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Abstract

In this paper, a numerical solution of the modified Burgers equation is obtained
by a cubic B-spline collocation method. In the solution process, a linearization
technique based on quasi-linearization has been applied to deal with the non-linear
term appearing in the equation. The computed results are compared with others
selected from the available literature. The error norms L2 and L∞ are computed
and found to be sufficiently small. A Fourier stability analysis of the method is also
investigated.
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1 Introduction

The Burgers equation
ut + uux − νuxx = 0

where ν is a positive constant and the subscrits x and t denote space and time
derivatives respectively, was first introduced by [1] and has been widely used since
then. The equation is the simplest nonlinear model equation for diffusive waves in
fluid dynamics [2]. Hence it is of great interest for many scientists and mathemati-
cians. Therefore, its analytical and numerical solutions are found by many authors
using various methods. The analytical solution of the equation has been obtained
by Benton and Platzman [3]. Miller [4] has also obtained infinite series solutions of
the problem. As for the numerical one, among others Dag et al. have used B-spline
collocation methods for numerical solutions of the Burgers equation, see [5] and
references therein. In this paper, we will deal with the modified Burgers equation
given in the form

ut + u2ux − νuxx = 0, a ≤ x ≤ b (1)

where u = u(x, t) is the dependent variable, ν denotes the viscosity parameter, and t
and x are the independent time and space parameters, respectively. In (1), when the
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term u2ux is substitued with the term uux, then the modified Burgers equation turns
into the classical Burgers equation. In the present study, the numerical solutions of
Eq. (1) will be sought with the following boundary conditions

u(a, t) = 0, u(b, t) = 0,
ux(a, t) = 0, ux(b, t) = 0,

t ≥ t0. (2)

The main purpose of this study is to apply the cubic B-spline collocation finite
element method to develop a numerical technique for solving the modified Burgers
equation. Eq. (1) has been solved by several authors using various methods and
techniques. As for the numerical one, among others Ramadan and El-Danaf [6] have
considered the solution of the modified Burgers equation by using the collocation
method with quintic splines. Ramadan et al. [7] have solved the modified Burgers
equation numerically using the collocation method with septic splines. Saka and
Dag [10] have applied time and space splitting techniques to the Burgers and modi-
fied Burgers equations and then employed the quintic B-spline collocation procedure
to approximate the resulting systems. Irk [11] has used Crank-Nicolson central dif-
ferencing scheme for the time integration and sextic B-spline functions for the space
integration to the modified and time splitted modified Burgers equation. Temsah
[12] has proposed a numerical solution for the convection-diffusion equation using
El-Gendi method with interface points and then shown numerical results for Burg-
ers and modified Burgers equations. Grienwank and El-Danaf [13] have proposed a
non-polynomial spline based method to obtain numerical solutions of the non-linear
modified Burgers equation. Bratsos [14] has used a finite-difference scheme based on
rational approximations to the matrix-exponential term in a two-time level recur-
rence relation for the numerical solution of the modified Burgers equation. Bratsos
[15] has presented a finite-difference scheme based on fourth-order rational approx-
imants to the matrix-exponential term in a two-time level recurrence relation for
the numerical solution of the modified Burgers equation. Bratsos and Petrakis [16]
have used an explicit finite difference scheme based on second-order rational approx-
imations to the matrix-exponential term for the numerical solution of the modified
Burgers equation. Roshan and Bhamra [17] have solved the modified Burgers equa-
tion numerically by the Petrov-Galerkin method using a linear hat function as the
trial function and a cubic B-spline function as the test function, see [17] and refer-
ences therein. One can find several articles using different methods and techniques
to solve various forms of Burgers equation. Among others, Mittal and Arora have
proposed a numerical method for the numerical solution of a coupled system of vis-
cous Burgers equation with appropriate initial and boundary conditions, see [18]
and references therein.

In this paper, we have used a linearization technique to obtain the numerical
solution of the modified Burgers equation. The performance of the method has
been tested on a numerical example, and the stability analysis of the numerical
scheme has also been investigated.
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2 The Finite Element Solution

2.1 Analysis of the method

Let’s assume that the interval [a, b] is divided into N finite elements having uniform
equal length by the knots xm, m = 0(1)N such that a = x0 < x1 · · · < xN−1 <
xN = b and h = xm+1 − xm. The cubic B-splines φm(x), (m = −1(1)N + 1) at the
knots xm are defined over the interval [a, b] as [19]

φm(x) = 1
h3





(x− xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)
2 − 3(x− xm−1)

3, x ∈ [xm−1, xm],
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1],
(xm+2 − x)3, x ∈ [xm+1, xm+2],
0, otherwise.

