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Abstract

A set S of vertices of a graph G is a dominating set in G if every vertex outside of
S is adjacent to at least one vertex belonging to S. A domination parameter of G is
related to those sets of vertices of a graph satisfying some domination property together
with other conditions on the vertices of G. Here, we investigate several domination
related parameters in rooted product graphs.
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1 Introduction

Domination in graph constitutes a very important area in graph theory [11]. An enormous
quantity of researches on domination in graphs have been developed in the last years, es-
pecially in the last two years, for instance [6, 10, 14, 24] are some of the most recent ones.
Nevertheless, there are still several open problems and incoming researches on that. One
interesting question in this area is related to the study of domination related parameters in
product graphs. For instance, the Vizing’s conjecture [22, 23], is one of the most popular
open problems about domination in product graphs. The Vizing’s conjecture states that the
domination number of Cartesian product graphs is greater than or equal to the product of the
domination numbers of the factor graphs. Moreover, several kind of domination related pa-
rameters have been studied in the last years. Some of the most remarkable examples are the
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following ones. The domination number of direct product graphs was studied in [3, 13, 18].
The total domination number of direct product graphs was studied in [5]. The upper domi-
nation number of Cartesian product graphs was studied in [2]. The independence domination
number of Kronecker product graphs was studied in [12]. Some relationships between some
domination parameter of composite graphs were presented in [6]. Several domination related
parameters of corona product graphs and the conjunction of two graphs were studied in [10]
and [25], respectively. The Roman domination number of lexicographic product graphs was
studied in [14] and the Roman domination number of Cartesian product graph and strong
product graph has been studied recently in [9]. According to the quantity of works devoted
to the study of domination related parameters in product graphs it is noted that not only
Vizing’s conjecture is an interesting topic related to domination in product graphs. In this
paper we make some contributions to the study of some domination related parameters for
the case of rooted product graphs.

We begin by establishing the principal terminology and notation which we will use
throughout the article. Hereafter G = (V,E) represents an undirected finite graph without
loops and multiple edges with set of vertices V and set of edges E. The order of G is
|V | = n(G) and the size |E| = m(G) (if there is no ambiguity we will use only n and m).
We denote two adjacent vertices u, v ∈ V by u ∼ v and in this case we say that uv is an
edge of G or uv ∈ E. For a nonempty set X ⊆ V and a vertex v ∈ V , NX(v) denotes the
set of neighbors that v has in X: NX(v) := {u ∈ X : u ∼ v} and the degree of v in X is
denoted by δX(v) = |NX(v)|. In the case X = V we will use only N(v), which is also called
the open neighborhood of a vertex v ∈ V , and δ(v) to denote the degree of v in G. The close
neighborhood of a vertex v ∈ V is N [v] = N(v)∪{v}. The minimum and maximum degrees
of G are denoted by δ and ∆, respectively. The subgraph induced by S ⊂ V is denoted
by 〈S〉 and the complement of the set S in V is denoted by S. The distance between two
vertices u, v ∈ V of G is denoted by dG(u, v) (or d(u, v) if there is no ambiguity). Given a
vertex v of G, G− v denotes the subgraph of G obtained by removing the vertex v and all
the edges incident with v.

The set of vertices D ⊂ V is a dominating set of G if for every vertex v ∈ D it is satisfied
that ND(v) 6= ∅. The minimum cardinality of any dominating set of G is the domination
number of G and it is denoted by γ(G). A set D is a γ(G)-set if it is a dominating set and
|D| = γ(G). Throughout the article we follow the terminology and notation of [11].

Given a graph G of order n and a graph H with root vertex v, the rooted product graph
G ◦H is defined as the graph obtained from G and H by taking one copy of G and n copies
of H and identifying the vertex ui of G with the vertex v in the ith copy of H for every
1 ≤ i ≤ n [8]. If G or H is the singleton graph, then G ◦H is equal to H or G, respectively.
In this sense, to obtain the rooted product G ◦H we will only consider graphs G and H of
orders greater than or equal to two. Figure 1 shows the case of the rooted product graph
P4 ◦ C3. Hereafter, we will denote by V = {u1, u2, ..., un} the set of vertices of G and by
Hi = (Vi, Ei) the ith copy of H in G ◦H.

It is clear that the value of every parameter of the rooted product graph depends on the
root of the graph H. In the present article we give some results related to some domination
parameters in rooted product graphs.

2 Domination number

We begin with the following remark which will be useful into proving next results.
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Figure 1: The rooted product graph P4 ◦ C3.

Lemma 1. Let G be a graph of order n ≥ 2 and let H be any graph with root v and at least
two vertices. If v does not belong to any γ(H)-set or v belongs to every γ(H)-set, then

γ(G ◦H) = nγ(H).

Proof. If Ai is a dominating set of minimum cardinality in Hi = (Vi, Ei), i ∈ {1, ..., n}, then
it is clear that

⋃n
i=1Ai is a dominating set in G ◦ H. Thus γ(G ◦ H) ≤ nγ(H). Suppose

v does not belong to any γ(H)-set. Let S be a γ(G ◦ H)-set and let Si = S ∩ Vi for every
i ∈ {1, ..., n}. Notice that the set Si dominates all the vertices of Hi except maybe the root
vi which could be dominated by other vertex not in Hi.

If vj /∈ Sj for some j ∈ {1, ..., n}, then Sj is a dominating set in Hj−vj. So γ(Hj−vj) ≤
|Sj|. Moreover, since vj does not belong to any γ(Hj)-set, it is satisfied that γ(Hj − vj) =
γ(Hj). If |Sj| < γ(H), then we have that γ(Hj − vj) ≤ |Sj| < γ(Hj) = γ(Hj − vj), a
contradiction. On the other side, if vl ∈ Sl for some l ∈ {1, ..., n}, then Sl is a dominating
set in Hl. So γ(Hl) ≤ |Sl|. Therefore, |Si| ≥ γ(H) for every i ∈ {1, ..., n} and we obtain that
γ(G ◦H) = nγ(H).

On the other hand, let us suppose v belongs to every γ(H)-set. Thus, v dominates at
least one vertex in H which is not dominated by any other vertex in every γ(H)-set and, as
a consequence, γ(H − v) ≥ γ(H). As above, S denotes a γ(G ◦H)-set and Si = S ∩ Vi for
every i ∈ {1, ..., n}. If vj /∈ Sj for some j ∈ {1, ..., n}, then either Sj is not a dominating set
in Hj or |Sj| is not a dominating set of minimum cardinality in Hj. Hence, by exchanging
in S, the set Sj with a γ(Hj)-set (which contains vj) we obtain a dominating set S ′ of
G ◦ H with cardinality less than cardinality of S, a contradiction. So, vj ∈ Sj and Sj
is a dominating set in Hj, which leads to that |Sj| ≥ γ(Hj). Therefore, we have that
|S| =

∑n
i=1 |Si| ≥

∑n
i=1 γ(Hi) = nγ(H) and the proof is complete.

