
Embedding an Arbitrary Tree in a
Graceful Tree

1G. Sethuraman∗, 1P. Ragukumar and 2Peter J. Slater

1Department of Mathematics
Anna University

Chennai 600 025, India
sethu@annauniv.edu

2Department of Mathematical Sciences and Department of Computer Science
University of Alabama in Huntsville

Huntsville, AL 35899 USA.
slaterp@uah.edu and pslater@cs.uah.edu

Abstract

A function f is called a graceful labeling of a graph G with m edges
if f is an injective function from V (G) to {0, 1, 2, · · · ,m} such that
when every edge uv is assigned the edge label |f(u)− f(v)|, then the
resulting edge labels are distinct. A graph which admits a graceful
labeling is called a graceful graph. The popular Graceful Tree Conjec-
ture states that every tree is graceful. The Graceful Tree Conjecture
remains open for over four decades. Though there are a few general
results and techniques on the construction of graceful trees, settling
the conjecture seems to be very hard. In this paper, we have intro-
duced a new and different method of constructing graceful trees from
a given arbitrary tree. More precisely, we show that every tree can be
embedded in a graceful tree with at most km edges, k < dm4 e, where
m is the number of edges of the given arbitrary tree. Further, we pose
a related open problem towards settling the Graceful Tree Conjecture.

Mathematics Subject Classification: 05C78;05C05
Keywords: Graceful Tree;Graceful Tree Conjecture;Graceful Tree
Embedding;Graceful Labeling;Graph Labeling

∗Corresponding Author

1

1 Introduction

All the graphs considered in this paper are finite and simple graphs. The

terms which are not defined here can be referred from [30]. In 1963, Ringel

posed his celebrated conjecture, popularly called Ringel Conjecture [22],

which states that, K2n+1, the complete graph on 2n + 1 vertices can be de-

composed into 2n+ 1 isomorphic copies of a given tree with n edges. In [15],

Kotzig independently conjectured the specialized version of the Ringel Con-

jecture that the complete graph K2n+1 can be cyclically decomposed into

2n + 1 copies of a given tree with n edges. In an attempt to solve both

the Ringel and Kotzig Conjectures, in 1967, Rosa, in his classical paper [23]

introduced hierarchical series of labelings called σ, ρ, β and α labelings as a

tool to attack both the Ringel and Kotzig Conjectures. Later, β-labeling was

called as graceful labeling by Golomb [11], and now this term is being widely

used. A function f is called a graceful labeling of a graph G with m edges,

if f is an injective function from V (G) to {0, 1, 2, · · · ,m} such that, when

every edge uv is assigned the edge label |f(u)−f(v)|, then the resulting edge

labels are distinct. A graph which admits graceful labeling is called a grace-

ful graph. In [23], Rosa also proved that if T is a graceful tree with n edges,

then K2n+1 can be cyclically decomposed into 2n+1 copies of T . This signifi-

cant theorem led to the Rosa-Kotzig-Ringel Conjecture, popularly called the

“Graceful Tree Conjecture”: All Trees are Graceful. Over four decades, many

interesting and significant results [1–8, 11–16, 18–21, 24–29, 31] were proved

to support the Graceful Tree Conjecture, but still it remains open. [9,10,17]

can be referred for an exhaustive survey on Graceful Tree Conjecture and

related results.

In the literature of the graceful tree conjecture, one can observe that re-

searchers have followed three different approaches to prove results supporting

the Graceful Tree Conjecture.

• Any tree with at most k vertices is graceful, for some positive integer

k. [It was shown that k = 27 in [2] and k = 29 in [18].

2

• Special classes of trees (like caterpillars, banana trees etc.,) are graceful.

Refer [12–14,19,23–25,29].

• Known graceful trees are combined or modified to produce larger or

different graceful trees. [In [16], two graceful trees are combined to get

a larger graceful tree. In [21], the diameter 4 graceful trees are modified

to obtain all the diameter 5 graceful trees.]

However, in spite of many significant and interesting results established on

graceful trees, settling the Graceful Tree Conjecture seems to be very hard. In

this paper, we introduce a new and different method of constructing graceful

trees from a given arbitrary tree. More precisely, an algorithm is given to

construct graceful trees containing a given arbitrary tree as its subtree with

atmost km edges, k < dm
4
e, where m is the number of edges of a given

arbitrary tree. This will imply an interesting and significant result that any

tree with m edges can be embedded in a graceful tree with atmost km edges,

where k < dm
4
e. In [1], B.D. Acharya et al have observed that every tree can

be embedded in a ∆-ary tree, a well known graceful tree (refer [3]), where

∆ is the maximum degree of the given tree. In fact, this result motivated

us to design an exclusive algorithm to construct a graceful tree from a given

arbitrary tree with considerably less number of edges containing the given

arbitrary tree as its subtree. Finally, at the end of the paper, we pose a

related open problem towards settling the Graceful Tree Conjecture.

2 Main Result

In this section, an algorithm to construct graceful trees from a given arbi-

trary tree T with m edges is presented.