The set of cubic B-splines
{
φ−1(x), φ0(x), . . . , φN+1(x)

}
constitutes a basis for the

functions to be defined over the interval [a, b]. Thus, an approximation solution
U(x, t) to analytical solution u(x, t) on this interval can be written in terms of these
cubic B- splines as

U(x, t) =
N+1∑

m=−1

δm(t)φm(x) (3)

in which δm(t)’s are unknown time dependent element parameters to be determined.
Because of the fact that each cubic B-spline covers four elements, on the other hand,
each element [xm, xm+1] is covered by four cubic B-splines. In this paper, the finite
elements are identified with the interval [xm, xm+1] and the elements knots xm and
xm+1. In terms of the local coordinate transformation ξ = x−xm, the cubic B-splines
can now be expressed in terms of the local variable ξ as follows

φm−1

φm

φm+1

φm+2

= 1
h3





(h− ξ)3,
h3 + 3h2(h− ξ) + 3h(h− ξ)2 − 3(h− ξ)3,
h3 + 3h2ξ + 3hξ2 − 3ξ3,
ξ3,

0 ≤ ξ ≤ h. (4)

Since all other cubic B-splines are identically zero over the element [xm, xm+1],
the variation of U(x, t) in Eq. (3) over a typical element [xm, xm+1] is written as

U(ξ, t)=
m+2∑

j=m−1

δj(t)φj(ξ). (5)

If we use the Eqs. (4) and (5), then the nodal values of Um, U
′
m and U

′′
m at the knots

x = xm can be easily found in terms of element parameter δm as follows
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Um = U(xm) = δm−1 + 4δm + δm+1,
U ′

m = U ′(xm) = 3
h
(−δm−1 + δm+1),

U ′′
m = U ′′(xm) = 6

h2 (δm−1 − 2δm + δm+1).
(6)

In place of Ut, we use the first order difference formula, and in places of Ux and
Uxx in Eq. (1), we use the following approximations arising from the Crank-Nicolson
method. After these replacements, we easily obtain the following approximation

Un+1 − Un

∆t
+

(U2Ux)
n+1 + (U2Ux)

n

2
− ν

Un+1
xx + Un

xx

2
= 0. (7)

If the nonlinear term (U2Ux)
n+1 in Eq. (7) is linearized by the approximation

(U2Ux)
n+1 = 2Un+1UnUn

x + UnUnUn+1
x − 2UnUnUn

x

which is similar to the one first introduced by Rubin and Graves [20], then we finally
obtain the following formula

Un+1 +
∆t

2
(2Un+1UnUn

x + UnUnUn+1
x )− ν

∆t

2
Un+1

xx (8)

= Un − ∆t

2
(U2Ux)

n + ν
∆t

2
Un

xx + ∆t(UnUnUn
x ).

Using the nodal values given by Eq. (6) in the Eq. (8), we obtain the following
iterative system

δn+1
m−1(1 +

3∆t

h
(δn

m−1 + 4δn
m + δn

m+1)(δ
n
m+1 − δn

m−1)−
3∆t

h
(δn

m−1 + 4δn
m + δn

m+1)
2 − ν

3∆t

h2
) +

δn+1
m (4 +

12∆t

h
(δn

m−1 + 4δn
m + δn

m+1)(δ
n
m+1 − δn

m−1) + ν
6∆t

h2
) +

δn+1
m+1(1 +

3∆t

h
(δn

m−1 + 4δn
m + δn

m+1)(δ
n
m+1 − δn

m−1) + (9)

3∆t

h
(δn

m−1 + 4δn
m + δn

m+1)
2 − ν

3∆t

h2
)

= (δn
m−1 + 4δn

m + δn
m+1)−

3∆t

2h
(δn

m−1 + 4δn
m + δn

m+1)
2(δn

m+1 − δn
m−1)

+ν
3∆t

h2
(δn

m−1 − 2δn
m + δn

m+1) +
3∆t

h
(δn

m−1 + 4δn
m + δn

m+1)
2(δn

m+1 − δn
m−1).