Theorem 2. Let G be a graph of order n ≥ 2. Then for any graph H with root v and at
least two vertices,

γ(G ◦H) ∈ {nγ(H), n(γ(H)− 1) + γ(G)}.

Proof. It is clear that γ(G ◦H) ≤ nγ(H) and also, from Lemma 1, there are rooted product
graphs G ◦H such that γ(G ◦H) = nγ(H). Now, let us suppose that γ(G ◦H) < nγ(H).
Let V be the set of vertices of G and let Vi, i ∈ {1, ..., n}, be the set of vertices of the
copy Hi of H in G ◦ H. If S is a γ(G ◦ H)-set, then there exists j ∈ {1, ..., n} such that
|S ∩ Vj| < γ(H). Notice that the set S ∩ Vj dominates all the vertices in Vj excluding
vj. If |S ∩ Vj| < γ(H) − 1, then the set (S ∩ Vj) ∪ {vj} is a dominating set in Hj and
|(S ∩ Vj) ∪ {vj}| ≤ |(S ∩ Vj)|+ 1 < γ(H), which is a contradiction. So, |S ∩ Vi| ≥ γ(H)− 1
for every i ∈ {1, ..., n}.
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Let x be the number of copies Hj1 , Hj2 , ..., Hjx of H in which the vertex vji of G is not
dominated by S∩Vji (i.e., vji is dominated by a vertex of G belonging to other copy Hl, with
l /∈ {j1, ..., jx}). On the contrary, let y = n− x be the number of copies Hk1 , Hk2 , ..., Hky of
H in which the vertex vki of G is dominated by S ∩ Vki or vki ∈ S. Note that the y vertices
vki of G satisfying the above property form a dominating set in G and, as a consequence,
γ(G) ≤ y. Since n = x + y, we have that x ≤ n − γ(G). Also, notice that if the vertex
vki of G is dominated by S ∩ Vki or vki ∈ S, then S ∩ Vki is a dominating set in Hki . So,
γ(H) ≤ |S ∩ Vki | for every copy Hki in which the vertex vki of G is dominated by S ∩ Vki or
vki ∈ S. Thus we have the following.

γ(G ◦H) = |S| =

∣∣∣∣∣
x⋃
i=1

(S ∩ Vji) ∪
y⋃
i=1

(S ∩ Vki)

∣∣∣∣∣
=

x∑
i=1

|S ∩ Vji |+
y∑
i=1

|S ∩ Vki |

≥ x(γ(H)− 1) + yγ(H)

= nγ(H)− x
≥ nγ(H)− n+ γ(G)

= n(γ(H)− 1) + γ(G).

On the other side, let A be a γ(G ◦ H)-set. Since γ(G ◦ H) < nγ(H), there exists at
least one copy Hk of H such that |A ∩ Vk| < γ(H), which implies |A ∩ Vk| ≤ γ(H) − 1.
Since A ∩ Vk dominates all the vertices of Hk except maybe the root vk, we have that if
vk ∈ A∩Vk, then A∩Vk is a dominating set in H, which is a contradiction. So, vk /∈ A∩Vk.
Now, as |A∩Vi| ≥ γ(H)− 1 for every i ∈ {1, ..., n}, we obtain that |A∩Vk| = γ(H)− 1. So,
A′ = (A ∩ Vk) ∪ {vk} is a γ(H)-set. Let us denote by A′i, i ∈ {1, ..., n}, the set of vertices of
A′ − {vi} in each copy Hi of G ◦H.

Let B be a γ(G)-set and let D = (
⋃n
i=1A

′
i) ∪ B. Since A′i dominates the vertices of

Hi − {vi} for every i ∈ {1, ..., n} and B dominates the vertices of G, we obtain that D is a
dominating set in G ◦H. Thus

|D| =
n∑
i=1

|A′i|+ |B| = n(|A′| − 1) + |B| = n(γ(H)− 1) + γ(G).

Therefore, we obtain that γ(G ◦H) ≤ n(γ(H)− 1) + γ(G) and the result follows.

3 Roman domination number

Roman domination number was defined by Stewart in [20] and studied further by some
researchers, for instance in [4]. Given a graph G = (V,E), a map f : V → {0, 1, 2} is a
Roman dominating function for G if for every vertex v with f(v) = 0, there exists a vertex
u ∈ N(v) such that f(u) = 2. The weight of a Roman dominating function is given by
f(V ) =

∑
u∈V f(u). The minimum weight of a Roman dominating function on G is called

the Roman domination number of G and it is denoted by γR(G). A function f is a γR(G)-
function in a graph G = (V,E) if it is a Roman dominating function and f(V ) = γR(G).
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Let f be a Roman dominating function on G and let B0, B1 and B2 be the sets of
vertices of G induced by f , where Bi = {v ∈ V : f(v) = i}. Frequently, a Roman
dominating function f is represented by the sets B0, B1 and B2, and it is common to denote
f = (B0, B1, B2). It is clear that for any Roman dominating function f on the graph G =
(V,E) of order n we have that f(V ) =

∑
u∈V f(u) = 2|B2|+ |B1| and |B2|+ |B1|+ |B0| = n.

The following lemmas will be useful into proving other results in this section.

Lemma 3. [4] For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Lemma 4. Let G = (V,E) be a graph and let f = (B0, B1, B2) be a γR(G)-function. Then
for every v ∈ V ,

(i) if v ∈ B0, then γR(G)− 1 ≤ γR(G− v) ≤ γR(G),

(ii) if v ∈ B1, then γR(G− v) = γR(G)− 1,

(iii) if v ∈ B2, then γR(G)− 1 ≤ γR(G− v) ≤ γR(G) + δ(v)− 2.

Proof. Let f ′ = (A0, A1, A2) be a γR(G− v)-function. By making f ′(v) = 1 we have that f ′

is a Roman dominating function in G. Thus

γR(G) ≤ γR(G− v) + 1. (1)

Now, if v ∈ B0, then it is clear that γR(G− v) ≤ γR(G) and (i) is proved.
Moreover, if v ∈ B1, then (B0, B1 − {v}, B2) is a Roman dominating function in G− v.