Labeling Algorithm

Input: Arbitrary tree T with m edges

3

Step 1: Initialization

Consider a bipartition of the vertex set of T . Let (V1, V2) be a

bipartition of V (T), and let |V1| = p and |V2| = q. Let the ver-

tices of V1 be arranged as v0, v1, v2, · · · , vp−1 such that v0 is the

top most vertex and vp−1 is the bottom most vertex. (We refer

to this arrangement of vertices of V1 as “Top to bottom order of

V1”). Now, we arrange all the vertices of V2 to the right side of

the vertices of V1 in the following order.

Arrange all the adjacent vertices of v0 on the top. Consider the

adjacent vertices of v1 which are not adjacent to v0. Then arrange

them just below all the adjacent vertices of v0. Now, consider only

those adjacent vertices of v2 which are neither adjacent to v0 nor

adjacent to v1, and arrange such adjacent vertices of v2 just be-

low the adjacent vertices of v1. Continue this arrangement with

the adjacent vertices of v3, v4, v5, · · · , vp−1. Thus, in this arrange-

ment, for any vj, 0 ≤ j ≤ p− 1, all adjacent vertices of vj which

are commonly adjacent with any vertex vi, i < j always appear

above the remaining adjacent vertices of vj. Let the vertices of V2

arranged as above be described as uq−1, uq−2, uq−3, · · · , u2, u1, u0
such that uq−1 is the top most vertex and u0 is the bottom most

vertex. (This ordering of vertices of V2 is referred to as “Bottom

to top ordering of V2”).

Step 2: Vertex Labeling

Step 2.1: Labeling of 0th iteration

Define l0(vi) = i, for 0 ≤ i ≤ p− 1

l0(ui) = (i+ 1)p, for 0 ≤ i ≤ q − 1

Step 2.2: Labeling of jth iteration for j, 1 ≤ j ≤ q − 1.

4

For a fixed j, 1 ≤ j ≤ q−1, find r = min[l0(N(uj))], where N(uj)

denotes the set of adjacent vertices of uj in T , and l0(N(uj)) =

{l0(v) : v ∈ N(uj)}.
If r > 0, then

define lj(vi) = l0(vi) = i, for 0 ≤ i ≤ p− 1

lj(us) =

{
lj−1(us), if 0 ≤ s < j

lj−1(us)− r, if j ≤ s ≤ q − 1

If r = 0, then no more iteration is defined beyond (j − 1)th

iteration. Terminate the process.

Step 3: Edge Labeling

For each j, 0 ≤ j ≤ q − 1, if the jth iteration is defined in Step

2.2, then for every edge uv ∈ E(T) define edge label l′j(uv) =

|lj(v)− lj(u)|.

Notation

For a given input tree T , let θ denote the last iteration that is defined by

the Labeling Algorithm for the input tree T . Observe that θ ≤ q − 1, where

q = |V2|, (V1, V2) is the bipartition of the vertex set V (T) of the input tree

T that is described in Step 1 of the Labeling Algorithm. For 0 ≤ j ≤ θ,

let Tj represents the vertex labeled input tree T , with vertex labels that are

defined in the jth iteration of the Labeling Algorithm.

Output of the Labeling Algorithm

For an input tree T , the Labeling Algorithm defines a sequence of iterations,

0th, 1st, 2nd, · · · , θth iterations and produces the corresponding output as a

sequence of vertex labelled trees T0, T1, T2, · · · , Tθ (where θ is the last itera-

tion defined by the Labeling Algorithm for the input tree T).

Theorem 1. The vertex labels of the vertices of each of the output tree Tj,

for j, 0 ≤ j ≤ θ, where θ is the last iteration that is defined in the Labeling

Algorithm for the input tree T , are all distinct.

Proof. We prove the theorem by induction on j. When j = 0, then by Step

2.1 of the Labeling Algorithm, we have, l0(vi) = i, for 0 ≤ i ≤ p − 1 and

5

l0(ui) = (i + 1)p, 0 ≤ i ≤ q − 1. It is clear that the labels l0(v), for all

v ∈ V (T0) are distinct. We assume that the vertex labels of each output

tree Tj that is defined in the jth iteration, for j, 1 ≤ j ≤ k, of the Labeling

Algorithm are all distinct. That is, the vertex labels lj(v) for all v ∈ V (T)

are distinct, for 0 ≤ j ≤ k. Thus, for each j, 1 ≤ j ≤ k, the vertex labels,

lj(vi) = l0(vi) = i, for 0 ≤ i ≤ p− 1 (1)

lj(ui) =

{
lj−1(ui), if 0 ≤ i < j

lj−1(ui)− r, if j ≤ i ≤ q − 1
(2)

where r = min[lj(N(uj))](= min[l0(N(uj))]) are all distinct. Now we prove

that the vertex labels of all the vertices of the output tree Tk+1 that is

defined in the (k+ 1)th iteration are all distinct. By Step 2.2 of the Labeling

Algorithm, the vertex labels of the tree Tk+1 are defined as:

lk+1(vi) = l0(vi) = i, for 0 ≤ i ≤ p− 1 (3)

lk+1(ui) =

{
lk(ui), if 0 ≤ i < k + 1

lk(ui)− r1, if k + 1 ≤ i ≤ q − 1
(4)

where r1 = min[lk+1(N(uk+1))] = min[l0(N(uk+1))]. By inductive assump-

tion, the vertex labels of all the vertices of Tj, 0 ≤ j ≤ k are distinct. From

(3), and by the inductive assumption, the vertex labels of the vertices in

V1(Tk+1) are distinct. From (4), and by the inductive assumption, the vertex

labels of the vertices in the set {ui ∈ V2(Tk+1) : i ≤ k} are all distinct. First

we claim that lk+1(uk+1) > lk+1(uk). Suppose not. Then,

lk+1(uk+1) ≤ lk+1(uk). (5)