This iterative system (9) consists of N + 1 equations and N + 3 unknown pa-
rameters (δ−1, δ0, . . . , δN , δN+1)

T . In order for this system to have a unique solution,
we need two additional constraints. These two additional constraints are obtained
from the boundary conditions and then are used to eliminate δ−1 and δN+1 from
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the system (9). Then, this system of equations becomes a matrix equation with the
N + 1 unknowns d = [δ0, δ1, . . . , δN ]T in the form

Adn+1 = Bdn. (10)

Here, both of the matrices A and B are tridiagonal (N + 1)× (N + 1) matrices
and therefore are easily solved using a variant of Thomas algorithm [8].

2.2 Initial state

2.2.1 The initial vector

To proceed with the iterative formula (10), first of all, we do need the initial
vector d0 which is going to be determined from the initial and boundary conditions.
To achieve this, the approximation (3) ought to be rewritten for the initial condition
as

U(x, t0)=
N+1∑

m=−1

δm(t0)φm(x)

where the δm’s are unknown element parameters. Now, if we force the initial nu-
merical approximation UN(x, t0) comply with the following boundary conditions to
discard δ−1 and δN+1

U(xm, t0) = u(xm, t0), m = 0, 1, ..., N
(U)x(a, t0) = 0, (U)x(b, t0) = 0,

we obtain the matrix form for the initial vector d0 as

Wd0 = b

where

W =




4 2

1 4 1

1 4 1
. . .

1 4 1

2 4




d0 = (δ0, δ1, δ2, . . . , δN−2, δN−1, δN )T
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and

b = (u(x0, t0), u(x1, t0), u(x2, t0), . . . , u(xN−2, t0), u(xN−1, t0), u(xN , t0))T .

2.3 Stability analysis

To investigate stability analysis of the scheme, it is convenient to use the Fourier
method in which the growth factor of a typical Fourier mode is defined as [9]

δn
j = δ̂

n
eijφ, (11)

where φ is a real number (i =
√−1). To apply the von Neumann stability analysis,

on very small time increments, if we take U2 ' UnUn ' Un+1Un as a local constant
Û in Eq. (8) from which iterative equation (9) has been obtained, then the equation
becomes

δn+1
m−1(1−

3∆t

2h
Û − v

3∆t

h2
) + δn+1

m (4 + v
6∆t

h2
) + δn+1

m+1(1 +
3∆t

2h
Û − v

3∆t

h2
)(12)

= δn
m−1(1 +

3∆t

2h
Û + v

3∆t

h2
) + δn

m(4− v
6∆t

h2
) + δn

m+1(1−
3∆t

2h
Û + v

3∆t

h2
).

for m = 1(1)N − 1.
Substituting the Fourier mode (11) into the iterative formula (12) and writing

δ̂
n+1

= gδ̂
n
, the linearized recurrence relationship results in the growth factor g as

follows:

g =
a− ib

c− id

where
a = 4h2 − 6ν∆t + 2(h2 + 3ν∆t) cos φ,

b = 3hÛ∆t sin φ,
c = 4h2 + 6ν∆t + 2(h2 − 3ν∆t) cos φ

d = −3hÛ∆t sin φ.

Since

c2 + d2 − a2 − b2 = 96h2ν∆t(2 + cos φ) sin[
φ

2
]2 ≥ 0

the von Neumann necessary criterion for stability condition |g| ≤ 1 is satisfied.
Therefore the linearized scheme is unconditionally stable.
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3 Numerical examples and results

In this section, numerical results of the test problem considered in the below
have been obtained and all computations have been executed on a Pentium i7 PC
in the Fortran code using double precision arithmetic. The accuracy of the method
is measured by the error norms L2 and L∞ defined as

L2 = ‖u− U‖2 =

√√√√√h
N∑

j=0

∣∣∣uj − (U)j

∣∣∣
2
,

L∞ = ‖u− U‖∞ = max
j

∣∣∣uj − (U)j

∣∣∣

respectively. In this study, to implement the performance of the scheme, as a test
problem we consider the modified Burgers (1) equation with the boundary conditions
(2) and the initial condition

u(x, 1) =
x

1 + (1/c0) exp(x2/4ν)
, t ≥ 1, 0 ≤ x ≤ 1

where c0 is a constant, 0 < c0 < 1.
The analytical solution of this problem is [7]

u(x, t) =
x/t

1 +
√

t/c0 exp(x2/4νt)
, t ≥ 1, 0 ≤ x ≤ 1.