Thus γR(G− v) ≤ γR(G)− 1. Therefore, by (1) we obtain (ii).
On the other hand, if v ∈ B2, then (B0, B1 ∪ (N(v) − B2), B2 − {v}) is a Roman

dominating function in G− v. Thus

γR(G− v) ≤ 2|B2 − {v}|+ |B1 ∪ (N(v)−B2)|
= 2|B2| − 2 + |B1|+ |N(v)−B2|
≤ γR(G) + δ(v)− 2.

Therefore, (iii) is proved.

Lemma 5. Let G = (V,E) be a graph. If for every γR(G)-function f = (B0, B1, B2) is
satisfied that v ∈ B0, then

γR(G− v) = γR(G).

Proof. From Lemma 4 (i) we have that γR(G−v) ≤ γR(G). If γR(G−v) < γR(G), then there
exists a γR(G−v)-function h = (A0, A1, A2) such that h(V−{v}) = γR(G−v) < γR(G), which
leads to h(V −{v}) ≤ γR(G)−1. If h′ is a function in G such that for every u ∈ V , u 6= v, we
have that h′(u) = h(u) and h′(v) = 1, then h′ is a Roman dominating function in G. Thus,
γR(G) ≤ h′(V ) = h(V −{v})+1 ≤ γR(G). So, γR(G) = h′(V ) = h(V −{v})+1 = γR(G) and
we have that h′ is a γR(G)-function such that h′(v) = 1, which is a contradiction. Therefore,
γR(G− v) = γR(G).

The Roman domination number of rooted product graphs is studied at next.

Theorem 6. Let G be a graph of order n ≥ 2. Then for any graph H with root v and at
least two vertices,

n(γR(H)− 1) + γ(G) ≤ γR(G ◦H) ≤ nγR(H).
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Proof. It is clear that γR(G ◦ H) ≤ nγR(H). Let Vi be the set of vertices of Hi for every
i ∈ {1, ..., n} and let f = (B0, B1, B2) be a γR(G ◦H)-function. Now, for every i ∈ {1, ..., n}
and every k ∈ {0, 1, 2}, let B

(i)
k = Bk ∩ Vi. Let j ∈ {1, ..., n}. We consider the following

cases.
Case 1: vj ∈ B(j)

0 . If NHj
(vj) ∩ B(j)

2 6= ∅, then fj = (B
(j)
0 − {vj}, B

(j)
1 , B

(j)
2 ) is a Roman

dominating function in Hj − vj. On the contrary, if NHj
(vj) ∩ B(j)

2 = ∅, then vj is adjacent

to some vertex vk ∈ B(k)
2 , with k 6= j and, again fj = (B

(j)
0 − {vj}, B

(j)
1 , B

(j)
2 ) is a Roman

dominating function in Hj − vj. So, γR(Hj − vj) ≤ 2|B(j)
2 |+ |B

(j)
1 |. By Lemma 4 (i) we have

that γR(Hj − vj) ≥ γR(H)− 1. Thus 2|B(j)
2 |+ |B

(j)
1 | ≥ γR(H)− 1.

Case 2: vj ∈ B
(j)
1 . Hence, it is clear that fj = (B

(j)
0 , B

(j)
1 − {vj}, B

(j)
2 ) is a Roman

dominating function in Hj − vj. So, γR(Hj − vj) ≤ 2|B(j)
2 |+ |B

(j)
1 | − 1. By Lemma 4 (ii) we

have that γR(Hj − vj) = γR(H)− 1. Thus 2|B(j)
2 |+ |B

(j)
1 | ≥ γR(H).

Case 3: vj ∈ B(j)
2 . Thus fj = (B

(j)
0 , B

(j)
1 , B

(j)
2 ) is a Roman dominating function in Hj.

So, 2|B(j)
2 |+ |B

(j)
1 | ≥ γR(H).

Now, let V be the set of vertices of G and let A ⊆ V ∩ B0 be the set of vertices of G
such that for every vertex vl ∈ A is satisfied that NHl

(vl)∩B(l)
2 = ∅. So, every vertex vl ∈ A

is dominated by some vertex in (V − A) ∩ B(k)
2 , with k 6= l. As a consequence, V − A is a

dominating set and γ(G) ≤ n−|A|. Since A ⊆ V ∩B0, it is satisfied that |A| equals at most

the numbers of copies Hj of H such that 2|B(j)
2 |+ |B

(j)
1 | ≥ γR(H)−1 (those copies satisfying

Case 1). Thus we have the following,

γR(G ◦H) = 2|B2|+ |B1|

=
n∑
i=1

(2|B(i)
2 |+ |B

(i)
1 |)

=

n−|A|∑
i=1

(2|B(i)
2 |+ |B

(i)
1 |) +

|A|∑
i=1

(2|B(i)
2 |+ |B

(i)
1 |)

≥ (n− |A|)γR(H) + |A|(γR(H)− 1)

= nγR(H)− |A|
≥ n(γR(H)− 1) + γ(G).

Therefore the lower bound is proved.

As the following proposition shows, the above bounds are tight.

Theorem 7. Let G be a graph of order n ≥ 2 and let H be a graph with root v and at least
two vertices. Then,

(i) if for every γR(H)-function f = (B0, B1, B2) is satisfied that f(v) = 0, then

γR(G ◦H) = nγR(H),

(ii) if there exist two γR(H)-functions h = (B0, B1, B2) and h′ = (B′0, B
′
1, B

′
2) such that

h(v) = 1 and h′(v) = 2, then

γR(G ◦H) = n(γR(H)− 1) + γ(G).
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Proof. Let f ′ = (B′0, B
′
1, B

′
2) be a γR(G◦H)-function and let Vi be the set of vertices of Hi, i ∈

{1, ..., n}. Now, for every i ∈ {1, ..., n}, let fi = (B
(i)
0 = B′0∩Vi, B

(i)
1 = B′1∩Vi, B

(i)
2 = B′2∩Vi).

From Theorem 6 we have that γR(G ◦ H) ≤ nγR(H). If γR(G ◦ H) < nγR(H), then there

exists j ∈ {1, ..., n} such that fj(Vj) = 2|B(j)
2 |+ |B

(j)
1 | < γR(H). So fj = (B

(j)
0 , B

(j)
1 , B

(j)
2 ) is

not a Roman dominating function in Hj. If f ′(vj) = 1 or f ′(vj) = 2, then every vertex in B
(j)
0

is adjacent to a vertex in B
(j)
2 and, as a consequence, (B

(j)
0 , B

(j)
1 , B

(j)
2 ) is a Roman dominating

function in Hj, which is a contradiction. So f ′(vj) = 0 and fj = (B
(j)
0 − {vj}, B

(j)
1 , B

(j)
2 ) is a

γR(Hj − vj)-function. Since f(v) = 0 for every γR(H)-function, by Lemma 5 we have that

2|B(j)
2 | + |B

(j)
1 | = γR(H − v) = γR(H) and this is a contradiction. Therefore, γR(G ◦H) =

nγR(H) and (i) is proved.