From (4), the inequality (5) can be rewritten as lk(uk+1)−r1 ≤ lk(uk), where

r1 = min[lk+1(N(uk+1))] = min[l0(N(uk+1))]. Again, using (2) when j = k,

the above inequality can be rewritten as lk−1(uk+1)− r − r1 ≤ lk−1(uk)− r,
where r = min[lk(N(uk))] = min[l0(N(uk))]. Thus, we have lk−1(uk+1)−r1 ≤
lk−1(uk). Further, using (2) when j = k − 1, the inequality can be rewritten

as lk−2(uk+1) − r′ − r1 ≤ lk−2(uk) − r′, where r′ = min[lk−1(N(uk−1))] =

6

min[l0(N(uk−1))]. Similarly if we continue, finally we get l0(uk+1) − r1 ≤
l0(uk). Thus, l0(uk+1) − l0(uk) ≤ r1. Then, by the definition of labeling l0,

we have p ≤ r1. But r1 = min[lk+1(N(uk+1))] = min[l0(N(uk+1))] < p. A

contradiction. Therefore, lk+1(uk+1) > lk+1(uk).

Next, we claim that lk+1(uk+2) > lk+1(uk+1). Suppose not. Then,

lk+1(uk+2) ≤ lk+1(uk+1). (6)

Using (4), we can write the inequality (6) as

lk(uk+2)− r1 ≤ lk(uk+1)− r1 (7)

where r1 = min[lk+1(N(uk+1))] = min[l0(N(uk+1))]. Therefore,

lk(uk+2) ≤ lk(uk+1). (8)

Again, by (2) when j = k, the inequality (8) can be rewritten as lk−1(uk+2)−
r ≤ lk−1(uk+1)−r, where r = min[lj(N(uj))] = min[l0(N(uj))]. This implies,

lk−1(uk+2) ≤ lk−1(uk+1). (9)

Again, by (2) when j = k−1, the inequality (9) can be written as lk−2(uk+2)−
r′ ≤ lk−2(uk+1) − r′, where r′ = min[lk−1(N(uk−1))] = min[l0(N(uk−1))].

Thus, lk−2(uk+2) ≤ lk−2(uk+1). Similarly, if we continue, finally we get

l0(uk+2) ≤ l0(uk+1). Thus, l0(uk+2)− l0(uk+1) ≤ 0. But, l0(uk+2)− l0(uk+1) =

p > 0. A contradiction. Therefore, lk+1(uk+2) > lk+1(uk+1). Similarly, we

can prove that lk+1(uh+1) > lk+1(uh) for any h, k + 1 ≤ h ≤ q − 2. There-

fore, lk+1(uk+1), lk+1(uk+2), · · · , lk+1(uq−1) form a monotonically increasing

sequence. Hence, the vertex labels of all the vertices of Tk+1 are distinct.

This completes the induction.

Theorem 2. The edge labels of the edges of each of the output tree Tj, for

j, 0 ≤ j ≤ θ, where θ is the last iteration that is defined in the Labeling

Algorithm are all distinct for the input tree T .

7

Proof. We prove the theorem by induction on j. When j = 0, the labels of

the vertices of T0 are defined in Step 2.1 as l0(vi) = i, for 0 ≤ i ≤ p− 1, and

l0(ui) = (i+ 1)p, for i, 0 ≤ i ≤ q − 1, where p = |V1|, q = |V2| and (V1, V2) is

a bipartition of the input tree T that is described in Step 1 of the Labeling

Algorithm. Consider any two consecutive vertices ut, ut+1 of V2, where 0 ≤
t ≤ q − 2. Let x = min[l0(N(ut))] and let y = max[l0(N(ut+1))]. We claim

that l0(ut)− x < l0(ut+1)− y. Suppose not. Then, l0(ut)− x ≥ l0(ut+1)− y.

By the definition of the labeling l0, we have, l0(ut)−x ≥ l0(ut)+p−y. Thus,

y − x ≥ p. But, since 0 ≤ x, y ≤ p− 1, we have y − x < p. A contradiction.

Hence, all the edge labels of the edges in T0 are distinct. Assume that the edge

labels of the edges of each output tree Tj, for j, 0 ≤ j ≤ k are all distinct. We

prove that the edge labels of all the edges of the output tree Tk+1 are distinct.

By the definition of lk+1 given in Step 2.2 of the Labeling Algorithm and by

the inductive assumption, the edge labels of the edges that are incident with

vertices ut, for t, 0 ≤ t ≤ k are all distinct. Therefore, it is enough to

prove that the edge labels of the edges that are incident with vertices ut,

for t, k + 1 ≤ t ≤ q − 1 are distinct. Consider the two consecutive vertices

ut, ut+1 of V2(Tk+1) in the bottom to top ordering of V2, where k ≤ t ≤ q− 2.