During the solution process, various viscosity constants ν = 0.01, 0.001, 0.005,
space steps h = 0.005, time steps ∆t = 0.01 and c0 = 0.5 will be taken over the
problem domain [0, 1]. First of all, the program has been run until the time t = 11
and then the error norms L2 and L∞ are computed and presented in Table 1 for
different values of viscosity ν. As it is obviously seen from the table, both of the
error norms L2 and L∞ are small enough. In Table 2, we have listed the numerical
and analytical solutions of the problem for various values of ν, h and ∆t at times
t = 2, 6 and 10. From the table, it is clearly seen that for ν = 0.01 there exists a
discrepancy between the numerical and exact solutions around the right hand-side
of boundary when the solution domain is taken as [0, 1]. However, when the solution
domain is taken as [0, 1.3], the discrepancy between the numerical and analytical
solutions smooths out. The computed error norms L2 and L∞ have been compared
with those of some other authors for various values of h and ν in Table 3. The table
clearly shows that both of the error norms are better or as good as the others found
in the literature. If we consider the fact that the present method uses a lower degree
base function, namely cubic B-splines, we can say that the present method yields
much better results at much lower costs.

Then the obtained numerical results together with their errors are graphed in
Figures 1-3 for various values of ν at different time levels. The graphs of the errors
have been drawn at time t = 10. It can be seen that the maximum error happens at

7



Table 1: Comparison of the computed error norms L2 and L∞ with h = 0.005 and

∆t = 0.01 for various values of ν.

ν = 0.01 ν = 0.005 ν = 0.001

t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.378848 0.816262 0.225949 0.579150 0.067286 0.259046

3 0.344560 0.709949 0.205429 0.503503 0.061409 0.225358

4 0.317165 0.605190 0.188055 0.429111 0.056346 0.192213

5 0.307896 0.526341 0.175034 0.372673 0.052504 0.166926

6 0.326003 0.525791 0.164589 0.329766 0.049394 0.147826

7 0.369938 0.755043 0.155888 0.296209 0.046765 0.132819

8 0.427983 0.963399 0.148688 0.269279 0.044486 0.120756

9 0.489147 1.139612 0.143137 0.247219 0.042478 0.110820

10 0.547020 1.281253 0.139607 0.228838 0.040688 0.102585

11 0.598717 1.390450 0.138473 0.213415 0.039078 0.095516

the right-hand boundary of the solution domain for ν = 0.01. However, the errors
for ν = 0.005 and ν = 0.001 have been recorded around the points where the waves
get their highest amplitudes.
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Figure 1: The numerical solutions at different times with ν = 0.01.
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Figure 2: The numerical solutions at different times with ν = 0.005.
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Figure 3: The numerical solutions at different times with ν = 0.001.
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Table 2: Comparison of the numerical and analytical solutions for various values of

ν and h = 0.005, ∆t = 0.01 at t = 2, 6, 10.

t = 2 t = 6 t = 10

x UN (x, t) U(x, t) UN (x, t) U(x, t) UN (x, t) U(x, t)

ν =0.01 [0,1]

0.2 0.017612 0.017658 0.004863 0.004911 0.002426 0.002503

0.4 0.008484 0.009133 0.005945 0.006324 0.003579 0.003833

0.6 0.001116 0.001174 0.003911 0.004356 0.003159 0.003624

0.8 0.000047 0.000047 0.001562 0.001865 0.001747 0.002475

1.0 0.000000 0.000001 0.000000 0.000526 0.000000 0.001281

[0,1.3]

0.2 0.017612 0.017658 0.004863 0.004911 0.002434 0.002503

0.4 0.008484 0.009133 0.005946 0.006324 0.003616 0.003833

0.6 0.001116 0.001174 0.003923 0.004356 0.003303 0.003624

0.8 0.000047 0.000047 0.001653 0.001865 0.002192 0.002475

1.0 0.000001 0.000001 0.000468 0.000526 0.001089 0.001281

1.3 0.000000 0.000000 0.000000 0.000039 0.000000 0.000300

ν =0.005 [0,1]