To prove (ii), for every i ∈ {1, ..., n} we consider two γR(Hi)-functions hi = (A
(i)
0 , A

(i)
1 , A

(i)
2 )

and h′i = (B
(i)
0 , B

(i)
1 , B

(i)
2 ) such that hi(v) = 1 and h′i(v) = 2, and let S be a γ(G)-set. Now,

we define a function g in G ◦H in the following way.

• For every vertex x belonging to a copy Hj of H such that the root vj ∈ S we make
g(x) = h′(x) (notice that g(vj) = 2).

• For every vertex y, except the corresponding root, belonging to a copy Hl of H such
that the root vl /∈ S, we make g(x) = h(x).

• For every root of every copy Hl satisfying the conditions of the above item we make
g(x) = 0 (note that these vertices are adjacent to a vertex w of G for which g(w) = 2).

Since every vertex u ∈ Vj not in G, with g(u) = 0, is adjacent to a vertex u′ such that
g(u′) = 2 and also, every vertex vl of G, with g(vl) = 0, is adjacent to a vertex vk ∈ S with
g(vk) = 2, we obtain that g is a Roman dominating function in G ◦H. Thus

γR(G ◦H) ≤
|S|∑
i=1

(2|B(i)
2 |+ |B

(i)
1 |) +

n−|S|∑
i=1

(2|A(i)
2 |+ |A

(i)
1 | − 1)

= |S|γR(H) + (n− |S|)(γR(H)− 1)

= n(γR(H)− 1) + |S|
= γ(G) + n(γR(H)− 1).

Therefore, (ii) follows by Theorem 6.

On the other hand, we can see that there are rooted product graphs for which the bounds
of Theorem 6 are not achieved.

Theorem 8. Let G be a graph of order n ≥ 2 and let H be a graph with root v and at least
two vertices. If for every γR(H)-function f is satisfied that f(v) = 1, then

γR(G ◦H) = n(γR(H)− 1) + γR(G).

Proof. Let f = (B0, B1, B2) be a γR(H)-function and let f ′ = (B′0, B
′
1, B

′
2) be a γR(G)-

function. Now, let us define a function h in G ◦ H such that if u 6= v, then h(u) = f(u).
Otherwise, h(u) = f ′(u). Since f(v) = 1 for every γR(H)-function, it is satisfied that every
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vertex x of G ◦H with h(x) = 0 is adjacent to a vertex y in G ◦H with h(y) = 2. Thus h is
a Roman dominating function in G ◦H and we have that

γR(G ◦H) ≤ (2|B′2|+ |B′1|) +
n∑
i=1

(2|B2|+ |B1| − 1)

= n(γR(H)− 1) + γR(G).

On the other hand, let Vi, i ∈ {1, ..., n}, be the set of vertices of the copy Hi of H in G ◦H
and let V be the set of vertices of G. Now, let g = (A0, A1, A2) be a γR(G ◦H)-function and

for every i ∈ {1, ..., n} let gi = (A
(i)
0 = A0∩Vi, A(i)

1 = A1∩Vi, A(i)
2 = A2∩Vi). Since the root

vi of Hi satisfies that f(vi) = 1 for every γR(Hi)-function f , we have the following cases.
Case 1: If there exists l ∈ {1, ..., n} such that g(vl) = 2, then gl is a Roman dominating

function in Hl, but it is not a γR(H)-function. Thus γR(Hl) < 2|A(l)
2 |+ |A

(l)
1 |, which leads to

γR(Hl) ≤ 2|A(l)
2 |+ |A

(l)
1 | − 1 = 2|A(l)

2 − {vl}|+ |A
(l)
1 |+ 1.

Case 2: If there exists j ∈ {1, ..., n} such that g(vj) = 1, then gj is a Roman dominating

function in Hj and g′j = (A
(j)
0 , A

(j)
1 − {vj}, A

(j)
2 ) is a Roman dominating function in Hj − vj.

Thus, by Lemma 4 (ii), it is satisfied that

γR(Hj) = γR(Hj − vj) + 1 ≤ 2|A(j)
2 |+ |A

(j)
1 − {vj}|+ 1.

Case 3: If there exists i ∈ {1, ..., n} such that gi(vi) = 0, then we have one of the
following possibilities:

• gi is not a Roman dominating function in Hi. So, vi should be adjacent to a vertex
vj, j 6= i, of G such that gj(vj) = 2. Moreover, g′i = (A

(i)
0 − {vi}, A

(i)
1 , A

(i)
2 ) is a Roman

dominating function in Hi − vi and by Lemma 4 (ii) it is satisfied that γR(Hi) =

γR(Hi − vi) + 1 ≤ 2|A(i)
2 |+ |A

(i)
1 |+ 1.

• gi is a Roman dominating function in Hi. Since f(vi) = 1 for every γR(Hi)-function f ,
we have that gi(Vi) > γR(Hi). Let fi be a γR(Hi)-function. Now, by taking a function
g′ on G ◦H, such that if u ∈ Vi, then g′(u) = f ′(u) and, if u /∈ Vi, then g′(u) = g(u),
we obtain that g′ is a Roman dominating function for G ◦ H and the weight of g′ is
given by

g′

(
n⋃
j=1

Vj

)
= g

(
n⋃

j=1,j 6=i

Vj

)
+ fi(Vi)

= g

(
n⋃

j=1,j 6=i

Vj

)
+ γR(Hi)

< g

(
n⋃

j=1,j 6=i

Vj

)
+ gi(Vi)

= g

(
n⋃
j=1

Vj

)
= γR(G ◦H).

and this is a contradiction.
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As a consequence, we obtain that if gi(vi) = 0, then gi is not a Roman dominating function in
Hi. So, every vertex vl ofG for which g(vl) = 0 is adjacent to a vertex vk, k 6= l, ofG such that
g(vk) = 2 and it is satisfied that the function g′ = (X0 = A0∩V, X1 = A1∩V, X2 = A2∩V )
is a Roman dominating function in G and γR(G) ≤ 2|X2|+ |X1|. Thus we have the following,

γR(G ◦H) = 2|A2|+ |A1|

=
∑
vi∈X0

(2|A(i)
2 |+ |A

(i)
1 |) +

∑
vi∈X1

(2|A(i)
2 |+ |A

(i)
1 |) +

∑
vi∈X2

(2|A(i)
2 |+ |A

(i)
1 |)

=
∑
vi∈X0

(2|A(i)
2 |+ |A

(i)
1 |) +

∑
vi∈X1

(2|A(i)
2 |+ |A

(i)
1 − {vi}|)+

+
∑
vi∈X2

(2|A(i)
2 − {vi}|+ |A

(i)
1 |) + |X1|+ 2|X2|

≥
∑
vi∈X0

(γR(Hi)− 1) +
∑
vi∈X1

(γR(Hi)− 1) +
∑
vi∈X2

(γR(Hi)− 1) + 2|X2|+ |X1|

≥
n∑
i=1

(γR(Hi)− 1) + γR(G)

= n(γR(H)− 1) + γR(G).