Let a = min[lk+1(N(ut))] and let b = max[lk+1(N(ut+1))]. Observe that

l(ut)− l(v) ≤ l(ut)− a for any v ∈ N(ut) and l(ut+1)− l(w) ≥ l(ut+1)− b for

any w ∈ N(ut+1). We claim that lk+1(ut)− a < lk+1(ut+1)− b. Suppose not.

Then,

lk+1(ut)− a ≥ lk+1(ut+1)− b. (10)

Case 1: t = k.

Then, (10) becomes lk+1(uk)−a ≥ lk+1(uk+1)−b. By the definition of lk+1,

we have lk(uk)−a ≥ lk(uk+1)−r1− b, where r1 = min[lk+1(N(uk+1))]. Thus,

lk(uk)−lk(uk+1) ≥ a−r1−b. Again, by the definition of lk, we have [lk−1(uk)−
r] − [lk−1(uk+1) − r] ≥ a − r1 − b, where r = min[lk(N(uk))]. This implies,

lk−1(uk) − lk−1(uk+1) ≥ a − r1 − b. Then by the definition of lk−1, we have

[lk−2(uk)− r′]− [lk−2(uk+1)− r′] ≥ a− r1− b, where r′ = min[lk−1(N(uk−1))].

Therefore, lk−2(uk)− lk−2(uk+1) ≥ a−r1−b. Similarly, if we continue, finally

8

we get l0(uk)− l0(uk+1) ≥ a−r1−b. That is, l0(uk)− [l0(uk)+p] ≥ a−r1−b.
This implies,

r1 − a ≥ p− b. (11)

As the vertex uk+1 appears above the vertex uk in the bottom to top or-

dering of V2 that is defined in Step 1 of the Labeling Algorithm and since

a = min[lk+1(N(uk))], by Step 1 of the Labeling Algorithm, the vertex uk+1

should be either adjacent to a or to some other vertex of V1 which appears

above the vertex labeled a in the top to bottom ordering of V1. This implies

uk+1 is either adjacent to a vertex with label a or some other vertex whose

label is less than a. Therefore, r1 ≤ a.

Case 1.1: r1 < a.

Then p− b ≤ r1 − a < 0. But, p > b ≥ 0, p− b > 0. A contradiction.

Case 1.2: r1 = a.

Then, a − r1 = 0. Therefore, p − b ≤ 0. That is, b ≥ p. But 0 ≤ b < p.

A contradiction. Hence, lk+1(ut)− a < lk+1(ut+1)− b is true when t = k.

Case 2: t > k.

Let t = k + α, 0 < α ≤ (q − 2) − k. Then the inequality (10) be-

comes lk+1(uk+α)− a ≥ lk+1(uk+α+1)− b. By the definition of lk+1, we have

lk(uk+α)− r1−a ≥ lk(uk+α+1)− r1− b, where r1 = min[lk+1(N(uk+1))]. This

implies, lk(uk+α) − a ≥ lk(uk+α+1) − b. Then, by the definition of lk, we

have lk−1(uk+α) − r − a ≥ lk−1(uk+α+1) − r − b, where r = min[lk(N(uk))].

Then, lk−1(uk+α) − a ≥ lk−1(uk+α+1) − b. By the definition of lk−1, we have

lk−2(uk+α) − r′ − a ≥ lk−2(uk+α+1) − r′ − b, where r′ = min[lk−1(N(uk−1))].

Thus, lk−2(uk+α)− a ≥ lk−2(uk+α+1)− b. Similarly, if we continue, finally we

get l0(uk+α)−a ≥ l0(uk+α+1)−b. This implies l0(uk+α)−a ≥ l0(uk+α)+p−b.
Therefore, b−a ≥ p. That is, b−a ≥ p. But since 0 ≤ a, b ≤ p−1, b−a < p.

A contradiction. Thus, lk+1(ut)−a < lk+1(ut+1)−b for all t, k+1 ≤ t ≤ q−1.

Thus max{l′k+1(utv) : v ∈ N(ut)} < min{l′k+1(ut+1w) : w ∈ N(ut+1)}. As

the vertex labels defined in the labeling lk+1 are distinct, the edge values in

the set {l′k+1(utv) : v ∈ N(ut)} are distinct and the edge values in the set

{l′k+1(utw) : w ∈ N(ut+1)} are distinct. Thus, the edge labels of the edges

9

that are incident to vertices ut, for k ≤ t ≤ q−1 are distinct. This completes

the proof.

Embedding Algorithm

Input: Any arbitrary tree T

Step 1:

Step 1.1:

Run Labeling Algorithm on input tree T and get the output. Let

T0, T1, T2, · · · , Tθ be the sequence of vertex labeled trees obtained

as output from the Labeling Algorithm for the input tree T , where

θ is the last iteration of the Labeling Algorithm for the input tree

T .

