w)− 1 = dT ′(w) = |N2(w, S ∩ V (T ′), T ′)| = 2. (3.29)

In addition, for each x ∈ (S ∩ V (P )) \ {w}, (3.27) implies that

NT ′(x) = NT (x) = N2(x, S, T ) = N2(x, S ∩ V (T ′), T ′), and (3.30)

|NT ′(x)| = |NT (x)| 6= 2. (3.31)

Let y1 and y2 be two end-vertices of P . Because S ∩ V (P ) 2-dominates V (P ), we have
y1 ∈ S ∩ V (P ) and y2 ∈ S ∩ V (P ) by Observation 3.1. Noting that every vertex in
S ∩ V (P ) has at most two 2-private neighbors with respect to S ∩ V (T ′) by (1.2), we
deduce from (3.26) and (3.30) that for each x ∈ V (P ) \ {w},

dT (x) = dT ′(x) =


2 if x ∈ V (P ) \ S;
1 if x ∈ {y1, y2};
2 if x ∈ (S ∩ V (P )) \ {y1, y2},

from which and (3.31) we obtain that S ∩ V (P ) = {y1, w, y2} and V (P ) \ S = NT ′(w).
By (3.29), T is a spider S3 and n = |V (T )| = |V (S3)| = 7, which contradicts that n ≥ 8.
The claim holds.

By (a), S ∩ V (T ′) is the unique γ2(T
′)-set. By induction, r2(T

′) ≥ 3. Since S is a
γ2(T )-set by (a),

γ2(T
′) = |S ∩ V (T ′)| = |S \ {u}| = |S| − 1 = γ2(T )− 1. (3.32)

We now show that r2(T ) ≥ 3. Let X be an η2(T )-set such that |X ∩ {u, v}| is as
small as possible. Then |X ∩ {u, v}| ≤ 1. If |X ∩ {u, v}| = 0, by (2.1) and (2.2), we have
η2({u, v}, X, T ) ≥ 3 and it follows from Lemma 2.1 that

r2(T ) = η2(V (T ), X, T ) ≥ η2({u, v}, X, T ) ≥ 3.

If |X ∩ {u, v}| = 1, then Lemma 2.2 and (3.32) imply that

|X ∩ V (T ′)| = |X| − 1 = (γ2(T )− 1)− 1 = γ2(T
′)− 1.

Note that the edge vw is the unique edge linking {u, v} to V (T ′). When X∩{u, v} = {u},
we have η2(V (T ′), X, T ) = η2(V (T ′), X ∩ V (T ′), T ′), and thus obtain from Lemm 2.1 and
(2.2) that

r2(T ) = η2(V (T ), X, T ) ≥ η2(V (T ′), X, T )

= η2(V (T ′), X ∩ V (T ′), T ′) ≥ r2(T
′) ≥ 3.

When X ∩{u, v} = {v}, we directly calculate by (2.1) and (2.2) that η2({u, v}, X, T ) = 1
and η2(V (T ′), X, T ) ≥ η2(V (T ′), X ∩ V (T ′), T ′)− 1. Therefore,

r2(T ) = η2(V (T ), X, T ) (by Lemma 2.1)

= η2({u, v}, X, T ) + η2(V (T ′), X, T ) (by (2.2))

≥ 1 + [η2(V (T ′), X ∩ V (T ′), T ′)− 1]

≥ r2(T
′) (by Lemma 2.1, since |X ∩ V (T ′)| < γ2(T

′))

≥ 3.
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This complete the proof of Lemma 3.8 (c).
Applying Theorem 1.1 and Lemma 3.8 (c), the sufficiency of Theorem 1.2 is true, and

so Theorem 1.2 holds.
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