Therefore the result follows.

4 Independent domination number

A set of vertices S of a graph G is independent if the subgraph induced by S has no edges.
The maximum cardinality of an independent set in G is called the independence number of
G and it is denoted by α(G). A set S is a α(G)-set if it is independent and |S| = α(G). A
set of vertices D of a graph G is an independent dominating set in G if D is a dominating
set and the subgraph 〈D〉 induced by D is independent in G [1]. The minimum cardinality
of any independent dominating set in G is called the independent domination number of G
and it is denoted by i(G). A set D is a i(G)-set if it is an independent dominating set and
|D| = i(G). At next we study the independent domination number of rooted product graphs
and we begin by studying the independence number.

Lemma 9. Let v be any vertex of a graph G. If v belongs to every α(G)-set, then α(G) ≥
α(G− v) + 1.

Proof. Let S be a α(G − v)-set. Since S is still independent in G, we have α(G) ≥ |S|. If
α(G) = |S|, then S is a α(G)-set and v /∈ S, a contradiction. So, α(G) ≥ α(G− v) + 1.

Theorem 10. For any graph G of order n ≥ 2 and any graph H with root v and at least
two vertices,

(i) if there is a α(H)-set not containing the root v, then α(G ◦H) = nα(H),

(ii) if the root v belongs to every α(H)-set, then α(G ◦H) = n(α(H)− 1) + α(G).
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Proof. Let Si, i ∈ {1, ..., n}, be a α(Hi)-set not containing the root vi. Hence,
⋃n
i=1 Si is

independent in G ◦ H. Thus α(G ◦ H) ≥ nα(H). If α(G ◦ H) > nα(H), then there exists
j ∈ {1, ..., n} such that |Sj| > α(H) and Sj is independent, a contradiction. Therefore,
α(G ◦H) = nα(H).

On the other hand, suppose the root v belongs to every α(H)-set. Let Ai be a α(Hi)-set
and let B be a α(G)-set. Since vi ∈ Ai for every i ∈ {1, ..., n}, by taking A = B ∪ (

⋃n
i=1Ai−

{vi}) we have that A is independent in G ◦H. Thus

α(G ◦H) ≥ |A| = |B|+
n∑
i=1

|Ai − {vi}| = n(α(H)− 1) + α(G).

Now, let Vi, i ∈ {1, ..., n}, be the set of vertices of the copy Hi of H in G ◦ H and let V
be the set of vertices of G. Let X be a α(G ◦ H)-set and let Xi = X ∩ (Vi − {vi}) for
every i ∈ {1, ..., n} and let Y = V ∩ X. Notice that Y and Xi are independent sets. So,
α(Hi − vi) ≥ |Xi| and α(G) ≥ |Y | and by Lemma 9 we have that |Xi| ≤ α(Hi)− 1. Thus

α(G ◦H) = |Y |+
n∑
i=1

|Xi| ≤ α(G) +
n∑
i=1

(α(Hi)− 1) = α(G) + n(α(H)− 1).

Therefore, the proof is complete.

Lemma 11. Let G = (V,E) be a graph. Then for every set of vertices A ⊂ V ,

i(G− A) ≥ i(G)− |A|.

Proof. Let us suppose i(G − A) < i(G) − |A|. So, there exists an independent dominating
set S ⊂ V − A in G − A such that |S| < i(G) − |A|. Let v ∈ A. If NS(v) 6= ∅, then v is
independently dominated by the set S in G. On the contrary, if NS(v) = ∅, then the set
S ∪ {v} is still independent. So, by adding those vertices which maintain the independence
in the set S we obtain a set S ′ which is independent and dominating in G and we have that
i(G) ≤ |S ′| ≤ |S| + |A| < i(G) − |A| + |A| = i(G), which is a contradiction. Therefore,
i(G− A) ≥ i(G)− |A|.

Lemma 12. If v does not belong to any i(G)-set, then

i(G− v) = i(G).

Proof. Let S be an i(G)-set. Since v /∈ S, S is still independent and dominating in G − v.
So, i(G − v) ≤ i(G). On the other hand, let A be an i(G − v)-set. Let us suppose that
|A| < i(G). So, |A| ≤ i(G) − 1. If NA(v) = ∅ in G, then A ∪ {v} is independent and
dominating in G. So, i(G) ≤ |A ∪ {v}| = |A|+ 1 ≤ i(G). Thus |A+ {v}| = i(G) and this is
a contradiction because v does not belong to any i(G)-set. On the contrary, if NA(v) 6= ∅,
then A is independent and dominating in G, which is a contradiction (|A| < i(G)). So,
|A| ≥ i(G). Therefore, i(G− v) = |A| ≥ i(G) and the result follows.

Theorem 13. Let G = (V,E) be a graph of order n ≥ 2 and let H be a graph with root v
and at least two vertices. Then

n(i(H)− 1) + i(G) ≤ i(G ◦H) ≤ i(H)α(G) + i(H − v)(n− α(G)).
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Proof. Let S be an i(G ◦ H)-set and let Si = S ∩ Vi, i ∈ {1, ..., n}. If v ∈ Sj for some
j ∈ {1, ..., n}, then Sj is an independent dominating set in Hj. So, |Sj| ≥ i(H). On the
contrary, if v /∈ Sk for some k ∈ {1, ..., n}, then Sk independently dominates all vertices
of Hk − v. So, Sk is an independent dominating set in Hk − v and by Lemma 11 we have
that |Sk| ≥ i(Hk − v) ≥ i(H) − 1. If |Sj| = i(Hj) − 1 for some j ∈ {1, ..., n}, then v is
not independently dominated by Sj. Also, if v is independently dominated by Sl for some
l ∈ {1, ..., n}, then |Sl| ≥ i(Hl). Let A = S ∩ V and let B ⊂ V be the set of vertices
of G such that every vertex ui ∈ B is independently dominated by a vertex not in G.
Notice that A is an independent dominating set in G − B. So, by Lemma 11 we have that
|A| ≥ i(G−B) ≥ i(G)−|B| and so, |B| ≥ i(G)−|A|. Also, for every vertex ui ∈ B we have
that |Si| ≥ i(Hi) and we have the following,

|S| =
n∑
i=1

|Si|

=

|A|∑
i=1

|Si|+
|B|∑
i=1

|Si|+
n−|A|−|B|∑

i=1

|Si|

≥
|A|∑
i=1

i(H) +

|B|∑
i=1

i(H) +

n−|A|−|B|∑
i=1

(i(H)− 1)

= |A|i(H) + |B|i(H) + (n− |A| − |B|)(i(H)− 1)

= n(i(H)− 1) + |A|+ |B|
≥ n(i(H)− 1) + i(G).