Step 1.2:

For each tree Tj, 0 ≤ j ≤ θ, define

Vertex Label Set

Vj = V (Tj) = {0, 1, 2, · · · , p− 1, p, α1, α2, · · · , αq−1 = Mj},

where the elements of Vj are the vertex labels of the

vertices of the input tree T that is defined in the jth

iteration of the Labeling Algorithm,

Edge Label Set Ej = {l′j(e1), l′j(e2), · · · , l′j(em)},

where l
′
j(ei), is the edge labels of the edge ei, for 1 ≤

i ≤ m of T defined in the jth iteration of the Labeling

Algorithm,

All label set Xj = {0, 1, 2, · · · ,Mj},
Common label set Ij = Vj ∩ Ej,
Exclusive vertex label set V̂j = (Vj − {0})− Ij,
Exclusive edge label set Êj = Ej − Ij and

Missing vertex label set X̂j = Xj − Vj.

10

Step 2:

Initiate T ∗j ← Tj,

V (T ∗j)← V (Tj),

E(T ∗j)← E(Tj).

While X̂j 6= φ, find minX̂j = c.

Step 3:

If c /∈ Êj, then consider a new vertex with label c and add a new

edge between the vertex labeled 0 and the new vertex with label

c to T ∗j .

Update T ∗j ← T ∗j + (0, c),

V (T ∗j)← V (T ∗j) ∪ {c},
E(T ∗j)← E(T ∗j) ∪ {(0, c)}.

Delete c from X̂j and go to Step 2.

Step 4:

If c ∈ Êj, then find minV̂j = d and find β = c − d. Consider a

new vertex with label c and add a new edge between the vertex

labeled β and the new vertex labeled c to T ∗j .

Update T ∗j ← T ∗j + (β, c),

V (T ∗j)← V (T ∗j) ∪ {c},
E(T ∗j)← E(T ∗j) ∪ {(β, c)}.

Delete c from X̂j and delete d from V̂j and go to Step 2.

Observation: If X̂j 6= φ, then the Embedding Algorithm executes Step 2

and minX̂j = c is found. This means that there are c vertices in the current

tree T ∗j with labels 0, 1, 2, · · · , c − 1. Thus, after the execution of Step 3 or

Step 4, the latest updated tree T ∗j will have c+ 1 vertices with vertex labels

0, 1, 2, · · · , c− 1, c.

Lemma 1. The β defined in Step 4 of the Embedding Algorithm is always

a positive integer, and it exists as the vertex label of a vertex of the current

tree T ∗j that is being used in that execution of Step 4.

11

Proof. Step 4 of the Embedding Algorithm is executed when X̂j 6= φ. Further

c = minX̂j, d = minV̂j and β = c− d are found in Step 4. We claim that β

is a positive integer. That is, we claim that c > d. Suppose not. Then c ≤ d.

Since c ∈ X̂j, d ∈ V̂j, and X̂j ∩ V̂j = φ, c 6= d. Thus c < d. Since minX̂j > p,

where p = |V1|, and (V1, V2) is the bipartition of the vertex set of the input

tree T , we have c > p. This implies that d > p. Since d is the minimum

over V̂j, any label less than d cannot exist in V̂j. By Step 2 of the Labeling

Algorithm, any vertex of Tj whose label is greater than or equal to p must

only appear in the right side partition V2 of T . This means that Tj has only

one vertex on the left side partition V1 of T and that should have been labeled

with 0, and all the other remaining vertices must appear on the right side

partition V2 of T . Since T is a tree, the vertex labeled 0 (since 0 ∈ V ∗j) should

be adjacent to all the vertices of V2. Thus, Tj must be a star of size m. Then,

by the Labeling Algorithm the star Tj should have been labeled as shown

in Figure 1. Thus, V (Tj) = {0, 1, 2, · · · ,m} and E(Tj) = {1, 2, 3, · · · ,m}.

Figure 1: Labeled Star with the labels defined by the Labeling Algorithm.

Hence Xj = {0, 1, 2, · · · ,m}, and Ij = {1, 2, 3, · · · ,m}. Therefore, X̂j =

Xj − Vj = φ. But, we have X̂j 6= φ. A contradiction. This implies c > d.

Hence β is a positive integer. Since c = minX̂j, the current tree T ∗j should

contain all the vertex labels 0, 1, 2, · · · , c − 1. Thus, as β = (c − d) < c, β

must be a label of a vertex in that current tree T ∗j .

12

Theorem 3. Let T ∗0 , T
∗
1 , T

∗
2 , · · · , T ∗θ be the output trees of the Embedding

Algorithm, where θ is the last iteration executed for the input tree T by the

Labeling Algorithm. Then each tree T ∗j , for j, 0 ≤ j ≤ θ is graceful and

contains the input arbitrary tree T as its subtree.

Proof. By Step 1.2 of the Embedding Algorithm, we have X̂j = Xj − Vj.

Then, Xj = X̂j∪Vj. Since Êj ⊂ X̂j, we can write Xj = X̂j∪Vj = ((X̂j−Êj)∪
Êj)∪Vj. Observe that Êj∩Vj = φ, Êj∩(X̂j−Êj) = φ and Vj∩(X̂j−Êj) = φ.