0.2 0.011006 0.011510 0.004127 0.004253 0.002204 0.002292

0.4 0.001215 0.001287 0.003082 0.003404 0.002432 0.002653

0.6 0.000013 0.000013 0.000892 0.001006 0.001352 0.001528

0.8 0.000000 0.000000 0.000118 0.000131 0.000437 0.000512

1.0 0.000000 0.000000 0.000000 0.000008 0.000000 0.000106

ν =0.001 [0,1]

0.2 0.000227 0.000238 0.001109 0.001237 0.000997 0.001099

0.4 0.000000 0.000000 0.000016 0.000017 0.000102 0.000116

0.6 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001

0.8 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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Table 3: Comparison of the computed error norms L2 and L∞ with results from

[3-5] at t = 2, 6, 10.

t = 2 t = 6 t = 10

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

h=0.005, ∆t = 0.01, ν = 0.01

Present 0.37885 0.81626 0.32600 0.52579 0.54702 1.28125

[6] 0.52308 1.21698 0.49023 0.72249 0.64007 1.28124

[7] 0.79043 1.70309 0.57672 0.76105 0.80026 1.80329

[10], (QBCA1) 0.37932 0.81680 0.32602 0.52579 0.54701 1.28125

[10], (QBCA2) 0.37951 0.82212 0.32427 0.52579 0.54354 1.28125

[11], (SBCM1) 0.38489 0.82934 - - 0.54826 1.28127

[11], (SBCM2) 0.39078 0.82734 - - 0.54612 1.28127

Present, [0,1.3] 0.37885 0.81626 0.27626 0.46514 0.25396 0.32449

[11], (SBCM1), [0,1.3] 0.38489 0.82934 - - 0.25586 0.32723

[11], (SBCM2), [0,1.3] 0.39078 0.82734 - - 0.25259 0.32337

h=0.005, ∆t = 0.01, ν = 0.005

Present 0.22595 0.57915 0.16459 0.32977 0.13961 0.22884

[10], (QBCA1) 0.22651 0.57998 0.16460 0.32987 0.13959 0.22885

[10], (QBCA2) 0.22697 0.58660 0.16428 0.33654 0.13792 0.23506

h=0.005, ∆t = 0.001, ν = 0.005

Present 0.22597 0.57919 0.16459 0.32977 0.13961 0.22884

[6] 0.25786 0.72264 0.22569 0.43082 0.18735 0.30006

[11], (SBCM1) 0.22890 0.58623 - - 0.14042 0.23019

[11], (SBCM2) 0.23397 0.58424 - - 0.13747 0.22626

h=0.005, ∆t = 0.01, ν = 0.001

Present 0.06729 0.25905 0.04939 0.14783 0.04069 0.10259

[6] 0.06703 0.27967 0.06046 0.17176 0.05010 0.12129

[7] 0.18355 0.81862 0.08142 0.21348 0.05512 0.13943

[10], (QBCA1) 0.06811 0.26094 0.04942 0.14810 0.04067 0.10264

[10], (QBCA2) 0.06953 0.27283 0.04917 0.15656 0.04000 0.10835

[11], (SBCM1) 0.06843 0.26233 - - 0.04080 0.10295

[11], (SBCM2) 0.07220 0.25975 - - 0.03871 0.09882

h=0.02, ∆t = 0.01, ν = 0.01

Present 0.37179 0.80467 0.32890 0.52579 0.55839 1.28125

[7] 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239

[10], (QBCA1) 0.37911 0.81254 0.32941 0.52579 0.55848 1.28125

[10], (QBCA2) 0.39473 0.88383 0.31588 0.53910 0.52425 1.28125

[11], (SBCM1) 0.38474 0.82611 - - 0.55985 1.28127

[11], (SBCM2) 0.41321 0.81502 - - 0.55095 1.28127
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4 Conclusions

In this paper, numerical solutions of the Modified Burgers equation based on
the cubic B-spline finite element method have been calculated and presented. A test
problem is worked out to examine the performance of the present algorithm. The
performance and efficiency of the method are shown by calculating the error norms
L2 and L∞. The obtained results show that the error norms are sufficiently small
during all computer runs. The obtained results indicate that the present method is
a particularly successful numerical scheme to solve the Modified Burgers equation.
We have observed that the use of cubic B-splines with the linearization technique has
an advantage over the use of higher degree B-splines in terms of computational labor
and accuracy of the obtained results. As a conclusion, the method can be efficiently
applied to this type of non-linear problems arising in physics and mathematics with
success.
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