Therefore, the lower bound follows.
To obtain the upper bound, let A be an independent set of maximum cardinality in

G. Now, for every vertex ui ∈ A let Ai be an independent dominating set in Hi. Also, for
every uj /∈ A let Bj be an independent dominating set in Hj − v. Then, it is clear that(⋃|A|

i=1Ai

)
∪
(⋃n−|A|

j=1 Bj

)
is an independent dominating set in G ◦H. Therefore the upper

bound follows.

Notice that the above bounds are tight. For instance, if G is the path graph Pn and
H is the star graph S1,m, m ≥ 2, with root v in the central vertex, (notice that G ◦H is a
caterpillar), then by the above theorem,

i(G ◦H) ≤ i(S1,m)α(Pn) + i(Km)(n− α(Pn))

=
⌈n

2

⌉
+m

(
n−

⌈n
2

⌉)
= mn−

⌈n
2

⌉
(m− 1).

On the contrary, let S be an independent dominating set in G ◦ H, let A be the set
of vertices of Pn belonging to S and let Bi, i ∈ {1, ..., n}, be the set of vertices of Hi − v
belonging to S. If there is a copy Hj of H in G ◦H such that the root v of Hj belongs to
S, then neither any vertex of Hj − v nor any neighbor of v in G belongs to S. Moreover, if
for some copy Hl of H in G ◦H is satisfied that the root v of Hl does not belong to S, then
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every vertex of Hl − v belongs to S. Thus,

|S| = |A|+
n−|A|∑
i=1

|Bji |

= |A|+m(n− |A|)
= mn− |A|(m− 1)

≥ mn− α(G)(m− 1)

= mn−
⌈n

2

⌉
(m− 1).

So, i(G ◦ H) = mn −
⌈
n
2

⌉
(m − 1) and the upper bound is tight. To see the sharpness

of the lower bound, consider G as a path graph Pn and the graph H obtained from the star
graph S1,m, m ≥ 2, by subdividing an edge. Let v be the vertex of H having distance two
from the central vertex of the star. If v is the root of H, then Theorem 13 leads to

i(G ◦H) ≥ n(i(H)− 1) + i(G) = n(2− 1) +
⌈n

3

⌉
=
⌈n

3

⌉
+ n.

On the other side, let A be the set of all central vertices of all copies of the star S1,m, used
to obtain G ◦H. Since i(H) = 2 we have that |A| = n(i(H)− 1). Let B be an independent
dominating set in the path Pn. It is clear that A ∪ B is an independent dominating set in
G ◦H. So, i(G ◦H) ≤ n(i(H)− 1) + i(G) = n+

⌈
n
3

⌉
. As a consequence i(G ◦H) = n+

⌈
n
3

⌉
and the lower bound of Theorem 13 is achieved.

Moreover, notice that there are graphs in which are not attained any one of the above
bounds. The next theorem is an example of that. In order to present such a result we need
to introduce some notation. Let D be a subset of vertices of a graph G, and let v ∈ D. We
say that a vertex x is a private neighbor of v with respect to D if N [x] ∩ D = {v}. The
private neighbor set of v with respect to D is pn[v,D] = N [v]−N [D − {v}].

Theorem 14. Let G = (V,E) be a graph of order n ≥ 2 and let H be a graph with at least
two vertices and root v. Then,

(i) if v does not belong to any i(H)-set, then i(G ◦H) = ni(H),

(ii) if v belongs to every i(H)-set S, then

i(G ◦H) ≤ α(G)i(H) + (n− α(G))(|pn[v, S]|+ i(H)− 1).

Proof. (i) Let us suppose v does not belong to any i(H)-set. From Lemma 12 we have that
i(H − v) = i(H). So, Theorem 13 leads to i(G ◦ H) ≤ ni(H). Let S ′ be a i(G ◦ H)-set
such that |S ′| < ni(H). So, there exists at least one copy Hj of H such that Sj = Vj ∩ S ′
and |Sj| < i(H). Since Si independently dominates Vi − v for every i ∈ {1, ..., n}, we have
that v is not dominated by Sj in Hj. Thus, Sj is an independent dominating set in Hj − v
and i(Hj − v) ≤ |Sj| < i(H), which is a contradiction, since i(H − v) = i(H). Therefore,
i(G ◦H) ≥ ni(H) and the result follows.

(ii) Let Bi be an i(Hi)-set, i ∈ {1, ..., n} and let C be an independent set of maximum

cardinality in G. Let S =
⋃α(G)
i=1 Bi ∪

⋃n−α(G)
j=1 (pn[v,Bj] ∪Bj − {v}). We will show that S is

an independent dominating set of G ◦H.
Let B =

⋃n
i=1Bi. Notice that B is a dominating set in G ◦ H. If G = Kn, then B is

also independent set in G ◦H. In this case α(G) = n and the upper bound follows. Now let

12



us suppose that G � Kn. Since the root of every copy of H belongs to B, there exists at
least two roots vi and vj, i 6= j, which are adjacent in G ◦H. Thus B is not independent in
G ◦H.

So, B′ =
⋃α(G)
i=1 Bi ∪

⋃n
α(G)+1(Bi−{v}) is independent set in G ◦H and dominates every

vertex in Hi, except pn[v,Bi]. Notice that Bi − {v} is still independent in Hi, and also, it
dominates every vertex in Hi, except pn[v,Bi].

Therefore, we have that i(G ◦H) ≤ α(G)i(H) + (n − α(G))(|pn[v, S]| + i(H) − 1) and
the upper bound follows.