Thus, the sets (X̂j − Êj), Êj and Vj are mutually disjoint. Note that Vj

consists of all the vertex labels of Tj. Êj consists of the edge labels of Tj that

are not vertex labels of Tj. X̂j − Êj consists of the members of Xj which are

neither the vertex labels of Tj nor the edge labels of Tj. Consider c = minX̂j,

obtained by an(any) execution of Step 2 of the Embedding Algorithm. If

c /∈ Êj, then by Step 3 of the Embedding Algorithm, the vertex label c is

obtained in the updated tree T ∗j by adding the new edge (0, c) to the current

tree T ∗j . Also c is removed from X̂j. Since c was removed from X̂j, the vertex

label c will never be obtained again.

If c ∈ Êj, then by Step 4 of the Embedding Algorithm, the vertex label c is

obtained in the updated tree T ∗j by adding the new edge (β, c) in the current

tree T ∗j where β = c− d, and d = minV̂j. Further, c is removed from X̂j and

d is also removed from V̂j. Since c is removed from X̂j and d is also removed

from V̂j, the vertex label c will never be obtained again.

Thus, after executing Step 3 of the Embedding Algorithm |X̂j − Êj| times

and Step 4 of the Embedding Algorithm |Êj| times, T ∗j contains all the vertex

labels 0, 1, 2, · · · ,Mj. Observe that all the vertex labels obtained from the

Embedding Algorithm are distinct and belong to Xj−Vj. By Theorem 1, all

the vertex labels of Tj are also distinct. Thus for each j, 0 ≤ j ≤ θ, vertex

labels of all the vertices of T ∗j are distinct, and the final updated tree T ∗j has

Mj + 1 vertices with vertex set V (T ∗j) = {0, 1, 2, · · · ,Mj}. (where a vertex

of T ∗j is referred by its corresponding label)

We can write the set Xj − {0} = X̂j ∪ (Vj − {0}) = (X̂j − Êj) ∪Ej ∪ V̂j.
Observe that the sets (X̂j − Êj), Êj, V̂j and Ij are mutually disjoint. The

13

elements in Êj and Ij are already existing as edge labels in Tj. Consider,

minX̂j = c, obtained at an (any) execution of Step 2 of the Embedding

Algorithm. If c /∈ Êj, then by Step 3 of the Embedding Algorithm, the edge

label c is obtained in the updated tree T ∗j by adding the new edge (0, c) to

the current tree T ∗j and c is removed from X̂j. Since c was removed from

X̂j, the edge label c will never be obtained again. If c ∈ Êj is found in an

execution of Step 4 of the Embedding Algorithm, then d = minV̂j is found in

that execution, and the edge label d is obtained in the updated tree T ∗j from

the new edge (β, c) which was added to the current tree T ∗j , where β = c−d,

and d is removed from X̂j. Also d is removed from V̂j. Since c is removed

from X̂j and d is removed from V̂j the edge label d will never be obtained

again.

Thus, after executing Step 3 of the Embedding Algorithm |X̂j−Êj| times and

Step 4 of the Embedding Algorithm |V̂j|(= |Êj|) times in the final updated

tree T ∗j , the edge labels belonging to (Xj − {0}) − Ej are all obtained as

distinct edge labels. As T ∗j was initiated with m edges having distinct edge

labels belonging to the set Ej, the final updated tree T ∗j has distinct edge

labels 1, 2, · · · ,Mj for its Mj edges. Thus, the final updated tree T ∗j is

graceful.

Remark: From Theorem 3, we observe that the Embedding Algorithm takes

arbitrary tree T with m edges as its input and produces a sequence of output

trees T ∗0 , T
∗
1 , · · · , T ∗θ , such that each of T ∗j , 0 ≤ j ≤ θ is graceful, where θ is

the last iteration of the Labeling Algorithm. It is clear that, the output tree

T ∗0 of the Embedding Algorithm has M0 = |V1||V2| edges, where (V1, V2) is the

bipartition of the vertex set of the input tree T considered in the Labeling

Algorithm. It follows that M0 ≤ dm
2

4
e. Then, the output tree T ∗1 of the

Embedding Algorithm has M1 = M0 − r1 edges, where r1 = min[l0(N(u1))].

In general, for 1 ≤ j ≤ θ, the output tree of the Embedding Algorithm T ∗j has

Mj edges, where Mj = M0− r1− r2−· · ·− rj, where ri = min[l0(N(uk))] for

1 ≤ i ≤ j, where l0 is the labeling defined in Step 1 of the Labeling Algorithm.

Thus, T ∗θ has the least possible number of edges, Mθ = M0 −
∑θ

i=1 ri. It is

14

easy to see that Mθ ≤ km, where k < dm
4
e. It could be observed that the

complexity of the Embedding Algorithm is O(m2), where m is the size of the

input tree T .

3 Discussion

For a given input arbitrary tree T with m edges, the Embedding Algorithm

will construct a sequence of graceful trees T ∗0 , T
∗
1 , T

∗
2 , · · · , T ∗θ as output, where

θ is the last iteration of the Labeling Algorithm for the input tree T , θ ≤ |V2|
and (V1, V2) is a bipartition of the vertex set of T considered in the Labeling

Algorithm. Observe that T ∗θ is the graceful tree having the least possible

number of edges in the output sequence of graceful trees T ∗0 , T
∗
1 , T

∗
2 , · · · , T ∗θ

and having the number of edges Mθ < km, where k < dm
4
e. Observe that

those Mθ − m additional edges are added to the input tree T sequentially

one by one by the Embedding Algorithm to obtain the output graceful tree

T ∗θ . Thus it is tempting to ask the question,

If G is a graceful tree and v is any one degree vertex of G, is it

true that G− v is graceful?

If this question is answered affirmatively, then those additional edges of T

introduced for constructing the graceful tree T ∗θ by the Embedding Algorithm

could be plugged out in some order so that the given arbitrary tree T becomes

graceful. This would imply that Graceful Tree Conjecture is true.

15

4 Illustrative Examples

Input tree with 26 edges is given in Figure 2.

Figure 2: Input tree T

The bipartition of the input tree T defined by Step 1 of the Labeling

Algorithm is given in Figure 3 and the labeled tree T0 defined from the input

tree T by Step 2.1 of the Labeling Algorithm is given in Figure 4.

Figure 3: Bipartition of vertices of

Input tree T . Figure 4: Labeled tree T0

16

For the labeled tree T0, the sets V0, E0, X0, I0, V̂0, Ê0, X̂0 defined by Step

1.2 of the Embedding Algorithm are given below.

V0 = {0, 1, 2, · · · , 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,

150, 160, 170}
E0 = {1, 11, 21, 32, 43, 54, 65, 76, 81, 82, 83, 87, 94, 97, 105, 106, 107, 118,

128, 137, 138, 139, 140, 150, 160, 170}
X0 = {0, 1, 2, · · · , 170}
I0 = {1, 140, 150, 160, 170}
V̂0 = {2, 3, · · · , 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130}
Ê0 = {11, 21, 32, 43, 54, 65, 76, 81, 82, 83, 87, 94, 97, 105, 106, 107, 118,

128, 137, 138, 139}
X̂0 = {11, · · · , 19, 21, · · · , 29, 31, · · · , 39, 41, · · · , 49, 51, · · · , 59, 61, · · · , 69,

71, · · · , 79, 81, · · · , 89, 91, · · · , 99, 101, · · · , 109, 111, · · · , 119,

121, · · · , 129, 131, · · · , 139, 141, · · · , 149, 151, · · · , 159, 161, · · · , 169}

As X̂0 6= φ, Step 2 finds minX̂0 = 11. Since 11 ∈ Ê0, Step 4 finds

minV̂0 = 2 and β = 11 − 2 = 9. Thus, Step 4 adds a new vertex with label

11 and it joins with the vertex labeled 9. Thus the vertex label 11 is obtained

and the edge label 2 is also obtained. This new addition of the edge is shown

in Figure 5.

Since X̂0 6= φ, Step 2 of the Embedding Algorithm is executed again.

Therefore, minX̂0 = 12 is found. Since 12 /∈ Ê0, Step 3 of the Embedding

Algorithm is executed. Thus, the new vertex with label 12 is added to T0 by

adding a new edge between the vertex labeled 0 and the vertex labeled 12.

This addition of new edge is shown in Figure 6.

As X̂0 6= φ again, Step 2 of the Embedding Algorithm is executed again.

Therefore, minX̂0 = 13 is found. Since 13 /∈ Ê0, Step 3 of the Embedding

Algorithm is executed. Thus, the new vertex with label 13 is added to T0 by

adding a new edge between the vertex labeled 0 and the vertex labeled 13.

This addition of new edge is shown in Figure 7.

Similarly, the vertices with vertex labels 14, 15, 16, 17, 18, 19 are all added

to tree T0 by making them adjacent to the vertex label 0 by using Step 3

17

Figure 5: Addition of Vertex 11 to

Tree T0

Figure 6: Addition of Vertex 12 to

Tree T0

repeatedly. Tree T0 with these new edges with labels 14,15,16,17,18 and 19

is shown in Figure 8.

As X̂0 6= φ, Step 2 of the Embedding Algorithm is executed again. Thus,

minX̂0 = 21 is found and since 21 ∈ Ê0, consequently Step 4 of the Embed-

ding Algorithm is executed, thus, minV̂0 = 3 and β = 21− 3 = 18 are found.

Hence, the new vertex with label 21 is added to T0 by adding a new edge

between the vertex labeled 21 and the vertex labeled 18. Figure 9 illustrates

this new addition of edge. Figure 10 shows the output graceful tree T ∗0 of

the Embedding Algorithm having the input tree T as its subtree.

18

Figure 7: Addition of Vertex 13 to

Tree T0

Figure 8: Addition of Vertices

14,15,16,17,18 and 19 to Tree T0

Figure 9: Addition of Vertex 21 to Tree T0

19

Figure 10: Graceful Tree T ∗0 with 170 edges

20

Figure 11: Graceful Tree T ∗3 with 144 edges

21

Figure 12: Graceful Tree T ∗8 with 119 edges

22

Figure 13: Graceful Tree T ∗θ with 109 edges, θ = 12

23

Acknowledgments

The Authors would like to thank the referees for the valuable comments

and suggestions. The second author thankfully acknowledges Centre for Re-

search, Anna University, Chennai for the financial support through the Anna

Centenary Research Fellowship under the grant Ref:CR/ACRF/Jan.2011/31.