5 Connected domination number and convex domina-

tion number

A set of vertices D of a graph G is a connected [19] (or convex [17]) dominating set in G if D
is a dominating set and the subgraph induced by D, (or the set D) is connected (or convex)
in G. The minimum cardinality of any connected (or convex) dominating set in G is called
the connected (or convex) domination number of G and it is denoted by γc(G) (or γcon(G)).
A set D is a γc(G)-set (or a γcon(G)-set) if it is a connected (or a convex) dominating set and
|D| = γc(G) (or |D| = γcon(G)). At next we study the connected (or convex) domination
number of rooted product graphs. We begin with connected domination. This parameter
was defined by Sampathkumar and Wallikar in [19].

Theorem 15. Let G be a graph of order n ≥ 2. Then for any graph H with at least two
vertices and root v,

γc(G ◦H) ∈ {nγc(H), n(γc(H) + 1)}.

Proof. Since the vertex v of H is a cut vertex of G ◦H, the vertex v of each copy Hi of H
belongs to every connected dominating set of G◦H. Also, the intersection of every connected
dominating set of G ◦ H and the set of vertices of every copy of H contains a connected
dominating set of H. So, γ(G ◦H) ≥

∑n
i=1 γc(H) = nγc(H).

Hence, if v belongs to a γc(Hi)-set Si, then by taking S =
⋃n
i=1 Si we have that S is a

connected dominating set. So, γc(G ◦ H) ≤
∑n

i=1 |Si| = nγc(H). Therefore, γc(G ◦ H) =
nγc(H).

Now, let us suppose that γc(G◦H) 6= nγc(H). So, v does not belong to any γc(Hi)-set Si.
Let S be a γc(G◦H)-set. If |S| < nγc(H), then there exists a copy Hl of H in G◦H in which
|S ∩ Vl| < γc(H) and S ∩ Vl is a connected dominating set in H, which is a contradiction.
So, |S| > nγc(H) and there exists a copy Hj of H such that |S ∩ Vj| > γc(H). Since the
root v of H does not belong to any γc(H)-set, and also v belongs to every γc(G ◦H)-set, we
obtain that

|S| =
n∑
i=1

|S ∩ Vi|+ |V | ≥ nγc(H) + n = n(γc(H) + 1).

On the other hand, let Si be a γc(Hi)-set, i ∈ {1, ..., n}. Since v does not belong to
any γc(H)-set, it is satisfied that v /∈ Si for every i ∈ {1, ..., n}. Thus, by taking the set
S = V ∪ (

⋃n
i=1 Si) we have that S is a connected dominating set and, as a consequence,

γc(G ◦H) ≤ |S| =
n∑
i=1

|Si|+ |V | = nγc(H) + n = n(γc(H) + 1).

Therefore, the result follows.
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Next we study the connected domination number of some particular cases of rooted
product graphs. We denote by n1(G) the number of end vertices (vertices of degree one) in
G and by Ω(G) the set of end vertices in G; |Ω(G)| = n1(G).

Lemma 16. [19] If T is a tree of order at least three, then γc(T ) = n(T )− n1(T ).

Lemma 17. If G is a connected graph, H is a tree of order at least three and the root v is
not an end vertex of H, then γc(G ◦H) = nγc(H).

Proof. Since the root of the graph H is a cut vertex in the graph G ◦ H, we have that
root of each copy Hi of H belongs to every connected dominating set of G ◦ H. Also, the
intersection of every connected dominating set of G ◦H and the set of vertices of every copy
of H contains a connected dominating set of H. So, γc(G ◦H) ≥

∑n
i=1 γc(H) = nγc(H). Let

D be a connected dominating set of G ◦H. Since H is a tree, from Lemma 16, not any end
vertex belongs to any minimum connected dominating set of H and γc(H) = n(H)−n1(H).
Also, for every Hi, γc(Hi) = n(Hi)−n1(Hi). Since v is not an end vertex of H, we have that
|D| = |V ∪

∑n
i=1(Vi − Ωi)|. Thus, γc(G ◦H) ≤ |D| = nγ(H) and we are done.

Lemma 18. If T1, T2 are trees of order at least three, then T1 ◦ T2 is also a tree of order
n(T1 ◦ T2) = n(T1)n(T2). Moreover, n1(T1 ◦ T2) ∈ {n(T1)n1(T2), n(T1)(n1(T2)− 1)}.
Proof. For a graph T1 ◦ T2 is n(T1 ◦ T2) = n(T1) + n(T1)(n(T2)− 1) = n(T1)n(T2). If a root
vertex v is an end vertex of T2, then n1(T1 ◦ T2) = n(T1)(n1(T2) − 1). On the contrary, if v
is not an end vertex of T2, then n1(T1 ◦ T2) = n(T1)n1(T2).

Theorem 19. Let T1, T2 be trees of order at least three. Then γc(T1 ◦ T2) = n(T1)γc(T2) if
and only if the rooted vertex v of T2 is not an end vertex of T2.

Proof. From Lemma 16, we have γc(T1 ◦ T2) = n(T1 ◦ T2)− n1(T1 ◦ T2). Also, from Lemma
18 we have n(T1 ◦ T2) = n(T1)n(T2). Let v be a non end vertex of T2. Hence, n1(T1 ◦
T2) = n(T1)n1(T2). Thus γc(T1 ◦ T2) = n(T1)n(T2)− n1(T2)n(T1) = n(T1)(n(T2)− n1(T2)) =
n(T1)γc(T2).

Assume now γc(T1 ◦ T2) = n(T1)γc(T2) and suppose v is an end vertex of T2. Hence, we
have n1(T1 ◦ T2) = (n1(T2)− 1)n(T1) = n1(T2)n(T1)− n(T1). Since n(T1 ◦ T2) = n(T1)n(T2),
we have γc(T1 ◦ T2) = n(T1)n(T2) − (n1(T2)n(T1) − n(T1)) = n(T1)(n(T2) − n1(T2) + 1) =
n(T1)(γc(T2) + 1), what gives a contradiction.

From Theorems 15 and 19 we can conclude the following.

Corollary 20. γc(T1 ◦T2) = n(T1)(γc(T2)+1) if and only if the root v of T2 is an end vertex
of T2.

Convex domination was defined by Topp in [21] and it was first characterized in [17].
Notice that for the case of the convex domination number of G ◦H the result is similar to
Theorem 15 about connected domination. The proofs of the following results are omitted
due to the analogy with the above ones.

Theorem 21. Let G be a graph of order n ≥ 2. Then for any graph H with root v and at
least two vertices,

γcon(G ◦H) ∈ {nγcon(H), n(γcon(H) + 1)}.
Theorem 22. If T1, T2 are trees, then γcon(T1 ◦ T2) = n(T1)γcon(T2) if and only if the root v
of T2 is not an end vertex of T2.