References

[1] B.D. Acharya, S.B. Rao, S. Arumugam, Embedding and NP-Complete

problems for Graceful Graphs, Labelings of Discrete Structures and Ap-

plications, B.D. Acharya, S. Arumugam, Alexander Rosa, eds., (2008),

57-62, Narosa Publishing House, New Delhi.

[2] Aldred R.E. and Mckay B.D, Graceful and harmonious labelings of trees,

Bull. Inst. Comb. Appl., 23, (1998), 69-72.

[3] Bermond J.C. and Sotteau D, Graph decompositions and G-design, Proc.

5th British Combin. Conf., 53-72, (second series), 12, (1989), 25-28.

[4] Bermond J.C, Graceful graphs, radio antennae and French windmills,

Graph Theory and Combinatorics, Pitman, London, (1979), 18-37.

[5] Bloom G.S, A chronology of the Ringel-Kotzig conjecture and the con-

tinuing quest to call all trees graceful, Ann. N.Y. Acad. Sci., 326, (1979),

35-51.

[6] Burzio M. and Ferrarese G, The subdivision graph of a graceful tree is a

graceful tree, Disc. Math, 181, (1998), 275-281.

[7] Chen W.C, Lu H.I and Yeh Y.N, Operations of interlaced trees and

graceful trees, Southeast Asian Bulletin of Mathematics, 21, 337-348.

[8] David Morgan, Gracefully labeled trees from Skolem sequences, Proc. of

The Thirty-First Southeastern Internat. Conf. on Combin., Graph The-

24

ory and Computing (Boca Raton, FL, 2000), Congresses Numberantium,

142, 41-48.

[9] Edwards M, Howard L, A survey of graceful trees, Atlantic Electronic J.

of Mathematics, 1,1, Summer 2006.

[10] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Jour-

nal of Combinatorics, 18, (2011), #DS6.

[11] Golomb S.W, How to number a graph, Graph Theory and Computing

R.C. Read, ed., Academic Press, New York, 1972, 23-37.

[12] Hegde S.M and Shetty S, On graceful trees, Applied Mathematics E-

Notes, 2, (2002), 192-197.

[13] Jeba Jesintha.J and Sethuraman G, All arbitrary fixed generalized ba-

nana trees are graceful, Math. Comput. Sci, 5, (2011),1,51-62.

[14] Jeba Jesintha, New Classes of Graceful Trees, Ph.D Thesis, (2005), Anna

University, Chennai, India.

[15] Kotzig A, Decompositions of a complete graph into 4k-gons (in Russian),

Matematicky Casopis, 15, (1965), 229-233.

[16] Koh K.H., Rogers D.G. and Tan T, Two theorems on graceful trees,

Discrete Mathematics, 25, (1979), 141-148.

[17] Ljiljana Brankovic and Ian M. Wanless, Graceful Labelling: State of

the Art, Applications and Future Directions, Math. Comput. Sci, 5,

(2011),1,11-20.

[18] Michael Horton, Graceful trees statistics and algorithms, Master’s The-

sis, http://eprints.comp.utas.edu.au:81/archieve/00000019/01/.

[19] Ng H.K, Gracefulness of a class of lobsters, Notices AMS, 7, (1986),

825-05-294.

25

[20] Pastel A.M and Raynaud H., Numerotation gracieuse des olivers, Colloq.

Grenoble, Publications Universite de Grenoble, (1978), 218-223.

[21] Pavel Havier and Alfonz Havier, All trees of diameter five are graceful,

Discrete Mathematics, 233, (2001), 133-150.

[22] Ringel G, Problem 25, in Theory of Graphs and its Applications, Proc.

Symposium Smolenice, Prague, (1963) page-162.

[23] Rosa A,On certain valuations of the vertices of a graph, Theory of

graphs, (International Symposium, Rome, July 1966), Gordon and

Breach, N.Y. and Dunod Paris, (1967),349-355.

[24] Sethuraman G. and J. Jeba Jesintha, All banana trees are graceful, Ad-

vanced Applied Discrete Mathematics, 4, (2009), 1, 53-64.

[25] Sethuraman G. and Venkatesh S, Decomposition of complete graphs and

complete bipartite graphs into α-labeled trees, Ars Combinatoria, 93,

(2009), 371-385.

[26] Sekar C,Studies in graph theory, Ph.D. thesis, (2002), Madurai Kamaraj

University.

[27] Stanton R. and Zarnke C, Labeling of balanced trees, Proc. 4th Southeast

Conf. Combin. Graph Theory, Computing, (1973), 479-495.

[28] Van Bussel F.,Relaxed graceful labelings of trees, The Electronic Journal

of Combinatorics, 9, (2002), #R4.

[29] Wang J.G., Jin D.J., Lu X.G. and Zhang D., The gracefulness of a class

of lobster trees, Math. Comput. Modelling, 20, (1994), 105-110.

[30] West D.B., Introduction to Graph Theory, Prentice Hall of India, 2nd

Edition, 2001.

[31] Yao B, Yao M, Cheng H,On gracefulness of directed trees with short

diameters,Bull. Malays. Math. Sci. Soc.,(2), 35, (2012), 1, 133-146.

26