Corollary 23. γcon(T1 ◦ T2) = n(T1)(γcon(T2) + 1) if and only if the root of T2 is an end
vertex.
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5.1 Weakly connected domination number

Now we consider the weakly connected domination number of rooted product graphs. A
dominating set D ⊂ V (G) is a weakly connected dominating set in G if the subgraph G[D]w =
(NG[D], Ew) (also called subgraph weakly induced by D) is connected, where Ew is the set
of all edges having at least one vertex in D. Dunbar et al. [7] defined the weakly connected
domination number γw(G) of a graph G to be the minimum cardinality among all weakly
connected dominating sets in G.

Theorem 24. Let G be a graph of order n ≥ 2. Then for any graph H with at least two
vertices and root v,

γw(G ◦H) ∈ {nγw(H), nγw(H) + γw(G)}.

Proof. Let DH be a minimum weakly connected dominating set of H and DHi
be the copy

of DH in the ith copy Hi of H, 1 ≤ i ≤ n. Let D be a minimum weakly connected dominating
set of G ◦H. We consider two cases.

1. v ∈ DH . Then identified vertices belong to a minimum weakly connected dominating
set of G ◦H and γw(G ◦H) = nγw(H).

2. v /∈ DH . Then
⋃n
i=1DHi

⊂ D and identified vertices are dominated by
⋃n
i=1DHi

. But
the set

⋃n
i=1DHi

is not weakly connected. To make this set weakly connected, we
need to add to this set γw(G) vertices. So γw(G ◦H) = |D| = |

⋃n
i=1DHi

| + γw(G) =
nγw(H) + γw(G).

The following lemma presented in [15] will be useful into obtaining some interesting
results.

Lemma 25. [15] For any tree T of order n ≥ 3,

1

2
(n− n1(T ) + 1) ≤ γw(T ) ≤ n− n1(T ).

Theorem 26. If T1, T2 are trees and v is not an end vertex of T2, then

1

2
(n1(T1)γw(T2) + 1) ≤ γw(T1 ◦ T2) ≤ n1(T1)(2γw(T2)− 1).

Proof. From Lemma 25, 1
2
(n(T1 ◦ T2)− n1(T1 ◦ T2) + 1) ≤ γw(T1 ◦ T2) ≤ n(T1 ◦ T2)− n1(T1 ◦

T2). Thus, from Lemma 18, we have 1
2
(n(T1)n(T2) − n(T1)n1(T2) + 1) ≤ γw(T1 ◦ T2) ≤

n1(T1)(n(T2) − n1(T2)). We have γw(T1 ◦ T2) ≤ n1(T1)(n(T2) − n1(T2)) = n1(T1)2
1
2
(n(T2) −

n1(T2)) = n1(T1)2
1
2
(n(T2)−n1(T2) + 1−1) ≤ n1(T1)2γw(T2)−n1(T1) = n1(T1)(2γw(T2)−1).

From the other side we have γw(T1◦T2) ≥ 1
2
(n1(T1)(n(T2)−n1(T2))+1) ≥ 1

2
(n1(T1)γw(T2)+1)

and finally we obtain the desired result.

By using similar methods, we obtain the following result.

Theorem 27. Let T1 be a tree of order n(T1). If v is a non-end vertex of a tree T2, then

1

2
(γw(T2)n(T1) + 1) ≤ γw(T1 ◦ T2) ≤ 2n(T1)γw(T2).

15



5.2 Super domination number

We continue with the super domination number of the rooted product graph. This parameter
was defined in [16]. A subset D of V is called a super dominating set if for every v ∈ V −D
there exists u ∈ NG(v)∩D such that NG(u) ⊆ D∪{v}. The minimum cardinality of a super
dominating set is called the super domination number of G and it is denoted by γsp(G). In
[16] a paper was proved the following result.

Lemma 28. [16] For any tree of order n ≥ 3, n
2
≤ γsp(T ) ≤ n − s(T ), where s(T ) is the

number of support vertices in T.

Theorem 29. Let G be a graph of order n ≥ 2. Then for any graph H with root v and at
least two vertices,

γsp(G ◦H) = nγsp(H).

Proof. Let DH be a minimum super dominating set of H and DHi
be the copy of DH in

the ith copy Hi of H, 1 ≤ i ≤ n. Let D be a minimum super dominating set of G ◦ H. We
consider two cases.

1. v ∈ DH . Then identified vertices belong to a minimum super dominating set of G ◦H
and γsp(G ◦H) = nγsp(H).

2. v /∈ DH . Then
⋃n
i=1DHi

⊂ D and identified vertices are dominated by
⋃n
i=1DHi

. Also,
every vertex belonging to

⋃n
i=1 Vi −

⋃n
i=1DHi

− U, where U is the set of identified
vertices is super dominated by

⋃n
i=1DHi

. Suppose there exists a vertex u ∈ U which is
not super dominated by

⋃n
i=1DHi

. Then for a vertex u does not exist any v ∈
⋃n
i=1DHi

such that NG◦H(v) ⊆
⋃n
i=1DHi

. So, there is 1 ≤ i ≤ n such that in Hi there exists a
vertex which is not super dominated, a contradiction. Thus,

⋃n
i=1DHi

is a minimum
super dominating set of G ◦H and γsp(G ◦H) = |

⋃n
i=1DHi

| = nγsp(H).

Now, by using Lemma 28 result, we can prove the following.

Theorem 30. If T1, T2 are trees of order n(T1) ≥ 3 and n(T2) ≥ 3, respectively, then

n(T1)s(T2) ≤ γsp(T1 ◦ T2) ≤ n(T1)(n(T2)− s(T2)).

Proof. If a root v is a support vertex of T2, then s(T1 ◦ T2) = n(T1) + (s(T2) − 1)n(T1) =
n(T1)s(T2). If v is not a support vertex, then also s(T1 ◦T2) = n(T1)s(T2). The upper bound
follows directly from Lemma 28. For the lower bound we have γsp(T1 ◦ T2) ≤ 2γsp(T1 ◦ T2)−
n(T1)s(T2), which leads to the result.

References

[1] C. Berge, Graphs and hypergraphs. North-Holland, Amsterdam. 1973
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[17] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Mathematica
24 (2) (2004) 181–188.

[18] D. F. Rall, Total domination in categorical products of graphs, Discussiones Mathemat-
icae Graph Theory 25 (2005) 35–44.

[19] E. Sampathkumar, H. Walikar, The connected domination number of a graph, Journal
of Mathematical and Physical Sciences 13 (6) (1979) 607–613.

[20] I. Stewart, Defend the Roman Empire!, Scientific American, December (1999) 136–138.

[21] J. Topp, Private communication. (2002).

17



[22] V. G. Vizing, The Cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30–43.
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